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Abstract

We shortly discuss the mathematical modeling and its problems of one of the structured credit de-
rivatives, the synthetic CDOs. These financial products were among the favorites prior to the crisis, 
and there was a general view that the mathematical models caused or at least boosted it. 
We focus only on the mathematical description of these derivatives, therefore our analysis con-
centrates purely on the problems coming directly from the model, we ignore the related practical 
problems.
We find that not only the tools used in the modeling were inappropriate, but the principle used for 
pricing was also not correct in the framework of risk-neutral pricing. To our knowledge no one has 
highlighted these theoretical problems so far.

1. Introduction

When considering the financial and global crisis of 2007-2010, it is often said that the 
mathematical models used for pricing complex derivatives played a central role in caus-
ing or boosting it. There were articles available online that stated there was one single 
formula responsible for the crash of Wall Street.2

 While this is obviously an exaggeration, and we stress that none of these articles 
can be considered scientific, they still have put the models in the spotlight. We aim to 
examine what were some of these complex derivatives and what models were used for 
their pricing. We focus on synthetic CDOs and the famous Gaussian copula model of Li 
(2000). We give a short introduction to synthetic CDOs and show the model itself, why 
it was used and the shortcomings why it was blamed afterwards. We remark that the de-
ficiencies were known to the modelers and researchers, they did not claim that the main 
source of problems was the model. 

1  Department of Finance, Corvinus University of Budapest, gyarmati.akos@gmail.com

2  http://www.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all
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There are many known extensions to the original model (e.g. Andersen & Sidenius 
(2005), Gregory & Laurent (2004) or Kalemanova et. al.), we only present the main idea 
behind them and discuss their advantages and disadvantages.

The main point of this paper is that there are theoretical problems beside the known de-
ficiencies of the original model. If we examine the principle used for pricing we find that 
it does not fit in the usual framework of risk-neutral pricing. Not only the original model, 
but the extensions also ignore this. To our knowledge no one has highlighted and dealt 
with this problem so far.

The rest of the paper is organized as follows: section 2 describes synthetic CDOs, section 
3 deals with the problem of pricing, section 4 shows the risks associated with a synthetic 
CDO and the practical problems and extensions of the original model.

2. About synthetic CDOs

In this section we discuss what a synthetic CDO is, and why they were one of the favored 
products before the crisis. Our description only includes terms that are necessary to un-
derstand the basic concept of these credit derivatives and that are used in the following 
sections when we discuss the mathematical modeling.

2.1. About CDSs

While our goal is to get familiar with synthetic CDOs, it is necessary to understand basic 
credit derivatives such as CDSs. Furthermore as we will see, these are the products from 
which synthetic CDOs are built and why the name “synthetic” is given. We only give the 
definition of CDSs, we don’t deal with any details or pricing.

A CDS or Credit Default Swap is a credit derivative in which two parties, the protection 
buyer and protection seller, swap the credit (default) risk of a third product or party, called 
reference product. In the agreement they fix, that in case of default the protection seller 
pays for the protection buyer and in return the protection buyer makes regular payments 
for the protection seller until maturity or the default event. It is possible that there is a 
recovery on the subject of the CDS or the parties agree that they consider a recovery. In 
this case the protection seller pays only the amount reduced with the recovery if default 
happens.
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The above said are illustrated in Figure 1 below.

Figure 1: The basic structure of CDSs

2.2. What is a synthetic CDO?

First, the abbreviation CDO stands for Collateralized Debt Obligation. This financial 
product is a basket credit derivative, i.e. its cash flow comes from a reference portfolio, 
which contains other products that are exposed to credit risk.

The term synthetic comes from the fact, that in our case the reference portfolio contains 
CDSs (Credit Default Swaps), which are already credit derivatives, so the credit risk is 
represented synthetically, through the CDSs.

A synthetic CDO is a correlation product, i.e. the defaults of the CDSs in the reference 
portfolio are generally not independent, we have to take into account the correlation be-
tween them. What we see already is that a synthetic CDO transfers the credit risk (that 
was already transferred by the CDSs) of the reference portfolio. How it is done more ac-
curately is described in the following.

A synthetic CDO is also called structured credit derivative, in the following we introduce 
the basic concept of its structuring:

•	 the reference portfolio is sliced up to so called tranches, which absorb the 
losses from the occurring defaults of the CDSs in a previously defined range.  
e. g. Equity tranch 0-3% means that this tranch absorbs the first 3% of losses in 
the reference portfolio.

•	 these tranches are periodically (usually quarterly) paid premium or spread from 
incoming cash flow of the CDSs.

o the premium paid for each tranch depends on its riskiness and the pre-
mium is paid for only the current notional of the tranch. 
e. g. tranch 0-3% is obviously riskier than tranch 12-22%, therefore it 
gets a greater premium.
e. g. consider tranch 0-3%: if 1% of loss has already occurred, then the 
premium will be paid only on the remaining 2% of notional.



96

•	 in a synthetic CDO the tranches are the securities one can invest in, and the pre-
mium is considered its price.

The above described are best understood if we consider a simple, hypothetic example.

Example (trading with indices)

Consider the following structure:
Reference portfolio Tranch name Tranch range

A portfolio of the liquid 
CDSs of 125 corporation

Super senior 22-100%
Super senior (junior) 12-22%

Senior 9-12%
Mezzanine (senior) 6-9%
Mezzanine (junior) 3-6%

Equity 0-3%
This is the synthetic CDO structure of the DJ iTraxx Europe index. Here the CDSs of the 
reference portfolio are equally weighted, and the premium is paid quarterly.

Suppose we invest 1 million euro into the Mezzanine (junior) tranch, which is currently 
traded at 300bps. For simplicity’s sake we will assume that this is now the quarterly pre-
mium. If there is no default we receive quarterly 1 mio*300bps = 30 000 euro.

Now suppose that 6 CDSs have defaulted. This is 6/125 = 4.8% of the whole portfolio, 
and so the losses have reached our tranch. The amount of payout: 4.8% 3% 60%

6% 3%
−

=
−

 
of our total investment, i.e. we lose 600 000 euro (we would lose 
our complete investment if more than 6% of the reference portfo-
lio defaulted).
From now on, if there are no more defaults, we will receive the 300bps 
premium only on the remaining notional of 400 000 euro, i.e. quarterly 12 
000 euro.

2.3. The importance of synthetic CDOs

The issuance of synthetic CDOs grew rapidly in the year before the crisis. The motivation 
behind building these securities comes from both the issuer’s and the investor’s side.3

Considering the issuer, there are two main reasons:
•	 regulatory capital relief: this was the original reason for issuing CDOs. The 

issuer, after the securitization of the reference portfolio, is able to reduce his 
regulatory capital, basically because he passes on the credit risk to the investors, 
and therefore the only regulatory capital requirement he has to provide is for the 
retained pieces

3  More generally we call the buyer of a tranch protection seller, and the seller of a tranch protection 
buyer.
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•	 spread arbitrage: this was the main reason for issuing CDOs. In practice the 
total spread collected from the CDSs of the reference portfolio exceeds the total 
amount of premium to be paid to the investors of the CDO tranches. The issuer 
can take advantage of this and collect the difference.

Naturally to create a successful market, the interest of the investors is also required. The 
advantages of CDOs for investors are:

•	 broad range of risk-return profiles: by slicing the reference portfolio into tranch-
es we create investment opportunities from really risky to very safe, even if the 
reference portfolio contained only securities of mediocre risk. 

•	 high leverage: as we have seen in the example above, CDOs offer a highly lev-
eraged investment, which is especially attractive when market is booming, like 
prior to the crisis.

Besides these issues, as we said in the previous section CDOs4 played a central role in 
the financial crisis of 2007-2010. We shortly discuss the essence of their role, for a more 
detailed description see Gyarmati (2010). 

Credit derivatives like CDOs connect two different groups of people, the investors and 
home-owners, through their money and mortgages. Prior to the crisis investors were look-
ing for better investments than government bonds, because of low interest rates. On the 
other hand low interest rates meant cheap credit opportunities for banks. Leverage began 
to increase and as the profit of banks rose, the interest for credit derivatives began to 
grow among investors. To satisfy this demand investment banks indirectly connected 
investors and home-owners through credit derivatives. In practice this was done so that 
investment banks bought mortgages (or other credit derivatives), repackaged them by 
creating complex financial product like CDOs and sold them to the investors. As we saw 
above CDOs can satisfy the risk preferences of almost every investor even those looking 
for safe investments, but also add to the complexity and reduce the transparency of the 
financial system.

The demand for CDOs rose, which in the end led to the worsening of the quality of cred-
its, as home-owner were given easier credit conditions. However the increased risk was 
absorbed by the increased risk-bearing of investors, they were still looking for invest-
ments like CDOs. Also (and in connection with the previous) the mathematical models 
used for pricing were unable to capture the increased risk properly, the premiums from 
the models did not represent the real risk of the investment. Therefore investors still 
thought their investments to be safe.

The raised interest rates and the passing of easy starting conditions resulted in more and 
more frequent defaults of bad quality credits, which eventually led to the credit and later 
global crisis.

As we can see there were several factors that together led to the crisis. The role of CDOs is 
crucial, but the models used for pricing cannot be blamed alone for everything. However 
a bad model does have a contribution to the crisis. To understand this properly, the model 
used for pricing is described in the next section. We will discuss the shortcomings and 
arising problems in section 4.

4  In the following description not only synthetic CDOs are considered.
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3. The problem of pricing

3.1. The general approach

In this section we give the mathematical description of the above introduced synthetic 
CDOs and discuss their pricing. Recall that the price of a CDO tranch is the premium 
paid for it.

In the modeling practical issues, like the spread arbitrage opportunity of the above sec-
tion or overcollateralization5, are generally ignored, these are very hard to incorporate and 
would make the models even more complicated. 
We will use the following notation:

• n is the number of CDSs in the reference portfolio
• Vi is the notional of the ith CDS
• Ri the recovery on the ith CDS

• iτ  is the time of the default of the ith CDS

• 0 10 Nt t t= < < <  are the times when the premiums are paid

• 0 10 1mK K K= < < < =  are the so called attachment and detachment 
points of the tranches, i.e. the beginning and end of the range they provide pro-
tection for. e.g. tranch i provides protection between Ki-1 and Ki. These points are 
given in percentage of the reference portfolio

• ( )0,B t  is the discount factor between 0 and t
• ri is the premium paid for tranch i, this is what we want to determine

With these notations we can define the percentage6 loss occurred in the reference portfolio 
until t, we shall denote this by L(t): 

 ( )
( ) ( )

1
1

i

n

i i t
i

i

R V
L t

nV

τχ <
=

− ⋅
=
∑

where ( )Aχ  is the indicator function of the set A (it is 1 over the set and 0 otherwise). With 
this it is possible to determine the loss occurred to tranch i. until t. 

 ( ) ( )( )1max min ; ;0i i iL t L t K K −= −  
In the following we will make two assumptions:

• the notional on each CDS is identical
• the recovery is also identical on each CDS

Therefore we omit the index i from now on. These may seem too strong to assume, but 
they are fulfilled e.g. by standardized indices, like the iTraxx Europe in the example of 
the previous section. Furthermore these assumptions allow us to keep the mathematical 

5  It is basically when more collateral is put in the reference portfolio than what the tranches cover.

6  We will always work with percentage losses in the following.
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modeling tractable. Nevertheless these are not necessary to continue, many models used 
in practice relax these assumptions.

The principle used today for pricing is the following argument: the premium must be de-
termined so that initially neither the issuer (protection buyer) nor the investor (protection 
seller) should be able to realize one-sided profit in expected value. Therefore the premium 
should be set so that the expected cash flows that the investor gets and pays (the issuer 
pays and gets) are equal. We stress that this is not the usual no-arbitrage principle as here 
expected values are considered and not replicating strategies. We will discuss this issue 
in the next subsection in detail.

With the above defined losses we can determine both cash flows. We will call the cash 
flows that the investor is paid the Premium Leg (PL), and what he has to pay given de-
faults the Default Leg (DL). Recall that both PL and DL are discounted7, expected cash 
flows.

 Then the PL of the investor of tranch i. can be expressed as:

( ) ( ) ( ) ( ) ( )( )1 Q 1
1

0, E
N

i i k k k i i i i k
k

PL r B t t t r K K L t nV− −
=

= ⋅ − ⋅ ⋅ − − ⋅∑

where ( ) ( )1i i i kK K L t−− −  is the balance of tranch i at time tk, EQ denotes the expected 
value under a risk neutral measure used for pricing, and the multiplier nV is because of 
the percentage form.

Turning to the DL, we will assume that the obligations need to be fulfilled only in the dis-
crete time points 0 10 Nt t t= < < <  not immediately on the occurrence of the default. 
With this the DL can be written as:

 
( ) ( ) ( )( )Q 1

1

0, E
N

i k i k i k
k

DL B t L t L t nV-
=

= × - ×å
 

It is clear that ( ) ( )1i k i kL t L t --  is what the investor of tranch i has to pay in the time in-
terval . The price of the CDO is determined by ri. Under the risk-neutral pricing, ri should 
satisfy the following equation: 

 ( )i i iPL r DL=
From (1) and (2) we can easily express the “fair” premium of tranch i:

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

Q 1
1

1 Q 1
1

0, E

0, E

N

k i k i k
k

i N

k k k i i i i k
k

B t L t L t
r

B t t t r K K L t

-
=

- -
=

× -
=

× - × × - -

å

å

7  The discounting is done for time t = 0, today.
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Of course this does not solve our problem, we still don’t know the ( )( )QE i kL t  risk 
neutral expected values. It is clear that one must model the loss distribution L(t) and so 
the joint distribution of the underlying CDSs, to calculate these. Most of the CDO pricing 
models in the literature focus on tackling this particular problem. We will also examine 
the best-known model, the Gaussian one factor copula, which was blamed the most for 
the crisis.

However, what most of the models don’t take into account is that there are problems with 
the principle of pricing, already. We will discuss these issues in the next session.

3.2. Problems with the principle of pricing

As we said, the pricing principle introduced in the previous section is common in all the 
well-known models used for CDO pricing. However, it does not fit in the usual frame-
work of mathematical finance used for pricing derivatives. We will argument this topic in 
this section. To our knowledge no one discussed these issues before.

In the above we use risk-neutral pricing, and talk about arbitrage pricing. Whether we can 
use the general formula of pricing8, is not clear however.

1. to use the formula, we should be able to reproduce the CDO cash flow syntheti-
cally with underlyings, we should create a self-financing replicating portfolio. 

a. The existence and uniqueness of such a portfolio is not clear. We 
haven’t found any study which discussed the replication of a synthetic 
CDO.

b. It is also not obvious what we consider underlying in this market. It 
should be the CDSs, but then nothing is specified about them.

2. Without the above we cannot really talk about no-arbitrage pricing.
Furthermore in the principle of the previous section there is no dynamics it is only valid 
for one day, so the usual dynamic hedging with the self-financing, replicating portfolio 
used in the pricing is not possible.

We haven’t said anything about the pricing measure yet. The determination of it in the 
above framework is purely practical, the usual approach is to bootstrap from market data, 
the Radon-Nikodym derivative approach of mathematical finance is not used.

The main problem if we give up the no-arbitrage principle is that we lose a strong eco-
nomic argument why the price should be so as the model states. Without this the whole 
modeling gets an ad-hoc character.

The principle used here is more like the well-known principle of equivalence used in 
insurance, but instead of real world and real probabilities, we want to use it in the risk-
neutral world, with risk neutral probabilities.

The importance of the issues described in this section is that it states that when consider-
ing the crisis, not only the practical modeling of CDOs were inappropriate (as we will see 

8  The general formula is the risk-neutral expected value of the risk-free discounted payoff.
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in the following sections), but the principle used for pricing, the theoretical approach also 
wasn’t clearly discussed. 

3.3. Practical modeling – joint distributions

In this section we will briefly examine the well-known Gaussian one factor copula for 
modeling joint distributions. To keep track of the essence of the modeling we exclude 
some parts of the mathematical deductions, these can be found in the appendix (or in e.g. 
Eberlein et al. (2008), Gyarmati (2010)).
Remark. According to the previous section, there is no obvious economical intuition 
backing up the modeling, therefore the tools used for modeling depend on the choice of 
the user.

Like we said before in (3) we need to calculate the ( )( )QE i kL t  risk neutral expected 
values. In practice the Gaussian one factor copula was the most common to model the 
joint distribution of the underlying CDSs.

We define for each CDS a random variable Xi in the following way:

1i iX M Zr r= + -
where M, Z1,…, Zn are all independent and standard normally distributed. 

The Xi is called state variable, and by construction Xi is also standard normally distrib-
uted, and ( ),i jcorr X X r= . We remark that this means that all pair wise correlations 
are equal to r , so according to (4) the correlation matrix of the underlying n CDSs is 
characterized by one number only.

There are two factors that define the state of the ith CDS: M represents the market, which 
affects every CDS (it is the common factor), Zi represents the idiosyncratic factor, which 
describes specifically the ith CDS. 

We say the ith CDS has defaulted, if its state variable sinks below a certain threshold, 
like in Merton (1974). These time dependent thresholds (we will use the notation k(t)9) 
can be obtained from the marginal risk neutral distribution of the default times iτ . As in 
Li (2000) the usual assumption is that iτ  are exponentially distributed with il  intensi-
ties i.e. ( ) ( )Q 1 expi it tt l< = - - . The default intensities can be bootsraped from 
market data (see Embrechts et. al. (2005) chapter 9). We assume that the market is effi-
cient and therefore the observed prices do not contain arbitrage. Therefore the intensities 
implied from market prices are considered risk neutral as they produce arbitrage-free 
prices. We already mentioned in the previous section that this is not an exact method, but 
nonetheless it is practical and the calculations can be performed.10

The idea behind (4) is that if we consider conditionally on the market factor, then by the 
construction defaults are independent, therefore it is easy to calculate the “conditional” 

9  Formally k(t) satisfies the following: ( ) ( )( )Q Qt X k ti it < = < .

10  Unlike in the case of the theoretical Radon-Nikodym derivatives, where there are no such 
calculations.
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joint distribution. From here we get the “unconditional” joint distribution by integrating 
over M.

More formally we can write for one CDS conditioned on M:

( ) ( )( ) ( ) ( )
( )Q | Q | Q | |

1 1i i i

k t M k t M
t M X k t M Z M p t M

r r
t

r r

æ ö æ ö- -÷ ÷ç ç÷ ÷ç ç< = < = < =F÷ ÷ç ç÷ ÷ç ç÷ ÷- -è ø è ø


where ( )F ×  is the standard normal distribution function. For the joint distribution:

( ) ( ) ( ) ( ) ( )1 1
1 1

Q , , |  |  
n n

n n i M i
i i

t t p t M m dF m p t M m f m dmt t
¥ ¥

= =-¥ -¥

< < = = = =Õ Õò ò    (5)

where ( )f ×  is the standard normal density function. This integral represents the so called 
factor Gaussian copula.

It is possible to get a closed form expression for the distribution of the relative amount 
of defaulted CDSs using (5) and the so called Large Homogeneous Portfolio (LHP) ap-
proximation (Vasicek (1991)). We only give the result here, the mathematical deduction 
can be found in the appendix.

Let Dt denote the relative amount of defaulted CDSs up to time t. For the risk neutral 
distribution we get:

 
( ) ( )

( )11
Q

tD t

k t
F h D h

r

r

-æ ö- F - ÷ç ÷ç= < =F ÷ç ÷ç ÷è ø

   (6)

Using (6) we can calculate the ( )( )QE i kL t  risk neutral expected values we need to 
price tranch i. Because we assumed a recovery rate of R, the actual loss up to time t can 
be calculated as ( ) ( )1 iR L t- . Considering this, the expected values:

( )( ) ( ) ( ) ( )
1

1 1
1

Q

1 1

E 1
1 1t tk k

i i

i i
i k D D

K K
R R

K KL t R h dF h h dF h
R R

-

-

- -

æ ö÷ç ÷ç æ ö æ ö ÷ç ÷ ÷ç ç ÷= - - - -ç ÷ ÷ ÷ç çç ÷ ÷ç ç ÷è ø è ø- -ç ÷ç ÷÷çè ø
ò ò

 (7)

since the expected loss of tranch i can be calculated as the difference of the expected 
losses of two “senior”11 tranches [ ] [ ] [ ]( )

1 1, ,1 ,1consider: 
i i i iK K K KL L L
- -

= - . 

11  Senior tranches here are the ones that have no other tranch above them.
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4. The risks of synthetic CDOs

4.1. The mark-to-market value of a CDO

In the framework we used so far, we can define the mark-to-market (MTM) value of 
tranch I of a synthetic CDO at time t as follows:

 ( ) ( ) ( )( ) ( ) ( )( ), , ,CDS CDS
i i i iMTM t PL r r t t DL r t tr r= -   (8)

Basically we take the difference of the at time t expected payoffs. Recall that according 
to the principle of pricing the premium is set so that the MTM value of tranch i at time 0 
(at issuance) is exactly 0. 

 We highlighted the main sources of risk in (8). These are:
•	 the change of the CDS spread: an average spread if the CDSs are not “identical” 

as we assume
•	 the change of the correlation: in the model of the previous section we stressed 

that there is only one correlation parameter that describes the connection among 
the CDSs.

•	 credit risk: this was already discussed in section 2 where we described the struc-
ture and functioning of synthetic CDOs.

The effect of each of these factors can be reasoned economically. In (8) we noted that the 
PL depends on the premium as well, but this is determined at the beginning and does not 
change over the duration of the CDO.

If the CDS spread rises, it basically means that ceteris paribus they have become riskier, 
therefore one would expect a higher premium, but as we said the premium is fixed, so 
according to (8) the MTM value of tranch i will decrease. 

In the case of correlation consider the following. If correlation is high, it means that the 
probability of many simultaneous defaults is high as well as the probability of no defaults 
at all. Conversely if correlation is low, it means that it is not likely that many defaults will 
occur simultaneously, but it is also unlikely that no defaults will occur at all. 

The first case is bad for the investor of the senior tranch, because he could tolerate some 
defaults, but not many simultaneously, while it is good for the equity tranch investor as 
he has a greater chance to have no defaults at all and thus to “survive” (he cannot tolerate 
practically any defaults as he is the first one who bears the losses). In the second case the 
situation is the opposite: the senior investor is the favored, he doesn’t have to fear many 
defaults, while the equity investor has little chance to avoid losses.

Considering the above argument we have that ceteris paribus higher correlation makes a 
senior tranch investment riskier, while an equity investment safer and conversely when 
correlation is lower the senior investment is safer and the equity riskier. This means if cor-
relation rises, the premium of a senior tranch should rise, and so according to (8) its MTM 
value decreases, while the equity premium should be lower, which means its MTM value 
rises. The effect on mezzanine tranches is not obvious, it has to be examined specifically.
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We already discussed the case of credit risk, here we only take an interesting exam-
ple: it is not necessary that the level defaults reach a given tranch to suffer from credit 
risk. Consider the following: defaults have just exhausted the equity tranch, but they 
not reached the mezzanine tranch yet. In this case the risk of the mezzanine investor is 
significantly higher, as now practically he is the “new” equity investor, nothing protects 
him from the upcoming defaults. This means his premium should rise, and so his MTM 
value decreases.

4.2. The positive side of the Gaussian copula

The main advantage of using the Gaussian copula is that with it the ( )( )QE i kL t  risk 
neutral expected values can be calculated analytically. In (7) we can do all the integration 
and we get (see e.g O’Kane & Schoegl (2001):

( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )Q 2 1 2E 1 , , , ,i k i iL t R f K k t f K k t-= - F S -F S  (9)

where 2F  is the bivariate normal distribution function, 
( ) 1

1
xf x

R
- æ ö÷ç=-F ÷ç ÷çè ø-

 and 

1 1

1 1

r

r

- -
S =

- -

æ ö÷ç ÷ç ÷ç ÷çè ø

 is the correlation matrix. 

Using (9) one can easily and rapidly do the calculations based on the model:
•	 the calculations of the tranch premiums
•	 sensitivity tests for the sources of risk and hedging

We have made a set of these type of calculations to demonstrate the use of the Gaussian 
copula. Our data is from the DJ iTraxx Europe 5 years index series 13 at 8 April 2010.

Below in Figure 2 we see the tranch premium as the function of the CDS spread and the 
correlation.

These figures show exactly what we anticipated according to the previous subsection. The 
premiums are rising when CDS spread rises, and we see the dual effect of the correlation 
too.
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Figure 2: Tranch premiums as the function of the CDS spread and the correlation
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Figure 3: MTM values as the function of the CDS spread and the correlation 

Considering the MTM values of the tranches, we already expect that we should see some-
thing like the opposite of the above figures as we know that the tranch premium is fixed 
for the duration of the CDO. 

We also made the calculations of the MTM values, Figure 3 above shows the results. We 
can see again that the results are in line with our economical argument (and we see the 
“opposite” of the premium figures).

4.3. The negative side of the Gaussian copula

There are serious disadvantages of the Gaussian copula as well. From a mathematical 
point of view, the most important are:

•	 there is only one independent parameter: the correlation
•	 the model uses normally distributed factors, and so underestimates the real prob-

ability of joint defaults.

As a consequence with this model it is hard to fit to market data, therefore this model can 
lead to serious mispricing and badly constructed hedging strategies. These are the main 
practical problems, because of which this model was accused for causing the crisis.

Furthermore there is another, more theoretical problem with the model: if we calculate 
implied correlations for the tranches12, we should get the same value over all tranches if 
the model was correct. However this is not the case, we get a so called correlation smile 
(similar to the volatility smile of the Black-Scholes model), so the model is pricing 
inconsistently.

 In the figures below we see these issues, on our own calculations.

12  Implied correlation is the correlation with which the model produces the observed market price.
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Figure 4: the fitted and real tranch premiums and the correlation smile

4.4. Possible extensions to the Gaussian copula

We consider briefly the options to overcome some of the shortcoming of the Gaussian 
copula. We don’t examine any model thoroughly, we just give some of the best-known 
ideas already 

present in the literature. For a more detailed description of these models see e.g. Eberlein 
et al. (2008), Ferrarese (2006) or Gyarmati (2010).

Basically there are two groups of possible extensions:
•	 static extensions: these models stay in the framework of the Gaussian copula, 

the starting point is a similar state variable equation as (4), but they use more 
independent variables. e.g.:

o models with non-normal, fat tailed factors (e.g. Normal Inverse 
Gaussian – NIG distributed factors)

o models where the correlation is also a random variable (e.g. stochastic 
correlation, random factor loading)
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•	 dynamic extensions: these models do not use the framework of the Gaussian 
copula, they represent an entirely different approach. They are continuous 
time models, and try to model the evolution of defaults using Markov chain 
techniques.

The advantage of both categories is that they fit the market better, give more precise re-
sults than the original model.

The disadvantage of these models is that formulas are more complicated, and so it is more 
difficult to do the calculations. In most of these models an analytical solution is no more 
available.

As a final remark we stress, that to our knowledge the original principle described in sec-
tion 3.1. remains the same in all of the now existing extensions of the model, therefore the 
theoretical problem of the pricing principle is still to be solved.
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Appendix

Here we show how one can get the loss distribution of (6)

Let t
kA  denote the event, that up to time t exactly k CDSs have defaulted.13 If condition 

on M, then t
kA  means that out of n independent events exactly k has happened. Therefore 

t
kA  is distributed binomially, with parameters ( )|p t M  and n. To get the unconditional 

distribution we need to integrate over M.

To determine the loss distribution, we need the probability, that no more than k defaults 
occurred. We use the notation Dt for the relative amount of defaults. Then the probability 
we are looking for is:

( ) ( ) ( )
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Now we will apply the LHP approximation. Let ( )
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random variable and 
tpG its distribution function. With this notation and the substitution 

( )ty p u=  we can rewrite (10):
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The LHP approximation means that we examine the behavior of the integrand, when 
n ®¥ . Let Bi (i = 1,…, n) denote independent Bernoulli distributed variables, with 
parameter y. By the law of large number we have 1

n i
i

B B y
n

= ®å  almost surely so 

for the distributions ( ) [ ] ( )0,n xBF x yc®  pointwise on { }\ y . The sum of Bernoulli 
variables is binomially distributed, so for h y¹ , n ®¥  (let A be binomially distrib-
uted with parameter, y, n):
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The sum on the left hand side is bounded by 1LÎ1 , thus by Lebesgue’s theorem we have 
from (11):
 

13  So by this notation the relative amount of loss is ( ) ( )1kL t R
n

= - .
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Where we used that M is standard normally distributed and that ( ) ( )1 x x-F =F - .


