
WORK ING  PAPER  SER I E S
NO 1294  /  F EBRUARY  2011

by Rainer Klump, Peter McAdam 
and Alpo Willman

THE NORMALIZED 
CES PRODUCTION 
FUNCTION 

THEORY AND 
EMPIRICS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6527624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


WORKING  PAPER  SER IES
NO 1294  /  FEBRUARY  2011

THE NORMALIZED CES 

PRODUCTION FUNCTION 

THEORY AND EMPIRICS1

by Rainer Klump 2, Peter McAdam 3 
and Alpo Willman 4

1   We thank Cristiano Cantore, Jakub Growiec, Olivier de La Grandville, Miguel León-Ledesma 

and Ryuzo Sato for comments, past collaborations and support.

2   Goethe University, Frankfurt am Main & Center for Financial Studies.

3   European Central Bank, Kaiserstrasse 29, D-60311 Frankfurt am 

Main, Germany: email: peter.mcadam@ecb.europa.eu. McAdam 

is also visiting professor at the University of Surrey.

4   European Central Bank, Kaiserstrasse 29, D-60311 

Frankfurt am Main, Germany: email: 

Alpo.Willman@ecb. europa.eu

This paper can be downloaded without charge from http://www.ecb.europa.eu or from the Social Science 
Research Network electronic library at http://ssrn.com/abstract_id=1761410.  

NOTE: This Working Paper should not be reported as representing 
the views of the European Central Bank (ECB). 
The views expressed are those of the authors 

and do not necessarily reflect those of the ECB.
In 2011 all ECB

publications
feature a motif

taken from
the €100 banknote.



© European Central Bank, 2011

Address
Kaiserstrasse 29
60311 Frankfurt am Main, Germany

Postal address
Postfach 16 03 19
60066 Frankfurt am Main, Germany

Telephone
+49 69 1344 0

Internet
http://www.ecb.europa.eu

Fax
+49 69 1344 6000 

All rights reserved. 

Any reproduction, publication and 
reprint in the form of a different 
publication, whether printed or produced 
electronically, in whole or in part, is 
permitted only with the explicit written 
authorisation of the ECB or the authors. 

Information on all of the papers published 
in the ECB Working Paper Series can be 
found on the ECB’s website, http://www.
ecb.europa.eu/pub/scientific/wps/date/
html/index.en.html

ISSN 1725-2806 (online)



3
ECB

Working Paper Series No 1294
February 2011

Abstract 4

Non technical summary 5

1 Introduction 7

2 The general normalized CES production 
function and variants 11

2.1 Derivation via the power function 13

2.2 Derivation via the homogenous 
production function 15

2.3 A graphical representation 15

2.4 Normalization as a means to uncover 
valid CES representations 16

2.5 The normalized CES function 
with technical progress 20

3 The elasticity of substitution as an engine 
of growth 24

4 Estimated normalized production function 27

4.1 Estimation forms 34

4.2 The point of normalization – literally! 36

5 Normalization in growth and business 
cycle models 38

6 Conclusions and future directions 40

References 43

CONTENTS



4
ECB
Working Paper Series No 1294
February 2011

Abstract. The elasticity of substitution between capital and labor and, in turn, the direction

of technical change are critical parameters in many fields of economics. Until recently, though,

the application of production functions with non-unitary substitution elasticities (i.e., non Cobb

Douglas) was hampered by empirical and theoretical uncertainties. As has recently been re-

vealed, “normalization” of production functions and production-technology systems holds out

the promise of resolving many of those uncertainties. We survey and critically assess the in-

trinsic links between production (as conceptualized in a macroeconomic production function),

factor substitution (as made most explicit in Constant Elasticity of Substitution functions) and

normalization (defined by the fixing of baseline values for relevant variables). First, we recall

how the normalized CES function came into existence and what normalization implies for its

formal properties. Then we deal with the key role of normalization in recent advances in the

theory of business cycles and of economic growth. Next, we discuss the benefits normalization

brings for empirical estimation and empirical growth research. Finally, we identify promising

areas of future research on normalization and factor substitution.

Keywords. Normalization, Constant Elasticity of Substitution Production Function, Factor-

Augmenting Technical Change, Growth Theory, Identification, Estimation.
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Non-technical Summary

Substituting scarce factors of production by relatively more abundant ones is a key

element of economic efficiency and a driving force of economic growth. A measure

of that force is the elasticity of substitution between capital and labor which is the

central parameter in production functions, and in particular CES (Constant Elas-

ticity of Substitution) ones. Until recently, the application of production functions

with non-unitary substitution elasticities (i.e., non Cobb Douglas) was hampered

by empirical and theoretical uncertainties.

As has recently been revealed, “normalization” of production functions and

production-technology systems holds out the promise of resolving many of those

uncertainties and allowing elements as the role of the substitution elasticity and

biased technical change to play a deeper role in growth and business-cycle anal-

ysis. Normalization essentially implies representing the production function in

consistent indexed number form. Without normalization, it can be shown that

the production function parameters have no economic interpretation since they

are dependent on the normalization point and the elasticity of substitution itself.

This feature significantly undermines estimation and comparative-static exer-

cises, among other things. Due to the central role of the substitution elasticity in

many areas of dynamic macroeconomics, the concept of CES production functions

has recently experienced a major revival. The link between economic growth and

the size of the substitution elasticity has long been known. As already demon-

strated by Solow (1956) in the neoclassical growth model, assuming an aggregate

CES production function with an elasticity of substitution above unity is the easiest

way to generate perpetual growth. Since scarce labor can be completely substi-

tuted by capital, the marginal product of capital remains bounded away from zero

in the long run.

Nonetheless, the case for an above-unity elasticity appears empirically weak and

theoretically anomalous. However, when analytically investigating the significance

of non-unitary factor substitution and non-neutral technical change in dynamic

macroeconomic models, one faces the issue of “normalization”, even though the

issue is still not widely known. The (re)discovery of the CES production function in

normalized form in fact paved the way for the new and fruitful, theoretical and em-

pirical research on the aggregate elasticity of substitution which has been witnessed

over the last years. In La Grandville (1989b) and Klump and de La Grandville

(2000) the concept of normalization was introduced in order to prove that the

aggregate elasticity of substitution between labor and capital can be regarded as
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an important and meaningful determinant of growth in the neoclassical growth

model.

In the meantime this approach has been successfully applied in a series of

theoretical papers to a wide variety of topics. Further, as Klump et al. (2007a,

2008) demonstrated, normalization also has been a breakthrough for empirical

research on the parameters of aggregate CES production functions, in particular

when coupled with the system estimation approach. Empirical research has long

been hampered by the difficulties in identifying at the same time an aggregate

elasticity of substitution as well as growth rates of factor augmenting technical

change from the data. The received wisdom, in both theoretical and empirical

literatures, suggests that their joint identification is infeasible. Accordingly, for

more than a quarter of a century following Berndt (1976), common opinion held

that the US economy was characterized by aggregate Cobb-Douglas technology,

leading, in turn, to its default incorporation in economic models (and, accordingly,

the neglect of possible biases in technical progress). Translating normalization into

empirical production-technology estimations allows the presetting of the capital

income share (or, if estimated, facilitates the setting of reasonable initial parameter

conditions); it provides a clear correspondence between theoretical and empirical

production parameters and allows us ex post validation of estimated parameters.

Here we analyze and survey the intrinsic links between production (as concep-

tualized in a macroeconomic production function), factor substitution (as made

most explicit in CES production functions) and normalization.
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Until the laws of thermodynamics are repealed, I shall continue to relate

outputs to inputs - i.e. to believe in production functions.

Samuelson (1972) (p. 174)

All these results, negative and depressing as they are, should not sur-

prise us. Bias in technical progress is notoriously difficult to identify.

Kennedy and Thirwall (1973) (p. 784)

The degree of factor substitution can thus be regarded as a determinant

of the steady state just as important as the savings rate or the growth

rate of the labor force.

Klump et al. (2008) (p. 655)

1 Introduction

Substituting scarce factors of production by relatively more abundant ones is a key

element of economic efficiency and a driving force of economic growth. A measure

of that force is the elasticity of substitution between capital and labor which is the

central parameter in production functions, and in particular CES (Constant Elas-

ticity of Substitution) ones. Until recently, the application of production functions

with non-unitary substitution elasticities (i.e., non Cobb Douglas) was hampered

by empirical and theoretical uncertainties. As has recently been revealed, “nor-

malization” of production functions and production-technology systems holds out

the promise of resolving many of those uncertainties and allowing considerations as

the role of the substitution elasticity and biased technical change to play a deeper

role in growth and business-cycle analysis. Normalization essentially implies rep-

resenting the production function in consistent indexed number form. Without

normalization, it can be shown that the production function parameters have no

economic interpretation since they are dependent on the normalization point and

the elasticity of substitution itself. This feature significantly undermines estima-

tion and comparative-static exercises, among other things.

Let us first though place the importance of the topic in perspective. Due to

the central role of the substitution elasticity in many areas of dynamic macroe-

conomics, the concept of CES production functions has recently experienced a

major revival. The link between economic growth and the size of the substitution

elasticity has long been known. As already demonstrated by Solow (1956) in the

neoclassical growth model, assuming an aggregate CES production function with
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an elasticity of substitution above unity is the easiest way to generate perpetual

growth. Since scarce labor can be completely substituted by capital, the marginal

product of capital remains bounded away from zero in the long run. Nonetheless,

the case for an above-unity elasticity appears empirically weak and theoretically

anomalous.1

It has been shown that integration into world markets is also a feasible way

for a country to increase the effective substitution between factors of production

and thus pave the way for sustained growth (Ventura (1997), Klump (2001), Saam

(2008)). On the other hand, it can be shown in several variants of the standard neo-

classical (exogenous) growth model that introducing an aggregate CES production

functions that with an elasticity of substitution below unity can generate multiple

growth equilibria, development traps and indeterminacy (Azariadis (1996), Klump

(2002), Kaas and von Thadden (2003)), Guo and Lansing (2009)).

Public finance and labor economics are other fields where the elasticity of sub-

stitution has been rediscovered as a crucial parameter for understanding the impact

of policy changes. This relates to the importance of factor substitution possibili-

ties for the demand for each input factor. As pointed out by Chirinko (2002), the

lower the elasticity of substitution, the smaller the response of business investment

to variations in interest rates caused by monetary or fiscal policy.2 In addition,

the welfare effects of tax policy changes specifically, appear highly sensitive to

the assumed values of the substitution elasticity. Rowthorn (1999) also stresses

its importance in macroeconomic analysis of the labor market and, in particu-

lar, how incentives for higher investment formation exercise a significant effect on

unemployment when the elasticity of substitution departs from unity.

Indeed, there is now mounting empirical evidence that aggregate production is

better characterized by a non-unitary elasticity of substitution (rather than unitary

or above unitary), e.g., Chirinko et al. (1999), Klump et al. (2007a), León-Ledesma

et al. (2010a). Chirinko (2008)’s recent survey suggests that most evidence favors

elasticities ranges of 0.4-0.6 for the US. Moreover, Jones (2003, 2005)3 argued that

capital shares exhibit such protracted swings and trends in many countries as to

1The critical threshold level for the substitution elasticity (to generate such perpetual growth)
can be shown to be increasing in the growth of labor force and decreasing in the saving rate, see
La Grandville (1989b).

2This may be one reason why estimated investment equations struggle to identify interest-rate
channels.

3Jones’ work essentially builds on Houthakker (1955)’s idea that production combinations
reflect the (Pareto) distribution of innovation activities, Jones proposes a “nested” production
function. Given such parametric innovation activities, this will exhibit a (far) less than unitary
substitution elasticity over business-cycle frequencies but asymptote to Cobb-Douglas.
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be inconsistent with Cobb-Douglas or CES with Harrod-neutral technical progress

(see also Blanchard (1997), McAdam and Willman (2011a)).

This coexistence of capital and labor-augmenting technical change, has differ-

ent implications for the possibility of balanced or unbalanced growth. A balanced

growth path - the dominant assumption in the theoretical growth literature - sug-

gests that variables such as output, consumption, etc tend to a common growth

rate, whilst key underlying ratios (e.g., factor income shares, capital-output ra-

tio) are constant, Kaldor (1961). Neoclassical growth theory suggests that, for

an economy to posses a steady state with positive growth and constant factor in-

come shares, the elasticity of substitution must be unitary (i.e., Cobb Douglas) or

technical change be Harrod neutral.

As Acemoglu (2009) (Ch. 15) comments, however, there is little reason to

assume technical change is necessarily labor augmenting.4 In models of “biased”

technical change (e.g., Kennedy (1964), Samuelson (1965), Acemoglu (2003), Sato

(2006)), scarcity, reflected by relative factor prices, generates incentives to invest

in factor-saving innovations. In other words, firms reduce the need for scarce

factors and increase the use of abundant ones. Acemoglu (2003) further suggested

that while technical progress is necessarily labor-augmenting along the balanced

growth path, it may become capital-biased in transition. Interestingly, given a

below-unitary substitution elasticity this pattern promotes the stability of income

shares while allowing them to fluctuate in the medium run.

However, when analytically investigating the significance of non-unitary factor

substitution and non-neutral technical change in dynamic macroeconomic models,

one faces the issue of “normalization”, even though the issue is still not widely

known. The (re)discovery of the CES production function in normalized form in

fact paved the way for the new and fruitful, theoretical and empirical research

on the aggregate elasticity of substitution which has been witnessed over the last

years.

In La Grandville (1989b) and Klump and de La Grandville (2000) the concept

of normalization was introduced in order to prove that the aggregate elasticity

of substitution between labor and capital can be regarded as an important and

meaningful determinant of growth in the neoclassical growth model. In the mean-

time this approach has been successfully applied in a series of theoretical papers

(Klump (2001), Papageorgiou and Saam (2008), Klump and Irmen (2009), Xue

4Moreover, that a BGP cannot coexist with capital augmentation is becoming increasingly
questioned in the literature, see Growiec (2008), La Grandville (2010), Leon-Ledesma and Satchi
(2010).
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and Yip (2009), Guo and Lansing (2009), Wong and Yip (2010)) to a wide variety

of topics.

A particular striking example of how neglecting normalization can significantly

bias results and how explicit normalization can help to overcome those biases is

presented in Klump and Saam (2008). The effect of a higher elasticity of substi-

tution on the speed of convergence in a standard Ramsey type growth model is

shown to double if a non-normalized (or implicitly normalized) CES function is

replaced by a reasonably normalized one.

Further, as Klump et al. (2007a, 2008) demonstrated, normalization also has

been a breakthrough for empirical research on the parameters of aggregate CES

production functions,5 in particular when coupled with the system estimation ap-

proach. Empirical research has long been hampered by the difficulties in identifying

at the same time an aggregate elasticity of substitution as well as growth rates

of factor augmenting technical change from the data. The received wisdom, in

both theoretical and empirical literatures, suggests that their joint identification

is infeasible. Accordingly, for more than a quarter of a century following Berndt

(1976), common opinion held that the US economy was characterized by aggregate

Cobb-Douglas technology, leading, in turn, to its default incorporation in economic

models (and, accordingly, the neglect of possible biases in technical progress).6

Translating normalization into empirical production-technology estimations al-

lows the presetting of the capital income share (or, if estimated, facilitates the

setting of reasonable initial parameter conditions); it provides a clear correspon-

dence between theoretical and empirical production parameters and allows us ex

post validation of estimated parameters. In a series of papers, León-Ledesma

et al. (2010a,b) showed the empirical advantages in estimating and identifying

production-technology systems when normalized. Further, McAdam and Willman

(2011b) showed that normalized factor-augmenting CES estimation, in the context

of estimating “New Keynesian” Phillips curves, helped better identify the volatil-

ity in the driving variable (real marginal costs) that most previous researchers had

not detected.

Here we analyze the intrinsic links between production (as conceptualized in a

5It should be noted that the advantages of re-scaling input data to ease the computational
burden of highly nonlinear regressions has been the subject of some study, e.g., ten Cate (1992).
And some of this work was in fact framed in terms of production-function analysis, De Jong
(1967), De Jong and Kumar (1972). See also Cantore and Levine (2011) for a novel discussion
of alternative but equivalent ways to normalize.

6It should be borne in mind, however, that Berndt’s result concerned only the US manufac-
turing sector.
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macroeconomic production function), factor substitution (as made most explicit in

CES production functions) and normalization. The paper is organized as follows.

In section 2 we recall how the CES function came into existence and what this

implies for its formal properties. Sections 3 and 4 will deal with the role of normal-

ization in recent advances in the theory of business cycles and economic growth.

Section 5 will discuss the merits normalization brings for empirical growth research.

The last section concludes and identifies promising area of future research.

2 The general normalized CES production

function and variants

It is common knowledge that the first rigid derivation of the CES production

function appeared in the famous Arrow et al. (1961) paper (hereafter ACMS ).7

However, there were important forerunners, in particular the explicit mentioning

of a CES type production technology (with an elasticity of substitution equal to

2) in the Solow (1956) article (done, Solow wrote, to add a “bit of variety”) on

the neoclassical growth model. There was also the hint to a possible CES func-

tion in its Swan (1956) counterpart (on the Swan story see Dimond and Spencer

(2008)).8 Shortly before, though, Dickinson (1954) (p. 169, fn 1) had already

made use of a CES production technology in order to model “a more general kind

of national-income function, in which the factor shares are variable” compared to

the Cobb-Douglas form. It has even been conjectured that the famous and mys-

terious tombstone formula of von Thünen dealing with “just wages” can be given

a meaningful economic interpretation if it is regarded as derived from an implicit

CES production function with an elasticity of substitution equal to 2 (see Jensen

(2010)).

In this section we want to demonstrate, that (and how) the formal construction

of a CES production function is intrinsically linked to normalization. The function

7It is still not widely known that the famous Arrow et al. (1961) paper was in fact the merging
of two separate submissions to the Review of Economics and Statistics following a paper from
Arrow and Solow, and another from Chenery and Minhas.

8In the inaugural ANU Trevor Swan Distinguished Lecture, Peter L. Swan (Swan (2006))
writes, “While Trevor was at MIT he pointed out that a production function Solow was utilizing
had the constant elasticity of substitution, CES, property In this way, the CES function was
officially born. Solow and his coauthors publicly thanked Trevor for this insight (see Arrow et
al, 1961).”
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may be defined as follows:

Yt = F (Kt, Nt) = C
[
πK

σ−1
σ

t + (1− π)N
σ−1
σ

t

] σ
σ−1

(1)

where distribution parameter π ∈ (0, 1) reflects capital intensity in production; C

is an efficiency parameter and, σ, is the elasticity of substitution between capital,

K, and labor, N . Like all standard CES functions, equation (1) nests a Cobb-

Douglas function when σ → 1; a Leontief function with fixed factor proportions

when σ = 0; and a linear production function with perfect factor substitution

when σ =∞.

The construction of such an aggregate production technology with a CES prop-

erty starts from the formal definition of the elasticity of substitution which had

been introduced independently by Hicks (1932) and Robinson (1933) (on the dif-

ferences between both approaches to the concept see Hicks (1970)). It is there

defined (in the case of two factors of production, capital and labor) as the elastic-

ity of K/N with respect to the marginal rate of substitution between K and N

(the percentage change in factor proportions due to a change in the marginal rate

of technical substitution) along an isoquant:9

σ ∈ [0,∞] =
d (K/N) / (K/N)

d (FN/FK) / (FN/FK)
=

d log (K/N)

d log (FN/FK)
(2)

As Hicks notes this concept of elasticity can be equally expressed in terms of

the second derivative of the production function, but only under the assumption

of constant returns to scale (due to Euler’s theorem).

Since under this assumption the marginal factor productivities would also equal

factor prices and the marginal rate of substitution would be identical with the

wage/capital rental ratio, the elasticity of substitution can also expressed as the

elasticity of income per person y with respect to the marginal product of labor in

efficiency terms (or the real wage rate, w), i.e., Allen’s theorem (Allen (1938)).

Given that income per person is a linear homogeneous function y = f(k) of the

capital intensity k = K/N , the elasticity of substitution can also be defined as:

σ =
dy

dw
· w
y
= −f ′ (κ) [f (κ)− κf ′ (κ)]

κf (κ) f ′′ (κ)
(3)

9Alternatively, the substitution elasticity is sometimes expressed in terms of the parameter
of factor substitution, ρ ∈ [−1,∞], where ρ = 1−σ

σ .
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Although it is rarely stated explicitly, the elasticity of substitution is implicitly

always defined as a point elasticity. This means that it is related to one particular

baseline point on one particular isoquant (see our Figures 1 and 2 below). From

there a whole system of non-intersecting isoquants is defined which all together

create the CES production function. Even if it is true that a given and constant

elasticity of substitution would not change along a given isoquant or within a given

system of isoquants, it is also evident that changes in the elasticity of substitution

would of course alter the system of isoquants. Following such a change in the

elasticity of substitution the old and the new isoquant are not intersecting at the

baseline point but are tangents, if the production function is normalized. And they

should not intersect because given the definition of the elasticity of substitution

(i.e. the percentage change in factor proportions due to a change in the marginal

rate of technical substitution) at this particular point (as in all other points which

are characterized by the same factor proportion) the old and the new CES function

should still be characterized by the same factor proportion and the same marginal

rate of technical substitution.

Just as there are two possible definitions of σ following (3) - from dy
dw
·w
y
and from

− f́(k)[f(k)−kf́(k)]
kf́́ (́k)f(k)

- thus there are two ways of uncovering the normalized production

function. These, we cover in the following two sub-sections.

2.1 Derivation via the Power Function

Let us start from the definition σ = d log(y)
d log(w)

= dy
dw
· w
y
, integration of which gives the

power function,

y = cwσ (4)

where c is some integration constant.10 Under the assumption of constant returns

to scale (or perfectly competitive factor and product markets), and applying the

profit-maximizing condition that the real wage equals the marginal product of

labor, and with the application of Allen’s theorem, we can transform this equation

into the form y = c
(
y − k dy

dk

)σ
.

Accordingly, after integration and simplification, this leads us to a production

10ACMS started from the empirical observation that the relationship between per-capital in-
come and the wage rate might best be described with the help of such a power function. Note,
σ = 1 implies a linear relationship between y and w which would, in turn, imply that labor’s
share of income was constant. However, instead of a linear y−w scatter plot, they found a con-
cave relationship in the US data. The authors then tested a logarithmic and power relationship
and concluded that σ < 1. Integration of power function (4) then leads to a production function
with constant elasticity of substitution, consistent with definitions (2), (3).
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function with the constant elasticity of substitution function (see La Grandville

(2009), p. 83ff for further details):

y =
[
βk

σ−1
σ + α

] σ
σ−1

(5)

and,

Y =
[
βK

σ−1
σ + αL

σ−1
σ

] σ
σ−1

(6)

in the extensive form.

It should be noted that (5) and (6) contain the two constants of integration

β and α = c−
1
σ , where the latter directly depends on σ. Identification of these

two constants make use of baseline values for the power function (4) and for the

functional form (5) at the given baseline point in the system of isoquant. In a

dynamic setting this baseline point must (as we will see later) also be regarded as

a particular point in time, t = t0:

y0 = cwσ
0 (7)

y0 =
[
βk

σ−1
σ + α

] σ
σ−1

(8)

Together with (5) this leads to the normalized CES production function,

y = y0

[
π0

(
k

k0

)σ−1
σ

+ (1− π0)

] σ
σ−1

(9)

and,

Y = Y0

[
π0

(
K

K0

)σ−1
σ

+ (1− π0)

(
N

N0

)σ−1
σ

] σ
σ−1

(10)

in the extensive form. Parameter π0 = y0−w0

y0
= r0K0

Y0
denotes the capital share in

total income at the point of normalization.11 As a test of consistent normalization,

we see from (10) that for t = t0 we retrieve Y = Y0.

11Under perfect competition, this distribution parameter is equal to the capital income share
but, under imperfect competition with non-zero aggregate mark-up, it equals the share of capital
income over total factor income.
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2.2 Derivation via the Homogenous Production Function

It was shown by Paroush (1964), Yasui (1965) and McElroy (1967) that the rather

narrow assumption of Allen’s theorem is not essential for the derivation of the CES

production function which can start directly from the original Hicks definition (2).

This definition can be transformed into a second-order differential equation whose

solution also implies two constants of integration.

Following Klump and Preissler (2000) we start with the definition of the elas-

ticity of substitution in the case of linear homogenous production function Yt =

F (Kt, Nt) = Ntf (kt) where kt = Kt/Nt is the capital-labor ratio in efficiency

units. Likewise yt = Yt/Nt represents per-capita production.

The definition of the substitution elasticity, σ = − f́(k)[f(k)−kf́(k)]
kf́́ (́k)f(k)

, can then be

viewed as a second-order differential equation in k having the following general

CES production function as its solution (intensive and extensive forms):

yt = a
[
k

σ−1
σ

t + b
] σ

σ−1

(11)

Yt = a
[
K

σ−1
σ

t + bN
σ−1
σ

t

] σ
σ−1

(12)

where parameters a and b are two arbitrary constants of integration with the

following correspondence with the parameters in equation (1): C = a (1 + b)
σ

σ−1

and π = 1/ (1 + b).

A meaningful identification of these two constants is given by the fact that the

substitution elasticity is a point elasticity relying on three baseline values: a given

capital intensity k0 = K0/N0, a given marginal rate of substitution [FK/FN ]0 =

w0/r0 and a given level of per-capita production y0 = Y0/N0. Accordingly, (1)

becomes,

Yt = Y0

[
π0

(
Kt

K0

)σ−1
σ

+ (1− π0)

(
Nt

N0

)σ−1
σ

] σ
σ−1

(13)

where π0 = r0K0/ (r0K0 + w0N0) is the capital income share evaluated at the point

of normalization. Rutherford (2003) calls (13) (or (10)) the “calibrated form”.

2.3 A Graphical Representation

Normalization as understood by La Grandville (1989b), Klump and de La Grandville

(2000) and Klump and Preissler (2000) is again nothing else but identifying these

two arbitrary constants in an economically meaningful way. Normalizing means



16
ECB
Working Paper Series No 1294
February 2011

the fixing (in the K − N plane as in Figure 1) of a baseline point (which can

be thought of as a point in time at, t = t0 ), characterized by specific values of

N,K, Y and the marginal rate of technical substitution μ0 - in which isoquants of

CES functions with different elasticities of substitution but with all other param-

eters equal - are tangents.

Normalization is helpful to clarify the conceptual relationship between the elas-

ticity of substitution and the curvature of the isoquants of a CES production func-

tion (see La Grandville (1989a) for a discussion of various misunderstandings on

this point). Klump and Irmen (2009) point out that in the point of normaliza-

tion (and only there), there exists an inverse relationship between the elasticity

of substitution and the curvature of isoquant of the normalized CES production

function. This relationship has also an interpretation in terms of the degree of

complementarity of both input factors. At the normalization point, a higher elas-

ticity of substitution implies a lower degree of complementarity between the input

factors. The link between complementarity between input factors and the elas-

ticity of substitution is also discussed in Acemoglu (2002) and in Nakamura and

Nakamura (2008).

Equivalently (in the k − y plane as in Figure 2) the baseline point can be

characterized by specific values of k, y and the marginal productivity of capital (or

the real wage rate). If base values for these three variables are selected this means

of course that also a baseline value for the elasticity of production with respect

to capital input is fixed which (under perfect competition) equals capital share in

total income.

2.4 Normalization As A Means To Uncover Valid CES

Representations

Normalization thus creates specific ‘families’ of CES functions whose members all

share the same baseline point but are distinguished by the elasticity of substitution

(and only the elasticity of substitution).
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Figure 1. Isoquants of Normalized CES Production Functions 

Figure 2. Normalized per-capita CES production functions 
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As shown in Klump and Preissler (2000), normalization also helps to distinguish

those variants of CES production functions which are functionally identical with

the general form (1) from those which are inconsistent with (5) in one way or

another. Consider, first, the “standard form” of the CES production function, as

it was introduced by ACMS, restated below:

Y = C
[
πK

σ−1
σ + (1− π)N

σ−1
σ

] σ
σ−1

(14)

This variant is clearly identical with (10), albeit (and this is a crucial aspect)

with the “substitution parameter” C and the “distribution parameter” π being

defined in the following way (solving for completeness in terms of both ρ and σ):

C (σ, ·) = Y0 [π0K
ρ
0 + (1− π0)N

ρ
0 ]

ρ = Y0

[
r0K

1/σ
0 + w0N

1/σ
0

r0K0 + w0N0

] σ
σ−1

(15)

π (σ, ·) = π0K
ρ
0

π0K
ρ
0 + (1− π0)N

ρ
0

=
r0K

1/σ
0

r0K
1/σ
0 + w0N

1/σ
0

(16)

Expressions (15) and (16) reveal that, in the non-normalized case, both “parame-

ters” (apart from being dependent on the scale of the normalized variables) change

with variations in the elasticity of substitution, unlessK0 and N0 are exactly equal,

implying k0 = 1.

This makes the non-normalized form in general inappropriate for comparative

static exercises in the substitution elasticity. It is the interaction between the nor-

malized efficiency and distribution terms and the elasticity of substitution which

guarantees that within one family of CES functions the members are only dis-

tinguished by the elasticity of substitution. Given the accounting identity (and

abstracting from the presence of an aggregate mark-up),

Y0 = r0K0 + w0N0 (17)

it also follows from this analysis that treating C and π in (14) as deep parameters is

equivalent to assuming k0 = 1. In the case σ → 0, we have a perfectly symmetrical

Leontief function.

As explained in Klump and Saam (2008) the Leontief case can serve as a

benchmark for the choice of the normalization values for k0 in calibrated growth

models. The baseline capital intensity corresponds to the capital intensity that

would be efficient if the economy’s elasticity of substitution were zero. For k <
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k0 the economy’s relative bottleneck resides in this case in its capacity to make

productive use of additional labor, as capital is the relatively scarce factor. For

k > k0 the same is true for capital and labor is relatively scarce. Since the latter

case is most characteristic for growth model of capitalist economies, calibrations

of these model can be based on the assumption k > k0.

In the following sub-sections, we will illustrate how normalization can reveal

whether certain production functions used in the literature are legitimate.

2.4.1 David and van de Klundert (1965) Version

Consider the CES variant proposed by David and van de Klundert (1965):

Y =
[
(BK)

σ−1
σ + (AN)

σ−1
σ

] σ
σ−1

(18)

This variant is identical with (10) as long as the two “efficiency levels” are defined

in the following way:

B =
Y0

K0

π
σ

σ−1

0 (19)

A =
Y0

N0

(1− π0)
σ

σ−1 (20)

Again, it is obvious, that the efficiency levels change directly with the elasticity of

substitution.

2.4.2 Ventura (1997) Version

Consider now a CES variant used by Ventura (1997):

Y =
[
K

σ−1
σ + (AN)

σ−1
σ

] σ
σ−1

(21)

At first glance (21) could be regarded as a special case of (14) with B being equal

to one. With a view on the normalized efficiency level it becomes clear, however,

that B = 1 is not possible for given baseline values and a changing elasticity of

substitution. Given that Ventura (1997) makes use of (21) in order to study the

impact of changes in the elasticity of substitution on the speed of convergence,

in the light of this inconsistency his results should be regarded with particular

caution. As shown in Klump (2001), Ventura’s result are unnecessarily restrictive;

working with a correctly normalized CES technology leads to much more general

results.
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2.4.3 Barro and Sala-i-Martin (2004) Version

Next consider the CES production function proposed by Barro and Sala-i-Martin

(2004):

Y = C
[
π (BK)

σ−1
σ + (1− π) ((1− B)N)

σ−1
σ

] σ
σ−1

(22)

Normalization is helpful in this case in order to show that (22) can be transformed

without any problems into (10) and/or (14) so that the terms B and 1−B simply

disappear. If for any reason these two terms are considered necessary elements of

a standard CES production function, they cannot be chosen independently from

the normalized values for C and π, but they remain independent from changes in

σ.

2.5 The Normalized CES Function with Technical Progress

So far we have treated efficiency levels as constant over time. If we now consider

factor-augmenting technical progress one has to keep in mind the intrinsic links

between rising factor efficiency in the distribution of income. This brings us to

one further justification for normalizing CES production function which is closely

related to the concept of neutral technical progress and was first articulated by

Kamien and Schwartz (1968). Normalization implies that there may be considered

a reference (or representative) value for the capital income share (and thus for

income distribution) at some given point. Technical progress that does not changes

income distribution over time is called Harrod-Neutral technical progress. There

are many other types of classifiable neutral technical change, however, that would

not have this effect.12 So the whole concept of whether technical progress is neutral

with respect to the income distribution, relies on the idea that one has to check

whether or not a given income distribution at one point in time remains constant.

This given income distribution, which is used to evaluate possible distribution

effect of technical progress, is exactly the income distribution in the baseline point

of normalization at a fixed point in time, t = t0.

12See the seminal contribution of Sato and Beckmann (1970) for such a classification.
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2.5.1 Constant growth rates of normalized factor efficiency levels

As shown in Klump et al. (2007a), a normalized CES production function with

factor-augmenting technical progress can be written as,

Y =
[(
EK

t K
)σ−1

σ +
(
EN

t N
)σ−1

σ

] σ
σ−1

(23)

where EK
t and EN

t represent the levels of efficiency of both input factors.13

Thus, whereas the ACMS specification seems to imply that technological change

is always Hicks-neutral, the above specification allows for different growth rates

of factor efficiency. To circumvent problems related to Diamond-McFadden’s Im-

possibility theorem (Diamond et al. (1978); Diamond and McFadden (1965)), we

assume a certain functional form for the growth rates of both efficiency levels and

define:

Ei
t = Ei

0e
γi(t−t0) (24)

where γi denotes growth in technical progress associated with factor i and t repre-

sents a (typically linear) time trend. The combination γK = γN > 0 denotes Hicks-

Neutral technical progress; γK > 0,γN = 0 yields Solow-Neutrality; γK = 0,γN > 0

represents Harrod-Neutrality; and γK > 0 �= γN > 0 indicates general factor-

augmenting technical progress.14

Ei
0 are the fixed points of the two efficiency levels, taken at the common baseline

time, t = t0. Again, normalization of the CES function implies that members of

the same CES family should all share the same fixed point and should in this

point and at that time of reference only be characterized by different elasticities

of substitution. In order to ensure that this property also holds in the presence of

13In the case where there is such technical progress, the question of whether σ is greater than or
below unity takes on added importance. Recall, when σ < 1, factors are “gross complements” in
production and “gross substitutes” otherwise. Thus, it can be shown that with gross substitutes,
substitutability between factors allows both the augmentation and bias of technological change
to favor the same factor. For gross complements, however, a capital-augmenting technological
change, for instance, increases demand for labor (the complementary input) more than it does
capital, and vice versa. By contrast, when σ = 1 an increase in technology does not produce
a bias towards either factor (factor shares will always be constant since any change in factor
proportions will be offset by a change in factor prices).

14Neutrality concepts associate innovations to related movements in marginal products and
factor ratios. An innovation is Harrod-Neutral if relative input shares remain unchanged for a
given capital-output ratio. This is also called labor-augmenting since technical progress raises
production equivalent to an increase in the labor supply. More generally, for F (Xi, Xj , ..., A),
technical progress is Xi-augmenting if FAA = FXi

Xi.
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growing factor efficiencies, it follows that:

EN
0 =

Y0

N0

(
1

1− π0

) σ
1−σ

; EK
0 =

Y0

K0

(
1

π0

) σ
1−σ

(25)

Note that at t = t0, e
γi(t−t0) = 1. This ensures that at the common fixed point the

factor shares are not biased by the growth of factor efficiencies but are just equal

to the distribution parameters π0 and 1− π0

Inserting equations (24) and the normalized values (25) into (23), leads to a

normalized CES function that can be rewritten in the following form that again

resembles the ACMS variant:

Y =

[
π0

(
Y0

K0

· eγK(t−t0) ·Kt

)σ−1
σ

+ (1− π0)

(
Y0

N0

· eγN (t−t0) ·Nt

)σ−1
σ

] σ
σ−1

(26)

or equivalently,

Y = Y0

[
π0K

1−σ
σ

0

(
Kt · eγK(t−t0)

)σ−1
σ + (1− π0)N

1−σ
σ

0

(
Nt · eγN (t−t0)

)σ−1
σ

] σ
σ−1

(27)

In this specification of the normalized CES function, with factor augmenting tech-

nical progress, the growth of efficiency levels for capital and labor is now measured

by the expressions K0e
γK(t−t0) and N0e

γN (t−t0), respectively, and t0 is the baseline

year. Again, we see from (27) that for t = t0 we retrieve Y = Y0.

Special cases of (27) are the specifications used by Rowthorn (1999), Bentolila

and Saint-Paul (2003) or Acemoglu (2002), where N0 = K0 = Y0 = 1 is implicitly

assumed, or by Antràs (2004) who sets N0 = K0 = 1. Caballero and Hammour

(1998), Blanchard (1997) and Berthold et al. (2002) work with a version of (27)

where in addition to N0 = K0 = 1, γK = 0 is also assumed so that technological

change is only of the labor-augmenting variety.

It is also worth noting that for constant efficiency levels γN = γK = 0 our

normalized function (27) is formally identical with the CES function that Jones

(2003) (p. 12) has proposed for the characterization of the “short term”. In his

terminology, the normalization values k0, y0, and π0 are “appropriate” values of

the fundamental production technology that determines long-run dynamics. This

long-run production function is then considered to be of a Cobb-Douglas form with

constant factor shares equal to π0 and 1−π0 and with a constant exogenous growth

rate. Actual behavior of output and factor input is thus modeled as permanent
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fluctuations around “appropriate” long-term values. For a similar approach in

which steady state Cobb-Douglas parameter values are used to normalized a CES

production function see Guo and Lansing (2009).

2.5.2 Growth Rates in Normalized Technical Progress Functions:

Time-Varying Frameworks

Following recent theoretical discussion about possible biases in technical progress

(e.g., Acemoglu (2002)), it is not clear that growth rates of technical progress com-

ponents should always be constant. An innovation of Klump et al. (2007a) was to

allow deterministic but time-varying technological progress terms where curvature

or decay terms could be uncovered from the data in economically meaningful ways.

For this they used a Box and Cox (1964) transformation in a normalized context

where (with Ei
t = egi):

gi (γi, λi, t, t0) =
γi
λi

t0

([
t

t0

]λi

− 1

)
, i = K,N (28)

Curvature parameter λi determines the shape of the technical progress function.

For λi = 1, technical progress functions, gi, are the (textbook) linear specification;

if 0 < λi < 1 they are exponential; if λi = 0 they are log-linear and λi < 0 they

are hyperbolic functions in time. Note, the re-scaling of γi and t by the fixed point

value t0 in (28) allows us to interpret γN and γK directly as the rates of labor- and

capital-augmenting technical change at the fixed-point period.

Asymptotically, function (28) would behave as follows:

gi (γi, λi, t, t0)=

{
lim
t→∞

gi =∞ for λi ≥ 0

lim
t→∞

gi = − γi
λi
t0 for λi < 0

∂gi
∂t

= γi

(
t

t0

)λi−1

⇒
{ ∂gi

∂t
= γi for λi = 1

∂gi
∂t

= 0 for λi < 1

This framework allows the data to decide on the presence and dynamics of factor-

augmenting technical change rather than being imposed a priori by the researcher.

If, for example, the data supported an asymptotic steady state, this would arise

from the estimated dynamics of these curvature functions (i.e., labor-augmenting

technical progress becomes dominant (linear), that of capital absent or decaying).
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In addition, as McAdam and Willman (2011a) pointed out, the framework

also allows one to nest various strands of economic convergence paths towards the

steady state. For instance, the combination,

γN > 0, λN = 1 ; γK = 0, λK = 0 (29)

coupled with the assumption, σ >> 1, corresponds to that drawn upon by Ca-

ballero and Hammour (1998) and Blanchard (1997), in explaining the decline in

the labor income share in continental Europe.

Another combination speculatively termed “Acemoglu-Augmented” Technical

Progress by McAdam and Willman (2011a), can be nested as,

γN , γK > 0;λN = 1, λK < 1 (30)

where σ < 1 is more natural.

Consider two cases within (30). A “weak” variant, λK < 0, implies that the

contribution of capital augmentation to TFP is bounded with its growth com-

ponent returning rapidly to zero; a “strong” case, where 0 < λK < 1, capital

imparts a highly persistent contribution with (asymptotic convergence to) a zero

growth rate. Both cases are asymptotically consistent with a balanced growth

path (BGP), where TFP growth converges to that of labor-augmenting technical

progress, γN . The interplay between |γN − γK | and λK , λN and can thus be con-

sidered sufficient statistics of BGP divergence. Normalization, moreover, makes

this kind of classification quite natural since we are looking at biases in technical

progress relative to some average or representative point.

3 The elasticity of substitution as an engine of

growth

Although one of the first references to a CES structure of aggregate production

appears in the Solow (1956) paper it had been for a long time impossible to an-

swer the question of what effect changes in the substitution elasticity had on the

steady-state values in the standard neoclassical growth model. Common sense

would certainly suggest that easier factor substitution - via helping to overcome

decreasing returns - should lead to a higher level of development. But a formal

proof of this conjecture seemed out of reach. In fact, when Harbrecht (1975) tried

to answer this question with the help of a (non-normalized) David and van de
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Klundert (1965) CES variant, he found the contrary result! His analysis was, of

course, biased by the interaction between a changing elasticity of substitution and

the efficiency parameters of the CES function which is not compensated for as in

the normalized version.

Already some years earlier, as mentioned in section 2.4, Kamien and Schwartz

(1968) had presented a proof of the central relationship between the substitution

elasticity and output but only for the special case in which the baseline values for

K and N were equal. Their proof is based on the General Mean property of the

CES function, which had already been recognized by ACMS.

A General Mean of order p is defined as,

M (p) =

[
n∑

i=1

fix
p
i

] 1
p

(31)

where xi, ...xn are positive numbers (of the same dimension) and where the weights

fi, ...fn sum to unity. Special cases of the General Mean are the arithmetic, the

geometric and the harmonic means where the order p would be 1, 0, and -1 respec-

tively. If p tends to−∞, the mean becomes the minimum of the numbers (xi, ...xn).

One of the most important theorems about a General Mean is that it is an

increasing function of its order (Hardy et al. (1934), p. 26 f.; Beckenbach and

Bellman (1961), p. 16-18; see also the proof in La Grandville (2009), p. 111-113).

More exactly it says that the mean of order p of the positive values xi with weights

fi is a strictly increasing function in p unless all the xi are equal. With the two

factors K and N (and implicit normalization K0 = N0) this leads to the following

statement:

Enlargement of the elasticity of substitution results in an increase in

output from every combination of factors except that for which the cap-

ital labor ratio is equal to one. (Kamien and Schwartz (1968), p. 12)

Of course, this result can be generalized provided that all numbers have the same

dimension which is precisely achieved by normalizing numbers of different dimen-

sions.

La Grandville (1989b) developed a graphical representation of normalized CES

structures. He demonstrated that the general relationship between the elasticity

of substitution and the level of development is usually positive. Moreover, when

there are two factors of production, numerical results suggests that the function

has a single inflection point, La Grandville and Solow (2006): in other words,
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between its limiting values, lim
p∈(−∞,∞)

M (p), the function M (p) is first convex then

concave. For typical production-function weights, (i.e., f1 = 0.4; f2 = 1− f1) that

inflection point occurs around p ≈ 0 (i.e., the Cobb-Douglas neighborhood). This

means that within some relevant interval around that even small perturbations

of the substitution elasticity (however such a change may be implemented) might

have extremely large implications for an economy. In short raising, your elasticity

of substitution can raise your growth rate and its effect may be potentially even

larger than that traditionally studied in the case of improvements in the savings

rate and/or technical progress (such reasoning is reflected in the third quote that

started our paper).

The formal proof for the conjecture was then presented by Klump and de La

Grandville (2000), based on a very general normalized CES production function.

An alternative proof is presented in Klump and Irmen (2009) who also deal with

normalized CES functions in a Diamond-type version of the neoclassical growth

model. It distinguishes efficiency and distribution effects of changes in the elasticity

of substitution which can work in different directions if not all individuals have

the same savings pattern so that redistribution matters. The interaction of both

effects creates an acceleration effect for capital accumulation which can have a

positive or a negative effect on the steady state. It can be shown, however, that

even in this setting a higher elasticity of substitution leads to a higher steady state

level as long as the efficiency effect dominates the distribution effect which is the

most likely case.

Klump and Preissler (2000) extend the analysis of the standard neoclassical

growth model with a normalized CES production function by calculating the ef-

fect of a changing elasticity of substitution on the speed of convergence towards the

steady state. Earlier studies of this problem, e.g., Ramanathan (1975), which were

not considering normalization had not derived convincing results. With an explic-

itly normalized CES production function, it is possible to show that an increase in

the elasticity of substitution reduces the speed of convergence if the steady state

value of the capital intensity is higher than its baseline value (which seems the

most likely case).

Klump (2001) presents the analysis of a Ramsey type (intertemporal optimiz-

ing) growth model with a normalized CES production function. He is able to prove

that as long as the steady state value of the capital intensity is higher than its

baseline value the comparative static effect of a change in the elasticity of sub-

stitution on the steady state is strictly positive. The result were only recently

reproduced by Xue and Yip (2009) using a different approach. For the effect of
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the elasticity of substitution on the speed of adjustment the same results as in

the Solow model can be derived in the Ramsey model (Klump and Saam (2008)).

This result holds irrespective of the value of the elasticity of substitution, whereas

Ventura (1997) making use of a non-normalized CES production function could

only generate meaningful results for σ < 1 values.

Temple (2008) has criticized the use of normalized CES functions for calculating

convergence effects of a higher factor substitution because of an unclear economic

meaning of the chosen baseline value for the capital intensity. However, as has

been clarified by Klump and Saam (2008) the essence of normalization does not

consist in the arbitrary choice of baseline values but in forcing the researcher to

give an explicit statement about the relationship between baseline and steady state

(ss) values. As growth models are generally motivated by the idea that labor is

relatively scarce in the steady state it seems reasonable to normalize such that

kss > k0. The setting may be different in the business cycle literature, where

fluctuations around the (typically zero growth) steady state are studied. In this

case it makes sense to use steady state values as normalization parameters (Guo

and Lansing (2009), Cantore et al. (2010), hereafter CLMW).

Finally, Irmen (2010) is able to show in an endogenous growth framework

with a normalized CES production function that the steady state growth rate of

output per worker increases with the elasticity of substitution between efficient

capital and efficient labor. All analysis confirm that the elasticity of substitution

is among the most powerful determinants of capital accumulation and growth as

long as normalized CES production functions are used. La Grandville (2009, 2010)

suggests that changes in the elasticity of substitution have a much higher effect on

social welfare than changes in the rate of technical progress.

4 Estimated Normalized Production Function

Previous sections of this paper introduced the concept of normalization and its

importance in theoretical analysis. Here we discuss, how the idea of normalization

should be applied in empirical analysis and, more importantly, whether it allevi-

ates the estimation of the parameters of the CES production function? We show

that its merits are strong especially if system approach (containing cross-equation

restrictions) is used. In this context the scepticism on the proper identification

of the elasticity of substitution and technical progress from each other aroused

by the famous Diamond-McFadden impossibility theory largely looses its practical

importance. In fact we argue that a general factor-augmenting specification results
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in markedly less biased estimates of substitution elasticity parameter compared to

the case where an a priori neutrality constraint is imposed. In the context of single

equation approach, in turn, normalization is of lesser use.

An added problem15, however, is that often the predictions of different elasticity

and technical change combinations can have similar implications for variables of

interest, such as factor income shares and factor ratios. Notwithstanding, whether

factor income movements are driven by high or low substitution elasticities and

with different combinations of technical change is profoundly important in terms

of their different implications for, e.g., growth accounting, inequality, calibration

in business-cycle models, public policy issues etc.

By way of illustration, Tables 1 and 2 present an overview of empirical results

obtained for the elasticity of substitution. We concentrate on the results from

time-series or panel studies on aggregate data. In the case of the US, which has

been widely studied, it is possible to find values of the elasticity of substitution

above unity (with Harrod-neutral technical progress), at unity (with Hicks-neutral

progress) and below unity (with Hicks-neutral progress and with technical progress

augmenting both factors). The situation for other countries is no better; for Ger-

many, values of above, below and at unity have been estimated. Using information

about the degree of factor substitution from other sources does not re-solve this

puzzle, either. It has been recognized, for example, by Lucas (1969) that older

time-series studies for the US have generally provided lower estimates than cross-

section studies that were supportive of the Cobb-Douglas function. More recent

cross section analysis based on micro data that were used to estimate the relation-

ship between business capital formation and user costs (e.g., Chirinko et al. (1999))

estimate very low elasticities of substitution ranging from 0.25-0.40. A drawback

of these kinds of studies, however, is their inability to quantify any growth rate(s)

of technical progress.

That there should be diversity in production function estimates - even for

countries whose data properties are relatively stable and well-understood - is not

surprising. It doubtless reflects the familiar trapdoor of empirical pitfalls: data

quality; a priori modeling choices (such as whether to test for certain types of

factor neutrality or impose them); the performance of various estimators (e.g.,

single equation, systems) and algorithms; as well as more prosaic data problems

(e.g., outliers, uncertain auto-correlation, structural breaks, quality improvements,

measurement errors etc).

15See the discussion in León-Ledesma et al. (2010b) and possible observational equivalence in
examining income share developments and inferring the associated bias in technical progress.
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Table 1. 
Empirical Studies of Aggregate Elasticity of Substitution and  

Technological Change in the US 
   

Estimated Annual Rate Of Efficiency Change 

Study SAMPLE a
Assumption on 
Technological 

Change 

Estimated 
Elasticity of 
Substitution: Neutral: 

N K

Labor- 
augmenting: 

N

Capital- 
Augmenting:

K

Arrow et al. 
(1961) 

1909-1949 Hicks-Neutral 0.57 1.8 - - 

Kendrick and 
Sato (1963) 

1919-1960 Hicks-Neutral 0.58 2.1 - - 

Brown and De 
Cani (1963) 

1890-1918 

1919-1937 

1938-1958 

1890-1958 

Factor 
Augmenting 

0.35 

0.08 

0.11 

0.44 

Labor saving ( N K = 0.48) 

Labor saving ( N K = 0.62) 

Labor saving ( N K = 0.36) 

?
David and van 

de Klundert 
(1965) 

1899-1960 
Factor 

Augmenting 
0.32 - 2.2 1.5 

Bodkin and 
Klein (1967) 

1909-1949 Hicks-neutral 0.50-0.70 1.4-1.5   

Wilkinson 
(1968) 

1899-1953 
Factor 

Augmenting 
0.50 Labor saving ( N K = 0.51) 

Sato 
(1970) 

1909-1960 
Factor 

Augmenting 
0.50 – 0.70 - 2.0 1.0 

Panik 
(1976) 

1929-1966 
Factor 

Augmenting 
0.76 Labor saving  ( N K = 0.27) 

Berndt 
(1976) 

1929-1968 Hicks-neutral 0.96-1.25 ? - - 

Kalt  
(1978) 

1929-1967 
Factor 

Augmenting 
0.76 - 2.2 0.01 

Hicks-neutral 0.94-1.02 1.14 - - 
Antràs  
(2003) 

1948-1998 Factor-
augmenting 

0.80 Labor saving ( N K = 3.15) 

Klump et al 
(2007b)b 1953-2002 

Factor-
augmenting 

0.7 - - - 

León-Ledesma 
et al. (2010) 

1960- 2004 
Factor-

augmenting 
0.60-0.70 - 1.60 0.70 

Notes:
a All studies are estimated on annual frequency data except León-Ledesman et al. (2010b) which is 
quarterly. Although, to aid comparability, we annualized their estimates for technical change in the table. 
b We do not report technical change estimates for Klump et al (2007b) since they estimate with structural 
breaks in their technical progress terms. For reasons of space, the reader is referred to León-Ledesman et al. 
(2010a) for the original citations. 
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Table 2. 
Empirical Studies of Aggregate Elasticity of Substitution  

in Selected Other Countries 

Study Countries 
Sample 

(Frequency) 
Assumption For  

Technological Change 

Estimated Elasticity Of 
Substitution: 

Lewis and Kirby 
(1988) 

Australia 
1967-1987 
(Weekly) 

Hicks-Neutral 0.78 

Easterly and Fischer 
(1995) 

Soviet Union 
1950-1987 
(Annual) 

Hicks-Neutral 0.37 

Andersen et al. (1999) 
Panel of 17 OECD 

countries 
1966-1996 
(Annual) 

Hicks-Neutral 1.12 

Bolt and van Els 
(2000) 

Austria 
Belgium 
Germany 
Denmark 

Spain 
Finland 
France
Italy 

Netherlands 
Sweden 

UK
US

Japan 

1971-1996 
(Quarterly) 

Hicks-Neutral 

0.24 
0.78 
0.53 
0.61 

1
0.34 
0.73 
0.52 
0.27 
0.68 
0.6 

0.82 
0.3 

Duffy and 
Papageorgiou (2000) 

Panel of 82 developed 
and developing 

countries 

1960-1987 
(Annual) 

Hicks-Neutral 1.4 

Ripatti and Vilmunen 
(2001) 

Finland 
1975-1999 
(Quarterly) 

Factor
Augmenting 

0.6 

Willman (2002) Euro area 
1970-1997 
(Quarterly) 

Solow Neutral 0.95-1.05 

McAdam and 
Willman (2004) 

Germany 
1983-1999 
(Quarterly) 

Hicks Neutral 0.7, 1, 1.2 

Berthold et al. (2002) 
US

Germany 
France

1970-1995 
(Semi-Annual) 

Harrod-Neutral 
1.15 
1.45 
2.01 

Bertolila and 
Saint-Paul (2003) 

13 industries in 12 
OECD countries 

1972-1993 
Harrod-Neutral 1.06 

McAdam and 
Willman (2004a) 

Germany 
1983-1999 
(Quarterly) 

Hicks Neutral 0.7, 1, 1.2 

Klump et al (2007b) Euro Area 
1970-2003 
(quarterly) 

Factor-Augmenting  0.7 

Luoma and  
Luoto (2010) 

Finland 
1902-2004 
(annual) 

Factor-Augmenting 0.5 

Notes: For reasons of space, the reader is referred to Klump et al. (2007b) for most of these original 
citations. 



31
ECB

Working Paper Series No 1294
February 2011

At a simple level, normalization removes the problem that arises from the fact

that labor and capital are measured in different units - although as we have seen

its importance goes well beyond that. Under Cobb-Douglas, normalization plays

no role since, due to its multiplicative form, differences in units are absorbed by

the scaling constant. The CES function, by contrast, is highly non-linear, and

so, unless correctly normalized, excluding technical progress, out of its three key

parameters - the efficiency parameter, the distribution parameter, the substitution

elasticity - only the latter is “deep”. The other two parameters turn out to be

affected by the size of the substitution elasticity and factor income shares.

If one compares the normalized with the non-normalized function, as before,

i.e.,

Yt = C
[
π
(
ΓK
t Kt

)σ−1
σ + (1− π)

(
ΓN
t Nt

)σ−1
σ

] σ
σ−1

Yt = Y0

[
π0

(
ΓK
t Kt

ΓK
0 K0

)σ−1
σ

+ (1− π0)

(
ΓN
t Nt

ΓN
0 N0

)σ−1
σ

] σ
σ−1

we may be unsure as to where the estimation benefits of normalization derive.

After all, both equations contain the same number of parameters. In fact the

latter equation seemingly adds complexity by incorporating normalized reference

points into the estimation (the empirical choice of the normalization point is a

particular aspect discussed in section (4.2)).

The answer as to why normalization should improve matters empirically reflects

the following. The distribution and efficiency parameters (respectively, Y0; π0 and

C; π) can now either be pre-set prior to estimation or at least have a deep in-

terpretation in terms of the data (i.e., the representative capital income share).

Effectively normalization allows us to reduce the number of freely estimated pa-

rameters by two.

This follows straightforwardly from our earlier analysis. In the non-normalized

formulation the parameters C and π above have no clear theoretic or empirical

meaning. Instead, they are composite parameters conditional on, besides the se-

lected fixed points, the elasticity of substitution (re-stating equations (15) and

(16)):

C (σ, ·) = Y0

[
r0K

1/σ
0 + w0N

1/σ
0

r0K0 + w0N0

] σ
σ−1
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π (σ, ·) = r0K
1/σ
0

r0K
1/σ
0 + w0N

1/σ
0

The additional merit in using the normalized instead of non-normalized form is

that all parameters have a clear empirical correspondence. In particular, the dis-

tribution parameter is identified as the capital income share of total factor income

at the fixed point. Hence, a suitable choice for the fixed point may alleviate the

estimation of the deep parameters and, to repeat, makes the estimated production

function suitable, for example, for comparative static analysis.

Table 3 presents some consistent sets of (deterministic) initial values for

generating data and the implied ranges of the true values of C and π and for

σ ∈ [0.2, 1.3]. In the first row we assumed K0 = N0 = 1. This allows us to solve

Y0 from the first row - with initial values of ΓK
0 = ΓN

0 = 1. In fact this represents a

special case because indexing by the point of normalization equaling one is neutral

implying that the true value of C = 1 and π = π0 = r0 = 0.3 ∀σ (this, in turn,

implies solving the normalized real wage rate as (1−π0)Y0

N0
). In this special case it

does not matter, if the same initial values of parameters are used, whether the sys-

tem is estimated in normalized or non-normalized form. Although this particular

normalization point generates the odd case whereby the user cost (essentially, the

sum of the real interest rate plus depreciation rates) equals capital income share.

In all other cases, however, this is not so. To illustrate, in these other cases we

have adjusted the initial conditions for output to make them consistent with an ini-

tial (and arguably more reasonable) value for r (the real user cost of capital) equal

to 5%. The sample average normalization insulates the normalized system from

the effects of changes in initial values in generating the data but the true values

of composite parameters C and π vary widely: C ∈ [0.16, 0.49], π ∈ [0.29, 0.99].

Thus, we confirm that the actual income distribution of the data is completely

unrelated to the true value of π.

This illustrates the difficulty that a practitioner faces when trying to estimate

non-normalized forms since the actual data scarcely gives any guidelines for ap-

propriate choices for the initial parameter values of C and π. As León-Ledesma

et al. (2010a) have documented, that results in serious estimation problems. They

estimated normalized and non-normalized forms where in the latter case the initial

parameter values for C and π are selected randomly from their given range in Ta-

ble 3. When Ĉ and π̂ substantially depart from their true, theoretical values, there

are significant and quantitatively important biases in the estimated substitution

elasticity and technical change.
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Table 3. Consistent Normalization Values
 

C
0N 0 0r 0K 0

0

0
00 K

r
YY

0

00
0

1

N
Y

w when
3.1

when
2.0

when
3.1

when
2.0

1 0.3 0.3 1 1 0.7 1 0.4

1 0.3 0.05 5 0.833 0.583 0.546 0.225 0.228 0.996

1 0.3 0.05 8 1.333 0.933 0.788 0.225 0.210 0.999

 

Notes: C and in the final two columns are calculated according to equations (15) and (16) for 3.1,2.0 .

Outside of the “special case” note the following partial derivatives showing how ceteris paribus changes in initial values

change these last two parameters, C and :

0,,0,

0,0,,,

000

0000

wKN

NwKY CCCCC
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4.1 Estimation Forms

The recognition of normalization says nothing specifically about the way produc-

tion and production-technology should be estimated and how normalization im-

pacts those estimation choices. Typical estimation forms found in the literature

include: the non-linear CES production function; the linear first-order conditions

of profit maximization; linear approximation of the CES function; and “system”

estimation incorporating the production function and the first-order conditions.16

To proceed let us express the CES function, equation (27), in log form:

log

(
Y

Y0

)
=

σ

σ − 1
log

[
π0

(
eγK(t−t0)

Kt

K0

)σ−1
σ

+ (1− π0)

(
eγN (t−t0)

Nt

N0

)σ−1
σ

]
(32)

From this we can derive the marginal profit-maximization conditions,17

log (r) = log

(
π0

Y0

K0

)
+

1

σ
log

(
K0

Y0

)
︸ ︷︷ ︸

αr

+
1

σ
log

(
Y

K

)
+

σ − 1

σ
(γK (t− t0)) (33)

log (w) = log

(
(1− π0)

Y0

N0

)
+

1

σ
log

(
N0

Y0

)
︸ ︷︷ ︸

αw

+
1

σ
log

(
Y

N

)
+

σ − 1

σ
(γN (t− t0))

(34)

Where, as before, γN and γK are the respective growth rates of labor and capital

augmenting technical progress. Equations (33) and (34) represent the first-order

conditions with respect to capital and labor respectively.

Estimation of production and technology parameters based on the first-order

conditions and other single-equation approach are hampered by the fact that they

only admit estimates of technical progress terms contained by their presumed

16We confine ourselves to constant-returns production functions. This is largely done to be
consistent with much of the aggregate evidence (e.g., Basu and Fernald (1997)).

17Given that the real user cost and real interest rate can be sometimes negative in historical
samples (particularly in the 1970s), the user cost conditions is usually expressed in levels rather
than logarithms. Note, the last two conditions in some estimation cases are merged in many
papers:

log

(
Kt

Nt

)
= αi + σ log

(
wt

rt

)
+ (γN − γK) (1− σ) t

log

(
Kt

Nt

)
= αj − σ

1− σ
log

rtKt

wtNt
+ (γN − γK) t
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FOC choice (in that sense any bias in technical progress is, by definition, not

separately identifiable). This apparent drawback is presumably compensated by

their tractable form and estimation linearity. Accordingly, these forms are common

(more common, for instance, than direct non-linear CES estimation): e.g., equation

(33) has been widely used in the investment literature (e.g., Caballero (1994)) and

(34) was the form used by ACMS amongst many others.

A notable feature of the above three equations is that if estimated in single-

equation mode, the normalization points (denoted by the curly lower brackets) are

absorbed by the respective constants, αr and αw. Thus, from an estimation stand

point, it is only when the non-linear CES function is estimated directly or where

the system approach is used, does formal normalization play an empirical role.

Another possible vehicle of estimation is the Kmenta (1967) approximation

(which became an important, if apparently unacknowledged, pre-cursor to the

translog form). This is a Taylor-series expansion of the log CES production func-

tion around σ = 1.18 However, we can also express it in normalized form:19

yt = π0kt + λk2
t

+ π0

[
1 +

2λ

π0

kt

]
γK t̃+ (1− π0)

[
1− 2λ

1− π0

kt

]
γN t̃+ λ [γK − γN ]

2 · t̃2︸ ︷︷ ︸
tfp

(35)

where t̃ = t − t0, yt = log[(Yt/Y0) / (Nt/N0)], kt = log[(Kt/K0) / (Nt/N0)], tfp =

log(TFP ) and λ = (σ−1)π0(1−π0)
2σ

. Equation (35) shows that the output-labor ratio

can be decomposed into capital deepening and technical progress, weighted by

factor shares and the substitution elasticity (where sign (λ) = sign (σ − 1) and

lim
σ∈[0, ∞]

λ ∈ [−∞, 1
2
π0 (1− π0)

]
). In addition, (35) shows that, when σ �= 1 and

18Linearization around a unitary substitution is algebraically the most convenient form, as can
be easily verified.

19The expressions for Log(TFP) for the restricted neutrality cases would be:

Harrod : (1− π)

[
1− 2λ

(1− π)
kt

]
γN · t̃+ λγ2

N · t̃2

Solow : π

[
1 +

2λ

π
kt

]
γK · t̃+ aγ2

K · t̃2

Hicks : γ · t̃, where γ = γK = γN

Cobb Douglas : πγK t̃+ (1− π) γN · t̃

Though, strictly speaking in the latter case, individual technical change cannot be identified
in the Cobb-Douglas case, inter alia, (Barro and Sala-i-Martin (2004), p78-80).
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γK �= γN > 0, additional (quadratic20) curvature is introduced into the estimated

production function.

With the predetermined normalization point, the advantage of (35) over the

Kmenta approximation of the non-normalized CES is - as usual - that, since all

variables appear in indexed form, the estimates are invariant to a change in units of

measurement. Another advantage is that in the neighborhood of the normalization

point (i.e., Kt = K0, Nt = N0, π = π0) and without σ deviating “too much” from

unity, as the approximation also assumes. The terms including the normalized

capital intensity and multiplying linear trend have only second-order importance

and, without any significant loss of precision, can be dropped, yielding,

y = π0kt + λk

+ [π0γK + (1− π0) γN ]︸ ︷︷ ︸
θ

t̃+ λ [γK − γN ]
2︸ ︷︷ ︸

ε

t̃2

︸ ︷︷ ︸
tfp

(36)

Estimation of equation (36) yields 4 parameters, π0, λ̂, θ̂, ε̂, for 4 primitives,

π0, σ, γK , γN . Using π0 allows us to identify σ from composite parameter λ, i.e.,

σ =
(
1− 2̂λ

π0(1−π0)

)−1

. However, without a priori information on which one of

two technical progress components dominates and, in addition, that the signs of

estimates λ and ε are (or are constrained to be) the same, one cannot identify

γK and γN . This leads to the following weak identification result: for γN > γK

we obtain γN = θ̂ + π0

√
ε̂
̂λ
and γN = θ̂ − (1− π0)

√
ε̂
̂λ
and for γN < γK we

obtain, γN = θ̂ − π0

√
ε̂
̂λ
and γN = θ̂ + (1− π0)

√
ε̂
̂λ
. Given this, even under

the helpful environment of normalization, we can say that although the Kmenta

approximation can be used to estimate σ, it cannot effectively identify the direction

of the biased technical change.21 However, the approximation is a useful vehicle

to, ex post, calculate TFP.

4.2 The Point of Normalization - Literally!

To be empirically operational, the point of normalization must be defined (i.e.,

what these Y0, K0’s are in practice). If the estimation data were deterministic,

20Quadratic or higher depending on the order of the approximation.
21The Kmenta approximation, both empirically and in terms of general identification, has

enjoyed limited success (see, Kumar and Gapinski (1974), Thursby (1980), León-Ledesma et al.
(2010a)
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this would be unproblematic: every sample point would be equally suitable for the

point of normalization. For instance, in theoretic settings, the normalization point

is often fashioned around the non-stochastic steady state (e.g., Klump and Saam

(2008), CLMW).

However, since actual data is inevitably stochastic (and the intensity with which

factors are utilized is unobserved) this convenience does not carry over because

the production function does not hold exactly in any sample point. Therefore,

to diminish the size of cyclical and stochastic components in the point of nor-

malization, an appealing procedure is to define the normalization point in terms

of sample averages for the underlying variables - typically geometric averages for

growing variables (such as factors of production) and arithmetic ones for approx-

imately stationary variables (e.g., factor income shares, the real interest rate and

user cost).22

The nonlinearity of the CES function, however, in turn, implies that the sample

average of production need not exactly coincide with the level of production implied

by the production function with sample averages of the right hand variables even

with a deterministic DGP. To circumvent this problem, Klump et al. (2007a)

introduced an additional parameter ξ whose expected value is around unity (which

we might call the normalization constant23). Hence, we can define Y0 = ξY ,

K0 = K, N0 = N , π0 = π and t0 = t where the bar refers to the respective sample

average (geometric or, as in the last two, arithmetic).

An advantage of the normalized system over the non-normalized system, in

turn, is that the distribution parameter π has a clear data-based interpretation.

Therefore, it can either be fixed prior to estimation or, at least, the sample average

can be used as a very precise initial value of the distribution parameter. Likewise a

natural choice for the initial value of normalization constant, ξ, is one. Estimated

values of these two parameters should not deviate much from their initial values

without casting serious doubts on the reasonableness of estimation results. In the

non-normalized case, by contrast, no clear guidelines exist in choosing the initial

values of distribution parameter π and efficiency parameter C. In the context of

non-liner estimation this may imply an enormous advantage of the normalized over

22Klump et al. (2007a,b) define it in terms of long-run averages, and Jones (2003) in terms of
appropriate values.

23Only in the log-linear case of Cobb-Douglas would one expect ξ to exactly equal unity.
Hence, in choosing the sample average as the point of normalization we lose precision because of
the CES’s non-linearity. If, alternatively, we choose the sample mid-point as the normalization
point, we should also lose because of stochastic (and in actual data, cyclical) components that
would also imply non-unitary ξ.

the non-normalized system.
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5 Normalization in Growth and

Business Cycle Models

Production functions are a key part of business-cycle and growth macro-models.

The two main competing models in the macro profession are the RBC (real business

cycle) model and the NK (New Keynesian) model. Both imply relatively tight,

theory-led dynamics and are furnished with a rich number of shocks which displace

the agent from his optimal work, leisure, investment and employment choices.

The standard RBC model is a variant of the representative agent neoclassical

model, where business cycles are due to non-monetary sources (primarily, changes

in technology). The NK one supplements that with various real and nominal

rigidities to better capture the data.

However, what both models tend to share in practice is a focus on Cobb-

Douglas aggregate production. This is especially puzzling given that such models

tend to be motivated as business-cycle frameworks. Yet over business-cycle fre-

quencies one might precisely expect relatively little (and presumably below uni-

tary) factor substitutability as well as the presence of non-neutral technical change

to capture factor income share developments. By introducing and assessing non-

unitary production forms, the potential for a better understanding of technology

and policy transmission and for a richer decomposition of historical time series is

likely to be considerable.

The introduction of normalized technologies in simple business-cycle models is

relatively straightforward and can be illustrated using the canonical RBC model.

The model is relatively well known and can therefore be introduced compactly.

The standard model with CES production technology in the supply side would be

given by (omitting the expectations operator for simplicity):

Λt = βΛt+1[1 + rt+1 − δ] (37)

wt = υ
N ς

t

Λt

(38)

Yt = Y0

[
π0(

Kt

K0

eγ
K
t )

σ−1
σ + (1− π0)(

Nt

N0

eγ
N
t )

σ−1
σ

] σ
σ−1

(39)
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wt = (1− π0)

(
Y0

N0

eγ
N
t

)σ−1
σ

(
Yt

Nt

) 1
σ

(40)

rt = π0

(
Y0

K0

ez
K
t

)σ−1
σ

(
Yt

Kt

) 1
σ

(41)

Ct +Kt − (1− δ)Kt−1 ≤ Yt (42)

γj
t = ρjγ

j
t−1 + ηt (43)

where Λt, wt and rt are, respectively, the marginal utility of consumption (Ct), wages

and the interest rate (all expressed in real terms). Parameters β, δ and υ represent,

respectively, the discount factor, the capital depreciation rate and a scaling con-

stant. Processes γj
t are technology shocks - as equation (43) shows usually mod-

eled as a stationary AR(1) process - for j = K,N (i.e., capital-augmenting and

labor-augmenting shocks respectively). Equations (37) and (38) represent the

household’s optimal consumption and labor supply choices given, for example, the

separable utility function,

Ut =
C1−σc

t

1− σc

− υ
N1+ς

t

1 + ς
(44)

where σc is the coefficient of relative risk aversion and ς is the inverse of the Frisch

elasticity. This particular utility function implies Λt = C−σc
t . If the researcher

wanted to simulate this model conditional on different values of the substitution

elasticity, he/she would do the following:

(i) Pre-set key normalization parameters: r0 = 1
β
− 1 + δ, and, for some given

N0, K0, π0, solve out Y0 =
r0
π0
K0 and w0 = (1− π0)

Y0

N0
following Table 3 (for

temporary shocks, these normalization points will be chosen to be the same

as the presumed steady state);

(ii) Reset leisure scaling parameter v to equate the real wage expressions in (38)

and (40), implying v =
(1−α0)r

σc
0

(r0−δα0)
σc ;

In this simple way, conventional dynamic exercises can be performed on the

model (e.g., examining the effect of technology shocks) which are robust to changes

in the substitution elasticity can be legitimately made.

In this vein, CLMW, looked at the relationship between technology shocks

and hours worked - a key controversy between NK and RBC explanation of the

business cycle - by expressing both models in consistent normalized form. They



40
ECB
Working Paper Series No 1294
February 2011

showed that, depending on the value of the substitution elasticity and the source

of the shock (capital or labor-augmenting), both models could generate positive

or negative hours responses (thus, largely overturning conventional wisdom on the

mechanisms in the models).

6 Conclusions and Future Directions

The elasticity of substitution between capital and labor represents a key param-

eter in many fields of economics: e.g., business-cycle and growth outcomes, in-

come distribution, stabilization policy, labor market dynamics etc. The empirical

evidence - for the US and other developed economies - is clear in rejecting the

unitary-elasticity Cobb-Douglas specification in favor of (generally below unity)

CES aggregate production functions.24 When investigating the ramifications of

a non-unitary substitution elasticity, one inevitably necessarily faces the issue of

normalization.

The importance of explicitly normalizing CES functions was discovered in the

seminal paper by La Grandville (1989b), then further explored by Klump and

de La Grandville (2000), Klump and Preissler (2000), La Grandville and Solow

(2009), and first empirically implemented and investigated by Klump et al. (2007a).

Normalization starts from the observation that a family of CES functions whose

members are distinguished only by different elasticities of substitution needs a

common benchmark point. Since the elasticity of substitution is defined as a point

elasticity, one needs to fix benchmark values for the level of production, the inputs

of capital and labor and for the marginal rate of substitution, or equivalently for

per-capita production, capital intensity and factor income shares.

Overall, we can say that,

(a) Normalization is necessary for identifying in an economically meaningful way

the constants of integration which appear in the solution to the differential

equation from which the CES function is derived (and thus makes it suitable

for comparative static analysis);

(b) Normalization helps to distinguish among the various functional forms, which

have been developed in the CES literature and thus which CES production

functions are legitimate;

24Duffy and Papageorgiou (2000) suggest developing countries may be empirically represented
by an above-unity aggregate substitution elasticity.
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(c) Normalization is necessary for securing the basic property of CES production

in the context of growth theory, namely the strictly positive relationship

between the substitution elasticity and the output level given the CES func-

tion’s representation as a “General Mean”;

(d) In situations where the researchers wishes to gauge the sensitivity of results

(steady-state or dynamic) to variations in the substitution elasticity, normal-

ization is imperative.

(e) Normalization alleviates the estimation of the deep parameters of the aggre-

gate production function, in particular the elasticity of substitution and the

growth rates of factor augmenting technical progress.

and finally,

(e) Normalization is convenient when biases in the direction of technical progress

are to be empirically determined, since it fixes a benchmark value for factor

income shares. This is important when it comes to an empirical evaluation of

changes in income distribution arising from technical progress. If technical

progress is biased in the sense that factor income shares change over time

the nature of this bias can only be classified with regard to a given baseline

value.

In our view there are at least four promising and related areas for future re-

search on normalization:

(1) Following Jones (2005) one can regard a macroeconomic production func-

tion as a reduced form which should be derived from micro-foundations. This

conjecture has been taken up by Growiec (2008) who shows that a CES produc-

tion function can be linked to Weibull distributions of unit factor productivities,

whereas a Cobb-Douglas function responds to Pareto distributions. It is still an

open question, however, how the normalization values of the CES function can

be linked in a meaningful way to the parameters of the underlying unit factor

productivity distributions.

(2) A better understanding of the micro-foundations of the normalized CES

function would also help to better understand reasons for possible international

differences and intertemporal changes in the elasticity of substitution. Both seem

to be linked to some deeper economic, social and cultural parameters as well as to
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the level of development measured by capital per units of labor or income per capita

(Klump and de La Grandville (2000); Duffy and Papageorgiou (2000); Masanjala

and Papageorgiou (2004); Mallick (2010), Wong and Yip (2010)).

(3) Given the suggestion by La Grandville (2009, 2010) that an increase in the

elasticity of substitution has a much stronger effect on aggregate wealth than an

increase in the rate of technical progress one finally wonders why the empirical

evidence seems to suggest that at least in the medium run the elasticity of sub-

stitution for a given country appears rather stable. There seems to be some kind

of “sigma-augmenting” technical progress at work whose exact mechanisms are

not yet understood. Kamien and Schwartz (1968) had already pointed out that

changes in the elasticity of substitution have similar effects on the distribution

of income as the augmentation in factor efficiency. They might therefore induce

similar correction effects which are worth being analyzed in more detail.

(4) In business cycle and growth models, the Cobb Douglas aggregate pro-

duction function is the default choice. However, the convenience/centrality of

Cobb-Douglas production functions in macro is likely to be obscuring important

issues. We would therefore expect that normalization - which leads to a simplifi-

cation and deepening of CES properties - to be more widely used in such models.

In so doing, its use should shed light on the propagation and decomposition of

business cycle shocks and policy transmissions.

To conclude our survey, we re-stress that production functions are ubiquitous

in theoretical and empirical models, and ubiquitously Cobb Douglas! This appears

to us not only an unjustifiable simplification but an impediment to understanding

various economic phenomena. The paper by CLMW is a welcome addition in fash-

ioning otherwise standard Real Business Cycle and New Keynesian models around

a normalized CES supply side and showing the extraordinary impact in terms of

over-turning the prediction that these separate models made for the technology-

hours correlation. But this is merely one example. We would hope therefore that

an understanding of normalized CES functions would be an integral part in build-

ing macro-economic models, in the same way as nominal and real rigidities have

become.
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