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Abstract: The economically-relevant characteristics of multi-input multi-output production 

technologies can be represented using distance functions.  The econometric approach to estimating 

these functions typically involves factoring out one of the outputs or inputs and estimating the 

resulting equation using maximum likelihood methods.  A problem with this approach is that the 

outputs or inputs that are not factored out may be correlated with the composite error term.  

Fernandez, Koop and Steel (2000, p. 58) have developed a Bayesian solution to this so-called 

‘endogeneity’ problem.  O'Donnell (2007) has adapted the approach to the estimation of directional 

distance functions.   This paper shows how the approach can be used to estimate Shephard (1953) 

distance functions and an associated index of total factor productivity (TFP) change.  The TFP index 

is a new multiplicatively-complete index that satisfies most, if not all, economically-relevant tests 

and axioms from index number theory.  The fact that it is multiplicatively-complete means it can be 

exhaustively decomposed into a measure of technical change and various measures of efficiency 

change.  The decomposition can be implemented without the use of price data and without making 

any assumptions concerning either the optimising behaviour of firms or the degree of competition in 

product markets.  The methodology is illustrated using state-level quantity data on U.S. agricultural 

inputs and outputs over the period 1960 to 2004.  Results are summarised in terms of the 

characteristics (e.g., means) of estimated probability density functions for measures of TFP change, 

technical change and output-oriented measures of efficiency change.  

 

KEYWORDS:  Markov Chain Monte Carlo, Gibbs Sampler, total factor productivity, Bayes. 

 

                                                           
1  Paper presented at the Asia Pacific Productivity Conference held in Taipei, Taiwan, from 21-23 July 2010 

and at the 9th Biennial Pacific Rim Conference held in Brisbane, Australia, from 26-29 April 2011. 

 



2 

 

1.   INTRODUCTION 

 

Improvements in productivity are a fundamental precondition for sustainable improvements in standards of 

living.  Empirical analysis in this area often involves estimating the frontier of the production possibilities set.  

O’Donnell (2008; 2010a) shows how estimated production frontiers can be used to identify the main drivers of 

productivity change: a technical change component that measures movements in the production frontier, a 

technical efficiency change component that measures movements towards or away from the frontier, and scale 

and mix efficiency change components that measure productivity gains associated with economies of scale and 

scope.  O’Donnell (2008; 2010a) shows how these components can be estimated without any restrictive 

assumptions concerning the structure of the technology, the degree of competition in input or output markets, or 

the optimizing behavior of firms – all that is required is an estimate of the production frontier. 

 Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) are the two main 

techniques available for estimating production frontiers.  The idea behind DEA is to identify a surface that 

envelops the data points as closely as possible without violating any assumed properties of the production 

technology (e.g., convexity).  The main advantages of DEA are that it does not require any explicit2 assumptions 

concerning the functional form of the unknown production frontier, it does not require any explicit3 assumptions 

concerning error terms, there are no statistical issues (esp. endogeneity) associated with estimating multiple-

input multiple-output technologies, and fast computer packages are available for computing different measures 

of efficiency.  The main weaknesses of DEA are that it does not allow for statistical noise and so cannot 

distinguish inefficiency from noise, it is difficult to compute elasticities of output response and associated 

economic quantities that involve partial derivatives (e.g., shadow prices), it is computationally difficult to obtain 

measures of reliability for efficiency scores, results may be sensitive to outliers, and technical efficiency 

estimates are upwardly biased in small samples.  SFA is an alternative econometric methodology that involves 

the use of an arbitrary function to approximate the unknown production frontier.  The main advantages of SFA 

are that it accommodates errors of approximation and other sources of statistical noise (e.g., measurement errors, 

omitted exogenous variables) and it is reasonably straightforward to conduct statistical inference (e.g., construct 

confidence intervals and test hypotheses).  The main weaknesses of SFA are that results may sensitive to the 

choice of approximating functional form and associated assumptions concerning error distributions, and results 

may be unreliable if sample sizes are small.   SFA estimation of primal representations of multiple-input 

multiple-output production technologies may also be complicated by the fact that the explanatory variables in 

the econometric model may be correlated with the error term.  This problem is known as the ‘endogeneity’ 

problem. 

 Primal representations of multiple-input multiple-output production technologies include input and 

output distance functions.   In the econometric approach to estimating these functions it is common to assume 

that either the inputs or the outputs are endogenous.  Estimation then involves factoring out one of the 

endogenous variables and expressing the distance function in the form of a conventional stochastic frontier 

                                                           
2
 DEA implicitly assumes the production frontier is locally linear (e.g., O’Donnell 2010a). 

3
 DEA implicitly assumes all error terms are zero. 
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model (e.g. Lovell et al. 1994).  If the endogenous variables that are not factored out remain correlated with the 

error term then estimates of the parameters of the production frontier and associated measures of productivity 

and efficiency change will generally be biased and inconsistent. 

A common solution to the endogeneity problem is to estimate the parameters of the model using the 

generalized method of moments (GMM) (e.g. Kopp and Mullahy 1990; Atkinson, Cornwell and Honerkamp 

2003).  GMM involves the arbitrary selection of instrumental variables that are uncorrelated with the error term.  

A problem with this approach is that GMM estimates are often sensitive to the choice of instruments, and the 

finite sample properties of the estimator are unknown.  An alternative solution that does not involve the use of 

instruments has been suggested by Fernandez et al. (2000).  This approach involves the specification of a system 

of equations in which the all but one of the dependent variables is unobserved.  Bayesian methods are used to 

estimate the latent dependent variables and draw exact finite sample inferences concerning the parameters of the 

model and associated measures of efficiency.  O'Donnell (2007) has adapted the approach to the estimation of 

directional output distance functions.  This paper adapts the approach to the estimation of Shephard (1953) 

output distance functions and associated measures of productivity change.   

The outline of the paper is as follows.  Section 2 describes a multiple-input multiple-output production 

technology that satisfies a set of regularity conditions that are quite common in the productivity literature (e.g., 

monotonicity). Section 3 uses distance function representations of this technology to define a spatially- and 

temporally-transitive total factor productivity (TFP) index that satisfies important axioms and tests from index 

number theory (e.g., identity, transitivity).   Section 4 shows how this index can be decomposed into various 

measures of technical change and efficiency change.  Section 5 specifies an empirical output distance function 

and describes how the unknown parameters of the function can be estimated using the Bayesian methodology of 

Fernandez et al. (2000).  Section 6 illustrates the methodology using a well-known panel of state-level data on 

outputs and inputs in U.S. agriculture.  The paper is concluded in Section 7. 

 

 

2.  THE PRODUCTION TECHNOLOGY 

 

I follow Fernandez et al. (2000) and assume the production technology available to firms in period t can be 

represented by the separable transformation function  

 

(1)  ( , ) ( ) ( ) 0t tT x q g q f x    

 

where 1( ,..., ) K
Kx x x    and 1( ,..., )   J

Jq q q   denote vectors of input and output quantities.  Two 

alternative representations of this production technology are the Shephard (1953) output and input distance 

functions: 

 

(2)   ( , ) min{ 0 : ( , ) 0}t t
OD x q T x q


        and 

(3)   ( , ) max{ 0 : ( , ) 0}.t t
ID x q T x q


      
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The output distance function gives the inverse of the largest factor by which a firm can scale up its output vector 

while holding its input vector fixed.  The input distance function gives the maximum factor by which a firm can 

scale down its input vector and still produce the same output vector.  If the technology exhibits constant returns 

to scale then 1( , ) ( , ) .t t
O ID x q D x q    Technically-feasible and efficient input-output combinations are defined by 

( , ) 0tT x q     and ( , ) ( , ) 1.t t
O ID x q D x q    A local measure of returns to scale is the elasticity of scale (e.g., 

Krivonozhko and Forsund 2010, p. 160): 

 

(4)   

1

1 1

( , ) ( , )
( , , ) .

t tK J

k j
k jk j

T x q T x q
x q t x q

x q




 

   
        

   

 

The technology exhibits (local) decreasing, constant or increasing returns to scale as the elasticity of scale is less 

than, equal to, or greater than one.  

 I assume the transformation function satisfies the following standard regularity conditions (e.g., 

Chambers 1988, p. 260-261): 

 

T.1  non-decreasing in outputs: 1 0( , ) ( , )t tT x q T x q  for 1 0 .q q  

T.2  non-increasing in inputs: 1 0( , ) ( , )t tT x q T x q  for 
1 0 .x x  

 

Associated properties of the output distance function are  

 

O.1  nonincreasing in inputs:  1 0( , ) ( , )t t
O OD x q D x q  for 

1 0 .x x  

O.2  nondecreasing in outputs:  1 0( , ) ( , )t t
O OD x q D x q  for 1 0 .q q  

O.3  linearly homogenous in outputs:  ( , ) ( , )t t
O OD x q D x q   for 0.  

 

It is convenient to let 

 

(5)   1

1

ln ( ) ln
J

j j
j

g q q v  



 
  

 
   and 

(6)   0 1

1

ln ( ) ln
K

t
k k

k

f x t x   


     

 

where   and v  are errors of approximation.  Then the regularity properties O.1 to O.3 will be satisfied if  

 

(7)   1,   

(8)    (0,1) j  for 1,..., ,j J    

(9)    0k  for 1,...,k K   and 

(10)    1J    
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where 1( ,..., )   J  and J is a  1J   unit vector.  Equation (5) is a constant elasticity of substitution (CES) 

function with elasticity of transformation between any two outputs equal to 1/(1 ) 0.   Equation (6) is a 

Cobb-Douglas (CD) function that allows for Hicks-neutral technical change. Equations (1), (5) and (6) can be 

used to write the logarithms of the output and input distance functions as4: 

 

(11)   1

0 1

1 1

ln ( , ) ln ln
J K

t
O j j k k

j k

D x q q t x v     

 

 
     

 
   

(12)   1 1

0 1

1 1

ln ( , ) ln ln
K J

t
I k k j j

k j

D x q t x q        

 

  
      

   
   

 

where kk
  is the elasticity of scale.   This paper shows how estimates of the parameters of these distance 

functions can be used to estimate a spatially- and temporally-transitive index of productivity change. 

 

 

3.   A TRANSITIVE PRODUCTIVITY INDEX 

 

It is convenient at this point to introduce a firm subscript i and a time subscript t into the notation and let 

1( ,..., )it it Kitx x x   and 1( ,..., )it it Jitq q q    denote the input and output quantity vectors of firm i in period t 

( 1,..., ; 1,..., ).i N t T    In the aggregate price-quantity framework of O'Donnell (2008), the TFP of firm i in 

period t is /it it itTFP Q X  where ( )it itQ Q q  is an aggregate output, ( )it itX X x  is an aggregate input, and 

(.)Q  and (.)X are non-negative, non-decreasing and linearly homogeneous aggregator functions.  It follows 

that the index that compares the TFP of firm i in period t with the TFP of firm h in period s is  

 

(13)   
,

,

,

/

/

hs itit it it
hs it

hs hs hs hs it

QTFP Q X
TFP

TFP Q X X
    

 

where 
, /hs it it hsQ Q Q  is an output quantity index and 

, /hs it it hsX X X  is an input quantity index.  Thus, within 

this framework, TFP change is a measure of output growth divided by a measure of input growth.  TFP index 

numbers that can be written in the form of (13) are said to be multiplicatively-complete (O’Donnell, 2008). 

Different multiplicatively-complete TFP indexes are obtained by choosing different (non-negative, non-

decreasing and linearly homogeneous) aggregator functions.  For example, Laspeyres TFP indexes are obtained 

by choosing price-weighted linear aggregator functions with reference firm/period prices as weights.  Other 

                                                           

4  If ( , )OD x q   then  
1/

1

( , ) ( ) 0
J

v
j j

j

T x q q e f x


  



 
   
 
  which can be solved for  1

1

ln ln ln ( ) .
J

j j
j

q f x v   



 
   

 
    If 

( , )ID x q   then  0 1

1

( , ) ( ) exp ln ln 0
K

k k
k

T x q g q t x e    


       
 

  which can be solved for 

1

0 1

1

ln ln ln ( ) .
K

k k
k

t x g q     



      
 

  
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members of the class of multiplicatively-complete TFP indexes include Paasche, Laspeyres, Fisher, Tornquist, 

Lowe, Walsh and Hicks-Moorsteen indexes.   

A fundamentally important property of multiplicatively-complete TFP indexes is that if the aggregator 

functions are fixed for all possible binary comparisons then the resulting TFP index satisfies a set of 

commonsense axioms and tests.  Included among these are a transitivity test, which says that a direct 

comparison of the TFP of two firms should yield the same estimate of TFP change as an indirect comparison 

through a third firm (i.e., 
, , , ).hs it hs kr kr itTFP TFP TFP    Seemingly through force of habit, many applied 

economists (implicitly) use different aggregator functions from one binary comparison to the next, leading to 

sets of TFP index numbers that fail the transitivity test.  In contrast, O'Donnell (2010b) computes temporally- 

and spatially-transitive Lowe TFP indexes using linear aggregator functions defined over fixed vectors of 

representative output and input prices.  This paper supposes that such price vectors may be unavailable and 

instead computes transitive TFP indexes using period-T distance functions defined over fixed vectors of 

representative output and input quantities: 

 

(14)   0( ) ( , )T
it O itQ q D x q   and 

(15)   0( ) ( , )T
it I itX x D x q  

 

where 0
q  and 0

x  are finite non-zero vectors.  The associated output, input and TFP indexes are: 

 

(16)   0

,

0

( , )

( , )

T
O it

hs it T
O hs

D x q
Q

D x q
  

 

(17)   0

,

0

( , )

( , )

T
I it

hs it T
I hs

D x q
X

D x q
   and 

 

(18)   
, 0 0

,

, 0 0

( , ) ( , )
.

( , ) ( , )

T T
hs it O it I hs

hs it T T
hs it O hs I it

Q D x q D x q
TFP

X D x q D x q
   

 

The indexes (16) and (17) are closely related5 to the Malmquist output and input quantity indexes of Caves et al. 

(1982), and the TFP index given by (18) is closely related to the Hicks-Moorsteen TFP index discussed by 

Bjurek (1996).  All three indexes satisfy the monotonicity, linear homogeneity, identity, homogeneity of degree 

zero, commensurability and proportionality axioms of Eichhorn (1978).  They also satisfy the transitivity and 

time and space reversal tests of Fisher (1922).  Other tests that are occasionally discussed in the index number 

literature make for convenient computations but do not appear to have any economic relevance.  For further 

insights into the properties of fixed-weight multiplicatively-complete TFP indexes, see O'Donnell (2010b). 

                                                           
55

 For example, if hsx x and the period-s and period-T technologies are identical then (16) would correspond to a “firm-hs” Malmquist 

output index as defined by Caves, Christensen and Diewert (1982, p. 1400). 
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If the (antilogarithms of the) CES-CD approximating functions defined by (11) and (12) are used to 

approximate the aggregator functions (14) and (15) then, if the errors of approximation are fixed6, the output and 

input indexes given by (16) and (17) become 

 

(19)   

1/

1

,

1

J

j jit
j

hs it J

j jhs
j

q

Q
q


 



 



  
 
 

 
 




  and 

  

(20)   

1

,

1

.

kK
kit

hs it
k khs

x
X

x

 



 
  

 
  

 

Observe that these output and input indexes, and therefore the associated TFP index, do not depend on the 

arbitrarily-chosen input and output vectors 0
x  and 0

,q  nor on the unknown parameters 0
  and 1

.   One 

implication is that the output and input indexes will still be given by (19) and (20) even if the period-s distance 

functions are used in (14) and (15) instead of the period-T distance functions.  A further implication is that 0
  

and 1
  can be permitted to vary across (groups of) observations (e.g., to reflect changes in the production 

environment) and the TFP index will still be given by the ratio of the indexes defined in (19) and (20)7.   Also 

observe that the output and input indexes given by (19) and (20) could have been obtained using the following 

non-negative, non-decreasing and linearly homogeneous aggregator functions:  

  

(21)   

1/

1

( )
J

it j jit
j

Q q q



 



 
  
 
   and 

 

(22)   
1

1

( ) .k

K

it kit
k

X x x
 



  

 

This illustrates that different aggregator functions can be used to motivate the same multiplicatively-complete 

TFP index.  More important for empirical work is the fact that if outputs are aggregated using (21) then the 

output distance function given by (11) can be rewritten in the form of a conventional stochastic frontier model: 

 

(23)   0 1

1

ln ln
K

it k kit it it
k

Q t x v u  


      

 

where ln ( , ) 0.t
it O it itu D x q      If inputs are aggregated using (22) then the input distance function (12) can  

also be written in the form of a conventional stochastic frontier model.  Indeed, if inputs are aggregated using 

(22) then it is also straightforward to show that 

 

                                                           
6
  If the errors of approximation are not fixed then (19) and (20) can be derived as the antilogarithms of the expected values of the 

logarithms of  the output and  input indexes.  
7
   It is also possible to allow other parameters of the technology to be observation varying.  However, when it comes to computing TFP 

indexes they must be held fixed (at possibly arbitrarily-chosen values) if the TFP index is to satisfy the transitivity test. 
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(24)        , 1ln ln ln ( ) ( 1) ln ln .hs it it hs it hs it hs it hsTFP TFP TFP t s u u X X v v             

 

This equation illustrates how the (logarithm of) a multiplicatively-complete TFP index can be broken into 

(logarithms of) measures of technical change, technical efficiency change, scale-mix efficiency change8, and 

noise. 

 

 

4.   THE COMPONENTS OF TFP CHANGE 

 

O'Donnell (2008) shows how any multiplicatively-complete TFP index can be decomposed into a measure of 

technical change and various measures of efficiency change.  The decomposition methodology does not rely on 

any restrictive assumptions concerning the production technology, nor does it involve any assumptions 

concerning firm behavior or the level of competition in input or output markets.  The methodology can be used 

to motivate an infinite number of economically-meaningful decompositions of TFP change.   

 For illustrative purposes, O'Donnell (2008) considers a technology that exhibits variable returns to scale.  

For such technologies it is generally possible to find finite non-zero input and output vectors that maximize 

TFP.  Then it is meaningful to compare the TFP of the firm with the maximum TFP that is possible.  Let *

tTFP  

denote the maximum TFP that is possible in period t.   O'Donnell (2008) defines the TFP efficiency (TFPE) of 

firm i in period t as  

 

(25)   
* * *

/

/

it it it
it

t t t

TFP Q X
TFPE

TFP Q X
   

 

where *

tQ  and *

tX   denote aggregates of the output and input vectors that maximize TFP.   Figure 1 illustrates 

this measure of overall productive performance in two-dimensional aggregate quantity space.  In this figure, the 

curve passing through point E is a production frontier that envelops all aggregate-output aggregate-input 

combinations that are technically feasible in period t.   In aggregate quantity space, the TFP at any point is the 

slope of the ray from the origin to that point.  For example, the TFP at point A is / slope 0A,it it itTFP Q X   

while the maximum productivity possible using the technology is the TFP at point E: 

* * */ slope 0E.t t tTFP Q X   It follows that the measure of TFP efficiency given by (25) can be expressed in 

terms of slopes of rays in aggregate quantity space: */ slope 0A/slope 0E.it it tTFPE TFP TFP   

 Many other measures of efficiency can be expressed in terms of aggregate quantities and therefore as 

slopes of rays in aggregate quantity space.  For example, the measure of overall efficiency given by (25) can be 

decomposed into measures of output-oriented technical efficiency (OTE) and output-oriented scale-mix 

efficiency (OSME).  Mathematically, it it itTFPE OTE OSME    where 

 

                                                           
8
   If the technology is represented by (12) then it exhibits Hicks–neutral technical change.  In this special case the aggregator functions 

(21) and (22) map to the frontier surface and all input and output combinations are mix efficient.  Thus, the scale-mix efficiency change 

component in (24) is, in fact, a pure measure of scale efficiency change. If the technology exhibits constant returns to scale then this 

component disappears. 
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(26)   ( , )tit
it O it it

it

Q
OTE D x q

Q
     

 

(27)   
*

/it it
it

t

Q X
OSME

TFP
     

 

and / ( , )t
it it O it itQ Q D x q  denotes the maximum aggregate output that can be produced by firm i in period t if it 

holds its input vector and output mix fixed.  The OTE measure given by (26) is attributed to Farrell (1957) and 

is a measure of the productivity shortfall associated with operating below the production frontier.   The OSME 

measure given by (27) is defined in O'Donnell (2010b) and is a measure of the productivity shortfall associated 

with diseconomies of scale and scope.  Figure 1 depicts the relationship between these various measures of 

efficiency in aggregate quantity space:  / slope 0A/slope 0C,it it itOTE Q Q   * *( / ) /( / )it it it t tOSME Q X Q X   

slope 0C/slope 0E  and  it it itTFPE OTE OSME    slope 0A/slope 0E.   See O’Donnell (2008; 2010a) for 

more details concerning these and related measures of efficiency. 

It is useful to rearrange equation (25) and express the TFP of the firm as a proportion of maximum 

possible TFP:

 

* .it t itTFP TFP TFPE    A similar equation holds for firm h in period s: * .hs s hsTFP TFP TFPE     

It follows that the index number that compares the TFP of firm i in period t with the TFP of firm h in period s 

can be decomposed as  

 

(28)   
* *

, * *
.it t it t it it

hs it
hs hs hs hss s

TFP TFP TFPE TFP OTE OSME
TFP

TFP TFPE OTE OSMETFP TFP

       
         

       
 

 

The first term on the far-right-hand side of (28) is a natural measure of technical change.  The remaining terms 

are measures technical efficiency change and scale-mix efficiency change.  Unlike the decomposition given by 

equation (24), there is no noise component in equation (28) because in this particular section of the paper the 

production technology has been treated as known. 

 If the production technology everywhere exhibits strictly increasing (decreasing) returns to scale then the 

maximum TFP that is possible using the technology will be infinitely large (zero) and the decomposition given 

by (28) will not be mathematically well-defined.  In such cases, any number of local measures of technical 

change can be used to effect a decomposition of the TFP index.  For example, let # max { : }t i it NTFP TFP i    

denote the maximum observed TFP of any firm in the sample in period t.   The associated local measure of 

TFPE is  

 

(29)   #

# # #

/

/

it it it
it

t t t

TFP Q X
TFPE

TFP Q X
   

 

where #

tQ  and #

tX  are aggregate outputs and inputs associated with # .tTFP   Figure 2 uses a scatter of sample 

observations to illustrate this local measure of efficiency in aggregate quantity space.  In this figure, the frontier 

passing through point G exhibits strictly decreasing returns to scale.  Observe that the most productive firm in 

the sample is the firm operating at point H.   The TFP at this point (and, incidentally, the point at which the ray 
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intersects the frontier) is # # #/ slope 0H.t t tTFP Q X   The associated local measure of TFP efficiency is 

# #/it it tTFPE TFP TFP  slope 0A/slope 0H.   It is clear from Figure 2 that #

itTFPE  can be decomposed into the 

product of the measure of OTE given by (26) and the following local measure of output-oriented scale-mix 

efficiency: 

 

(30)   #

#

/
.it it

it
t

Q X
OSME

TFP
     

 

It is also clear that the index number that compares the TFP of firm i in period t with the TFP of firm h in period 

s can still be decomposed into measures of technical change and different types of efficiency change:  

 

(31)   
# # # #

, # # # #
.it t it t it it

hs it
hs hss hs s hs

TFP TFP TFPE TFP OTE OSME
TFP

TFP OTETFP TFPE TFP OSME

       
         

       
 

 

This particular decomposition is available whenever the technology everywhere exhibits strictly increasing or 

strictly decreasing returns to scale. 

 Observe that the measures of TFP change and OTE change in equations (28) and (31) are identical.  This 

suggests that any plausible measure of technical change can be used to effect a decomposition of a given TFP 

index.  For example, if the technology is represented by the CES-CD approximating functions defined by (11) 

and (12) then the logarithm of the index that compares the TFP of firm i in period t with the TFP of firm h in 

period s is given by equation (24).  In that equation the term 1( )t s   is the (firm-invariant) logarithm of a 

measure of Hicks-neutral technical change.  In this case the following alternative decomposition of the TFP 

index is available: 

 

(32)   
† †

, † †

it t it t
hs it

hs hst t

TFP TFP OTE OSME
TFP

TFP OTETFP OSME

    
      

    
 

 

where9  

 

(33)   †

1exp( )tTFP t     and 

 

(34)   †

†

/
.it it

t
t

Q X
OSME

TFP
  

 

Note that if the technology is represented by the CES-CD approximating functions defined by (11) and (12) 

then, if the errors of approximation are fixed, it will everywhere exhibit decreasing, constant or increasing 

returns to scale depending on whether the observation-invariant kk
   is less than, equal to, or greater than 

one.  Thus, the decomposition given by (28) is unavailable.   This paper estimates the CES-CD model and 

                                                           
9
  The notation   means “is proportional to”. 
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implements the decomposition given by (32) instead of the decomposition given by (31) because the estimated 

measure of technical change in the former equation is less likely to be affected by outliers.  

 

 

5.   ECONOMETRIC MODEL 

 

I assume that firms choose input-output combinations to maximize a benefit function that is increasing in net 

returns.  I also assume the time horizon is sufficiently short that input levels can be treated as pre-determined 

(exogenous).  The J outputs are treated as endogenous and I focus on estimating the parameters of the output 

distance function given by (11).   The empirical version of the model is given by equations (21) and (23): 

  

(21)   

1/

1

J

it j jit
j

Q q



 



 
  
 
   and 

 

(23)   0 1

1

ln ln
K

it k kit it it
k

Q t x v u  


      

 

where ln ( , )t
it O it itu D x q   represents technical inefficiency and itv  represents approximation errors and other 

sources of statistical noise.  The unknown parameters could be estimated by substituting (21) into (23) and 

estimating the resulting model using GMM.  However, the choice of moment conditions is not obvious and the 

finite sample properties of the GMM estimator are unknown.  Moreover, GMM methods for imposing the 

inequality constraints given by (7) to (9) are unsatisfactory, not least because binding inequality constraints lead 

to parameter estimates with standard errors of zero (implying we know their values with certainty).  This paper 

solves the problem using the Bayesian methodology of Fernandez et al. (2000).   The methodology has 

previously been used to estimate multiple-input multiple-output directional distance functions by O'Donnell 

(2007).  Bayesian estimation involves sampling from the joint posterior probability density function (pdf) of the 

unknown parameters and unobserved inefficiency effects.  This section presents the likelihood function, prior 

pdf, and conditional posterior pdfs needed for a Markov Chain Monte Carlo (MCMC) sampling algorithm.    

 

5.1  The Likelihood Function 

 

The set of all NT observations represented by (23) can be compactly written 

 

(35)   y X v u    

 

where 11 12( , ,..., ) ,NTy y y y   ln ,it ity Q  0 1 1( , , ,..., )K       and the remaining definitions are obvious, 

although it is worth noting that X is ( 2). NT K   I assume the elements of v  are independently and 

identically distributed normal random variables10: 

 

                                                           
10

  The notation ( | , )Nf a b C  is used for a normal pdf with mean vector b and covariance matrix C.  
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(36)      1| | 0 ,N NT NTp v h f v h I  

 

where 0NT  denotes a zero vector of dimension NT and NTI  denotes an identity matrix of order NT.   The 

conditional joint density for the unobserved dependent variable vector is 

 

(37)      1| , , | ,   N NTp y u h f y X u h I   

 

where, for notational convenience, the conditioning on X has been suppressed.   Unfortunately, this NT-variate 

density is not enough to define a sampling density for the J NT  matrix of observed outputs 

11 12( , ,..., ).NTQ q q q    Such a density can only be defined by introducing 1J  new random variables into the 

model to generate stochastics in another 1J  dimensions.  In this paper I introduce elasticities of distance with 

respect to outputs: 

 

(38)   

1

ln ( , )

ln

t
O it it k kit

kit J
kit

j jit
j

D x q q

q
q

 

 








 

 
    for 1,... .k J  

 

Observe that these elasticities sum to one.  Accordingly, I follow Fernandez et al. (2000) and assume that 

1( ,..., )it it Jit     is independently distributed with a Dirichlet pdf11: 

 

(39)      | |it D itp s f s      for 1,...,i N  and 1,...,t T   

 

where 1( ,..., ) .  J
Js s s     Given   and   there is a one-to-one mapping between the observed output vector

J
itq   and the unobserved vector 

1 1,( ,..., , ) .J
it J it ity      Thus, the conditional likelihood function for the 

matrix of observed outputs 11 12( , ,..., ) NTQ q q q  is (Fernandez et al. 2000, p. 55, eq. 2.7):    

 

(40)        1

1 1 1 1

| , , , , , | , |
N T N T

N NT D it it
i t i t

p Q h s u f y X u h I f s J    

   

     

 

where  

  

(41)   1

1

J
jitJ

it
j jit

J
q


 



   

 

is the absolute value of the Jacobian of the transformation from 
1 1,( ,..., , )it J it ity     to .itq   

  

                                                           
11

  The notation ( | )Df a b  the notation for a Dirichlet pdf used by Poirier (1995, p. 132).   If  1( ,...., )Ja a a   and 1( ,...., )Jb b b   then 

0( ) /j jE a b b  and 3 2

0 0 0( ) ( ) /( )j j jVar a b b b b b    where 0 .Jb b  Other distributional assumptions are possible, including the additive 

logistic model. 
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5.2  The Joint Prior 

 

Fernandez, Osiewalski and Steel (1997) show that proper priors on the parameters of frontier models are 

generally needed to ensure the existence of the posterior density.  I follow Fernandez et al. (2000) and specify a 

prior of the form 

 

(42)  ( , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )     p h s u p p p p h p s p u  

 

where each of the component priors is proper12.  To be specific: 

 

(43)    1( ) |1, ( 1)   Gp f k I  

(44)    ( ) |  D Jp f  

(45)      2 2 2( ) | 0 ,    N K Kp f k I I R  

(46)    1( ) |1, Gp h f h k  

(47)    3

1

( ) |1,
J

G
j

p s f s k


  

(48)      
1 1

| |1,
N T

G it
i t

p u f u 
 

   and 

(49)      | 1, ln( )Gp f     

where R is the region of the parameters space where the constraints (9) are satisfied.  In the empirical example I 

set 4

1 3 10k k    and 4

2 10k  to ensure the priors for , ,  h and s are relatively non-informative.  The prior 

given by equations (42) to (49) is a special case of the noninformative prior used by Fernandez et al. (2000).  

The pdf (49) is centred on ln( )  where   is a prior estimate of the mean level of efficiency.  In the empirical 

example I set 0.9.   

 

5.3  Posterior Inference 

 

The likelihood function combines with the joint prior to yield a joint posterior for the unknown parameters and 

the unobserved inefficiency effects.  Analytical integration of this posterior appears impossible, so posterior 

inference is conducted using MCMC simulation methods.  The Gibbs sampling algorithm partitions the vector of 

unknown parameters and inefficiency effects into blocks, then simulates sequentially from the conditional 

posterior distribution for each block.  In the present case, the conditional posteriors are (Fernandez et al. 2000, p. 

58-61)13: 

                                                           
12

  The notation ( | , )Gf a b c  is used for a gamma pdf with mean /b c  and variance 
2/ .b c   If b = 1 then ( | , )Gf a b c  is an exponential pdf. 

13
   If we were to let 

2 1, , , ,NTh D I z u V X y      and ( )   then equation (4.2) in Fernandez et al. (2000) is identical to (53), 

except that Fernandez et al. (2000) write   in the mean function instead of  
1.

 This appears to be a typographical error on their part. 
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(50)        | , , , , , , | ( ),       Np h s u Q f hVX y u V I R  

(51)      1| , , , , , , |1 .5 , .5Gp h s u Q f h NT k e e        

(52)      | , , , , , , , | 1, ln( )G NTp h s u Q f NT u          

(53)        1 1 1| , , , , , , | , 0N NT NT NTp u h s Q f u X y h h I I u             

(54)     ( 1) 1 1

1

1 1 1

| , , , , , , exp 0.5 ln ( 1)
N T J

NT J
j jit

i t j

p h s u Q k h e e s I         

  

 
     

 
  

(55)       1

1

1 1 1

| , , , , , , , exp ln ( 0)

NTJ N TNT

j j m j j jit j
m i t

p s h s u Q s s s k I s    
 


  

    
        

    
   

(56)      1
1

11 1 1

| , , , , , , exp 0.5 ( )

J

j
j

j

s
J N T J

s NT

j j jit
jj i t

p h s u Q q h e e I R        






  

 
   

 
   

where ;  e y X u    1
1

2 2 ;


  KV hX X k I  and  js  is the vector comprising all elements of s except .js   

Simulating from the densities (51) to (53) is straightforward using non-iterative simulation methods.  Indeed, 

simulating from (53) can be accomplished by sampling independently from NT univariate truncated normal 

distributions.  Although the remaining densities are nonstandard, they can be simulated using a Metropolis-

Hastings (M-H) algorithm.   A simple accept-reject algorithm that can be used for sampling from (56) involves 

drawing 1J   elements of , computing the Jth element from the adding up constraint (10), then rejecting the 

entire vector if any elements lie outside the unit interval. 

 

 

6.   EMPIRICAL ILLUSTRATION 

 

This section illustrates the methodology using a state-level panel dataset obtained from the Economic Research 

Service (ERS) of the U.S. Department of Agriculture (USDA).  The panel covers the N = 48 contiguous states 

over the T = 45 years from 1960 to 2004.  The data file records the quantities of J = 3 agricultural outputs 

(livestock, crops, other outputs) and K = 4 inputs (capital, land, labour, materials) in a particular state in a 

particular year relative to Alabama in 1960.  Details concerning the construction of the data can be accessed 

from Ball, Hallahan and Nehring (2004).    

All results presented in this section were generated using MATLAB.   Starting values for the MCMC 

algorithm described in Section 5 included 1.1   and 1/j J   for 1,...,j J .  These values were used in (22) 

to compute an aggregate output series and then starting values for the remaining parameters in the model were 

obtained by applying least squares to equation (23).  The MCMC algorithm was used to obtain 12,000 draws on 

the unknown parameters and technical inefficiency errors.  The first 2,000 draws were used to tune the M-H 

components of the simulator and were then discarded as a burn-in.  The M-H algorithms were tuned so that the 
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acceptance rates were between 0.2 and 0.6.  The chains of retained observations are presented in Figure 3 and 

show no signs of nonstationarity. 

The estimated posterior means, standard deviations and 95% highest posterior density (HPD) interval 

limits for ( , , , , , , )h s      are presented in Table 1.  These values are estimates obtained from the 10,000 post 

burn-in posterior draws.  The joint prior incorporates the economic regularity constraints given by equations (7) 

to (10) so the estimates reported in Table 1 are guaranteed to be “correctly” signed.  Interpretation of the 

estimates is straightforward: for example, the posterior mean for   is 1.035 > 1 indicating that the technology 

everywhere exhibits increasing returns to scale; the HPD interval limits for 1  reveal that the annual rate of 

technical change in U.S. agriculture lies between 0.8% and 2.2% with probability 0.95.  One of the advantages 

of the Bayesian approach is that it is also straightforward to draw valid finite-sample inferences about the 

unknown parameters in ways that are often more informative than simple point and interval estimates: for 

example, the estimated pdf depicted in panel (a) of Figure 4 gives a very clear picture of likely and unlikely 

values of the elasticity of scale; 4.7% of the area under this pdf is below one indicating there is a 4.7% chance 

the technology exhibits decreasing returns to scale.. 

The estimated pdfs in the remaining panels in Figure 4 are representative of our post-sample beliefs about 

other economic quantities of interest.  They depict levels of productivity and efficiency in California in 2004 

relative to levels in Alabama in 1960: panel b) presents the estimated pdf of the TFP index defined by (18) and 

indicates that TFP in California in 2004 was two to four times higher than TFP in Alabama in 1960; panel (c) 

presents the estimated pdfs of the Farrell (1957) measure of output-oriented technical efficiency (26) and 

indicates that OTE in California in 2004 (solid line) was higher than OTE in Alabama in 1960 (dashed line); 

panel (d) presents the estimated pdf for the associated index of OTE change and confirms that California was 

more than twice as likely to have had higher levels of OTE in 2004 than Alabama had in 1960 (the posterior 

odds ratio is 2.2); panel (e) presents the estimated pdf for the change in the output-oriented scale-mix efficiency 

measure (34) and indicates that OSME was higher in California in 2004 than in Alabama in 1960 (with 

probability 0.70); and panel (f) presents the estimated pdf for the measure of technical change defined by (33) 

and reveals that the maximum productivity possible using the technology available in 2004 was 1.5 to 2.5 times 

higher than the maximum productivity possible in 1960. 

It is useful to assess the plausibility of the estimated pdfs presented in Figure 4 in terms of measures of 

central tendency and dispersion and by comparison with results from other years.  Figure 5 presents the 

geometric mean and 95% HPD interval limits for indexes comparing levels of productivity and efficiency in 

California with levels in Alabama in 1960.  Panel (a) in Figure 5 presents results for TFP change (∆TFP) while 

panels (b) to (d) present results for technical change (∆Tech), technical efficiency change (∆OTE) and scale-mix 

efficiency change (∆OSME).  These panels suggest that (smooth) technical change appears to be driving long 

run increases in the TFP index (and the HPD limits).  They also reveal there is considerable uncertainty 

concerning the estimates of OTE and OSME change. 

 A clearer picture of the drivers of productivity change in California is given in Figure 6.  Panel (a) in 

this figure simply reproduces the mean series’ from Figure 5 on a single diagram with a common vertical scale.  

This figure reveals that in the first two decades of the sample period productivity increases due to technical 
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progress and technical efficiency improvement were roughly offset by productivity declines due to changes in 

scale and mix.  These results are consistent with the U.S. results obtained by O'Donnell (2010a, p. 553) using 

DEA methodology and a different agricultural dataset.  O'Donnell (2010a, p. 552) explains that firms who have 

benefit functions that are increasing in net returns will rationally change the scale and mix of their operations in 

response to (anticipated) changes in relative output and input prices.  One way of assessing this argument is to 

estimate the shadow (or support) prices faced by agricultural producers in California over this period.  

Grosskopf, Margaritis and Valdmanis (1995) use duality theory to show that revenue-deflated shadow prices are 

equal to the derivatives of the output distance function with respect to output quantities: 

* / ( , ) / .t
kit it it O it it kitp p q D x q q      If the output distance function is given by (11) then the shadow price ratios are: 

 

(57)   
*

*

kit lit k kit

kit l litlit

p q q

q qp





  
   
  

    for , 1,... .k l K  

 

Panel (b) in Figure 6 reveals that the years from 1960 to 1980 wer characterised by a significant fall in the 

estimated shadow price of crops relative to the estimated shadow price of other crops, and this was associated 

with a significant fall in the observed output of crops relative to the observed output of other crops.   It was also 

plausibly associated with a fall in OSME. 

 

 

7.   CONCLUSION 

 

Measures of productivity and efficiency are generally well-defined and understood, especially in the case of 

single-output single-input firms.  In those cases it is common to draw simple diagrams to illustrate relationships 

between the concepts of productivity, technical efficiency, scale efficiency and technical change.  Matters 

become slightly more complicated in the case of multiple-output multiple-input firms where it is usually 

possible to capture productivity dividends through economies of scope.   In those cases it is common to draw 

diagrams to illustrate the concepts of technical, cost and allocative efficiency, but only recently has O’Donnell 

(2008) shown how simple diagrams can also be used to illustrate important relationships between measures of 

efficiency and common measures of productivity change.  This provides for some simple decompositions of 

common productivity index numbers.  Implementing the O’Donnell (2008) decomposition methodology 

involves estimating production frontiers using conventional DEA and/or SFA techniques.   

O'Donnell (2010b) has shown how DEA techniques can be used to decompose Paasche, Laspeyres, Fisher, 

Lowe and Hicks-Moorsteen TFP indexes.  This paper shows SFA methodology can be used to decompose a new 

TFP index that satisfies most, if not all, economically-relevant axioms and tests from index number theory.  

Estimating and decomposing this new index involves estimating the parameters of output and input distance 

functions.   

SFA estimation of distance functions is complicated by the fact that the explanatory variables in the 

standard SFA formulation of the model may be correlated with the error term.  This paper overcomes the 

problem using a Bayesian systems approach developed by Fernandez et al. (2000).  One of the advantages of the 

Bayesian approach is that it is possible to draw valid finite-sample inferences concerning nonlinear functions of 
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the model parameters.  To illustrate, this paper draws inferences concerning returns to scale and measures of 

TFP and efficiency change in U.S. agriculture.  The results indicate that the primary drivers of agricultural 

productivity change in California have been technical progress and improvements in scale-mix efficiency.  

These results are consistent with the US results obtained by O'Donnell (2010a) using DEA methodology and an 

OECD agricultural dataset.   

This paper shows how to compute and decompose TFP indexes in an econometric framework when only 

quantity data are available (i.e., when there are no prices).  The methodology does not rely on assumptions 

concerning the optimising behaviour of firms (e.g., cost minimisation) or the degree of competition in product 

markets (e.g., perfect competition), except insofar as they may be necessary to determine which variables in the 

model are determined endogenously and which are not. Nor does the methodology rely on any particular 

assumptions concerning the functional form of the output or input distance functions (e.g., translog, CES, CD) 

or the distribution of random inefficiency effects (e.g., time-varying, half-normal).  Thus, the method appears to 

be applicable many empirical contexts where mainstream efficiency estimation methods are now used.     
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Figure 1.  Measures of Efficiency  

 

 

 

 

 
Figure 2.  Measures of Efficiency  

 

 

 

 

Aggregate 

Output 

Aggregate 

Input 

0 

A itQ

itX

#

tQ

#

tX

Period-t 
frontier 

C itQ

G 

H 

Aggregate 

Output 

Aggregate 

Input 

0 

E 

A itQ

itX

*

tQ

*

tX

Period-t 
frontier 

C itQ



19 

 

 

 

  

0 5000 10000
0

0.5



0 5000 10000
0

0.5

1



0 5000 10000
0

0.5

1



0 5000 10000
0

2

4



0 5000 10000
-1

0

1


0 5000 10000

0

0.02

0.04



0 5000 10000
0

0.1

0.2



0 5000 10000
0

0.2

0.4



0 5000 10000
0

0.5

1


0 5000 10000

0

0.5

1



0 5000 10000
0

20

40

h

0 5000 10000
0

2

4



0 5000 10000
0

10

20

s

0 5000 10000
0

50

100

s

0 5000 10000
0

100

200

s

 
Figure 3.  MCMC chains 
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Figure 4.  Posterior Pdfs 
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(a) TFP Change 

 

 

 
 

(b) Technical Change 
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Figure 5.  Components of TFP Change: California cf. Alabama in 1960 
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(a) TFP Change, Technical Change and Efficiency Change 

 

 

 
 

(b) Shadow Price Ratio, Observed Output Mix and OSME Change 

 

 

Figure 6.  Components of TFP Change: California cf. Alabama in 1960 
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Table 1.  Parameter Estimates 

 

 

MEAN STDEV 

2.50%  

HPD limit 

97.50%  

HPD limit 

 1.161 0.255 1.000 1.854 

 0.123 0.075 0.027 0.304 

 0.297 0.204 0.042 0.812 

 0.580 0.231 0.108 0.915 

 0.324 0.159 -0.003 0.600 

 0.014 0.003 0.008 0.022 

 0.011 0.019 0.000 0.065 

 0.150 0.049 0.067 0.264 

 0.283 0.084 0.139 0.491 

 0.591 0.068 0.447 0.714 

h 6.575 4.558 0.254 16.456 

s1 3.770 1.487 1.242 7.005 

s2 10.368 10.845 0.813 42.632 

s3 27.703 26.061 1.554 98.235 

 1.259 0.388 0.472 1.810 

 1.035 0.020 0.992 1.073 
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