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Abstract

This paper presents an experimental investigation of persuasion

bias, a form of bounded rationality whereby agents communicating

through a social network are unable to account for possible repetitions

in the information they receive. The results indicate that network

structure plays a signi�cant role in determining social in�uence. How-

ever, the most in�uential agents are not those with more outgoing

links, as predicted by the persuasion bias hypothesis, but those with

more incoming links. We show that a boundedly rational updating rule

that takes into account not only agents' outdegree, but also their inde-

gree, provides a better explanation of the experimental data. In this

framework, consensus beliefs tend to be swayed towards the opinions

of in�uential listeners. We then present an e�ort-weighted updating

model as a more general characterization of information aggregation

in social networks.
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1 Introduction

In many social and economic situations communication among individuals
is determined by social networks (Jackson, 2007, Udry and Conley, 2001).
Individuals learn by observing the behavior of those they are connected with
in their local environment. In this context, an important issue concerns how
dispersed information held by di�erent individuals can be aggregated over
time and, in particular, how the communication structure determined by a
social network a�ects this process. This paper focuses on persuasion bias, a
form of bounded rationality whereby individuals are incapable of accounting
for possible repetitions in the information they receive (DeMarzo et al., 2003).
We investigate experimentally the hypothesis that, under persuasion bias,
the structure of the communication network a�ects social in�uence. More
speci�cally, an individual's in�uence on group opinions may depend on the
number of outgoing communication links associated with his position in the
social network.

It is possible to imagine several situations in which di�erent individuals
have noisy signals regarding an underlying state of the world. This state
of the world may represent the quality of a new product, the returns on a
potential investment, the ability of a political candidate to carry out reforms
or, more generally, any unknown condition or action that a�ects the payo�
of all individuals in the same way. Consider, for example, a situation where
the unknown state of the world is the level of crime in one's neighborhood.
Each individual has some information on this issue due to his own personal
experience. By observing whether other individuals with whom he is in direct
contact are installing burglar alarms or purchasing more sophisticated locks
or even carrying guns, an individual may draw inference on the information
observed by his direct neighbors. Over time, because of lack of common
knowledge about actions of all individuals in the community, an individual
can try to infer his neighbors' knowledge of his neighbors' actions and the
private information they reveal. It is apparent that the complexity of the
learning problem increases over time.

Whether individuals are capable of rationally processing the information
circulating in their social network is an empirical question. Moreover, di�er-
ent network structures may in�uence the information aggregation process by
determining the nature and complexity of the inference problem faced by in-
dividuals. In this context, recent studies have attempted to model deviations
from rationality. In particular, DeMarzo et al. (2003) model persuasion bias
as the outcome of a mechanical updating process, in accordance with which
individuals fail to account for repetitions of information when communicating
within a network. The main implication of the persuasion bias hypothesis is
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that, after iterated communication, the members of a network converge to a
consensus that is biased towards the private signals of the most in�uential
agents, namely those with the highest number of outgoing links.

In this paper we test experimentally whether the evolution of beliefs of
individuals communicating through a social network re�ects the structure of
the network itself, and in particular, whether these beliefs are consistent with
the persuasion bias hypothesis. Our results indicate that network structure
plays a signi�cant role in determining convergence beliefs. However, con-
trary to the predictions of the persuasion bias hypothesis, we �nd that the
most in�uential agents are not those with more outgoing links, but those
with more incoming links: consensus beliefs tend to be swayed towards the
opinions of in�uential listeners. In order to explain this �nding, we propose
a generalized updating rule to describe social learning that takes into ac-
count agents' indegree (the number of individuals they listen to) in addition
to their outdegree (the number of individuals they talk to). We show that
this alternative updating rule provides a much better characterization of the
experimental data.

Finally, we present an e�ort-weighted updating model as a more general
framework for understanding information aggregation in social networks. In
this framework, based on Ballester et al. (2006), agents optimally choose
the e�ort exerted in processing information. Intuitively, when aggregating
information is costly, individuals will choose an optimal e�ort level on the
basis of their position in the social network. Since individuals with higher
indegree are in a better position to aggregate information, they generate a
positive information externality for their neighbors. Individuals with lower
indegree will therefore devote less e�ort to processing information. Thus,
in equilibrium, less weight will be attributed to the beliefs of those who
exert less e�ort, and consensus beliefs will be swayed towards the opinions
of individuals with higher indegree.

The paper is organized as follows. Section 2 brie�y reviews the related lit-
erature. Section 3 describes the experimental design and procedures. Section
4 presents the theoretical predictions and hypotheses to be tested. Section
5 discusses the experimental results. Section 6 presents a simple theoreti-
cal framework of information aggregation within a social network. Section 7
concludes.

2 Related Literature

This work relates to the extensive theoretical literature on social learning.
This literature can be generally divided into two main strands: one that fo-
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cuses on Bayesian learning and the other that deals with myopic or boundedly
rational learning.

The literature on Bayesian learning originates from the contributions of
Bikhchandani et al. (1992) and Banerjee (1992), who assume an exogenous
sequential structure in which each agent, after observing all past actions,
optimally updates her belief on an unknown pay-o� relevant state of the world
and makes a single irreversible choice accordingly. Subsequent papers by
Smith and Sorensen (1998), Banerjee and Fudenberg (2004), Celen and Kariv
(2004) and Acemoglu et al. (2010) consider situations where individuals
observe only a subset of past actions. These studies di�er from the present
one in two aspects: �rst, agents act sequentially and each individual has
only one decision node; second, they focus on characterizing the asymptotic
properties of di�erent social networks under Bayesian learning. In particular,
they study whether in the limit, as the size of the social network becomes
arbitrarily large, individuals converge to payo�-maximizing actions. In this
context, as the action space is discrete while the signal space is continuous,
optimality of convergence is non trivial under Bayesian learning.

The setup introduced by Acemoglu et al. (2010) is closer to our contri-
bution, as it provides a representation of learning in social networks. In this
framework, it is assumed that agents know the identity of the individuals
whose information they observe. This is in contrast to Banerjee and Fu-
denberg (2004) and Smith and Sorensen (1998) where individuals observe a
representative sample of the overall population without knowing the identity
of those whose actions they observe. However, in Acemoglu et al. (2010)
the network structure has a slightly di�erent role compared with the present
work, in that it simply determines the set of past actions observed once by
the agents and therefore does not imply an ongoing interaction between net-
work members. In this respect, our contribution is more closely related to
Gale and Kariv (2003), who study the convergence and optimality of learning
when the network structure is �xed and individuals repeatedly take simulta-
neous actions observing the past actions of those to which they are connected
in the network.

Among the papers belonging to the non-Bayesian learning branch of the
literature, the most closely related to ours are Bala and Goyal (1998, 2001),
DeMarzo et al. (2003) and Golub and Jackson (2010). These papers study so-
cial learning in connected social networks. DeMarzo et al. (2003) and Golub
and Jackson (2010) are particularly relevant for our work as they focus on
the properties of consensus beliefs, in settings where individuals converge to
the same opinions. These studies provide a characterization of social in�u-
ence and analyse the likelihood that consensus beliefs will lead to optimal
aggregation of information. In DeMarzo et al. (2003), where actions and
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signal spaces coincide, Bayesian updating would imply optimal information
aggregation independently of the structure of the social network. If individ-
uals are incapable of properly accounting for repetitions of information, and
are therefore subject to persuasion bias, convergence beliefs will depend on
the network structure. More speci�cally, under certain conditions, beliefs
converge to a consensus given by a weighted average of agents' initial beliefs,
where the weights represent individuals' social in�uence and depend on the
number of outgoing links associated with the position of each agent. This
setting provides an optimal testing ground to evaluate how social networks
in�uence belief formation and is therefore the framework for our experiment.1

At the empirical level, starting from the seminal contribution of Bavelas
(1950), several experiments have been conducted in social sciences to study
how di�erent network structures in�uence agents' learning and the informa-
tion aggregation process. The economic experimental literature on learning
in social networks is more recent and deals mainly with an experimental setup
where three subjects who are connected by a given network are called upon
to repeatedly choose between two binary actions.2 In this paper, we adopt
a continuous signals-continuous actions setup that di�ers from the ball-and-
urn standard learning experiment, initially proposed by Anderson and Holt
(1997) and applied by Choi et al. (2005, 2009) to the social network learn-
ing setting.3 The motivation for our choice is that allowing actions to be
continuous provides a richer context for analyzing how di�erent social net-
works may a�ect the convergence of beliefs. When actions are binary, only
switching behavior can be used to infer a change in a subject's beliefs, but it
is impossible to observe whether individual beliefs tend to be swayed in the
direction of more in�uential individuals. Continuous actions, instead, allow
us to measure the direction and intensity of persuasion bias.

1The present work is also related to the mathematical sociology literature on social
networks (DeGroot, 1974, Bonacich, 1987, Bonacich and Lloyd, 2001). Sociological studies
on social networks have proposed several indexes of �power�, �centrality�, and �status� that
are close to the notion of social in�uence discussed here, as they depend on the structure
of the social network.

2Within this context, Choi et al. (2009) illustrate how the quantal response equilibrium
(QRE) approach outperforms the pure Bayesian updating model. Choi et al. (2005)
�nd that the experimental data exhibit signi�cant di�erences in individual and group
behavior among di�erent network structures. Choi (2006) estimates a cognitive hierarchy
model, assuming that individuals of heterogenous cognitive types make rational decisions
considering the equilibrium cognitive types of the other individuals in the network.

3Celen and Kariv (2004) adopt a similar, although not identical, framework by imple-
menting an experimental task with continuous signals, while still assuming binary actions.

5



3 The Experiment

The experiment is designed to test whether individuals communicating through
a social network are subject to persuasion bias and, in particular, whether
social in�uence ultimately re�ects the structure of the social network. We
consider a repeated learning problem, adapted from DeMarzo et al. (2003),
where communication among individuals occurs within a social network. We
implement two treatments by exogenously manipulating the structure of the
network, in order to compare social learning in a balanced and an unbalanced
network.4 In this section, we describe the experimental task, treatments and
procedures. The next section presents the theoretical predictions and hy-
potheses to be tested.

3.1 Baseline game

The experimental task involves four individuals interacting over 12 rounds).
Each individual is assigned a letter (A, B, C and D) identifying his position
in the social network. The position and identity of the group components re-
main unchanged and anonymous throughout the task. Detailed instructions
distributed to the subjects are reported in Appendix 1.

At the beginning of the task, each subject is assigned an integer number
(signal) randomly generated by the computer.5 Subjects are only informed
that the signals of the four group members are randomly drawn from a given
(unknown) distribution. The aim of the task is to guess, in each of the 12
rounds, the mean of the signals received by the four components of the group
at the beginning of the task.6 Earnings depend on the accuracy of the guess
on the basis of a triangular scheme: a subject's payo� in each round is equal
to 20 euros minus the absolute value of the di�erence between his guess and
the average of the four signals.7 Actual earnings are determined on the basis

4A network is balanced if the total self-importance of those who listen to each agent is
equal to one.

5Signals are generated as follows. Each group of four subjects is assigned an integer
number drawn from a uniform distribution between 100 and 9999. Signals observed by
group members are then drawn from a normal distribution with mean equal to the group-
speci�c randomly selected number and standard deviation equal to 50.

6In DeMarzo et al. (2003) the signal is obtained by adding a normal random disturbance
to an unknown parameter that has to be guessed. In our experiment, instead, each of the
four group components receive a randomly drawn number, and the unknown parameter
is the average of the four numbers. This substantially simpli�es the experimental task,
while leaving the theoretical properties una�ected.

7For example, if the mean of the four signals is 803.25 and the subject's choice in the
selected round is 792, the absolute value of the di�erence is 11.25 and then the monetary
reward is equal to 8.75 euro. If the di�erence is greater than 20, the payo� is 0; for
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of one round randomly selected at the end of the experiment. There are no
show-up fees.

From the second round onwards, each subject is informed by the com-
puter of the choices made in previous rounds by the subjects he is connected
to according to the network structure. In each round every subject thus ob-
serves the previous choices made by his �neighbors�. The network structure
is illustrated in the instructions and each subject's screen displays it during
the task.

3.2 Treatments

The experiment is based on two treatments, T1 and T2, implemented in
a between-subjects design. The two treatments di�er with respect to the
structure of the communication network, while keeping constant the set of
signals received by the subjects.

In T1, the control treatment, the communication structure is determined
by the circle network, represented in Figure 1. This is a strongly connected
and balanced network, where each agent has one incoming link and one
outgoing link.8 It reproduces a situation in which each subject listens to one
neighbor and talks to another neighbor.

Figure 1: Network structure in treatment 1

Treatment T2 is obtained by adding two links to the circle network, so
that the choices made by subject A are observed by every other group mem-
ber, while the choices of all other subjects are observed by only one subject
(Figure 2). In this strongly connected and unbalanced network, subject A

instance, if the mean of the signals is 62.5 and the relevant guess is 30.5, the di�erence is
32 and the subject does not earn anything, as 20− 32 < 0.

8A network is connected if, for any two agents i and j, there is a sequence i1, . . . , iK
such that i1 = i, iK = j, and ik is connected to ik+1 for k = 1, ...,K − 1.
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has three outgoing links and one incoming link, B has one outgoing link and
one incoming link, D and C have two incoming links and one outgoing link.
This network reproduces a situation in which a central subject is listened to
by everybody.

Figure 2: Network structure in treatment 2

3.3 Procedures

We ran two sessions for T1 and four sessions for T2. In each session, 24 sub-
jects were randomly divided into 6 groups of four subjects. The position and
identity of the four group components remained unchanged throughout the
session. Overall, the experiment involved 144 subjects, mainly undergrad-
uate students of Economics recruited by email through an online system.
The experiment was conducted at EELAB (University of Milan Bicocca) in
November 2009 using z-Tree (Fischbacher, 2007). Each session lasted approx-
imately 80 minutes, including instructions, control questions and payments.
Average earnings were 14.5 euros.

Each session consisted of three phases of 12 rounds, for a total of 36
rounds in each session. In each phase, the experimental task was implemented
with a new set of signals. The task was repeated three times in order to
make it familiar to subjects, so that noise due to task misunderstanding
was reduced. At the end of each phase, subjects were informed of the four
signals, their mean, and the choices made by each subject. By choosing 12
communication rounds, we created a situation in which beliefs converge under
both persuasion bias and rationality. If all agents were rational, four rounds
would be su�cient for convergence. If all subjects followed a persuasion bias
updating rule, after 12 rounds beliefs would be virtually identical.

The task was explained at the beginning of each session: instructions were
read aloud and any questions about the game were answered individually.
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Before the game started, every subject was asked written control questions
in order to check if the task was fully understood. The instructions explicitly
explained to participants that the best choice when knowing or being able to
deduct a given number of signals is the average of these signals. The reason
for this is that we wanted to ensure that subjects knew how to optimally
aggregate information if all the signals were public information, thus being
able to focus exclusively on the process of social learning.

In order to prevent possible mistakes caused by the fact that individuals
might forget their guesses from previous rounds or other relevant pieces of
information, each participant's monitor displayed the subject's past choices
and the pieces of information received in previous rounds. In this way, we
induced a game of perfect recall and controlled for memory e�ects on deci-
sion making. In order to minimize computation mistakes, we also provided
subjects with a calculator on the computer screen.

4 Theoretical Predictions and Hypotheses

Let yi,t denote the guess of individual i in round t, and yt the vector of guesses
of all individuals within a group in round t. Let xi denote individual signals,
x the average of the four signals within a group and x the vector of signals.
The structure of the network is represented as a directed graph, where Si ⊂ N
denotes the set of agents who agent i listens to. The listening sets for T1
are SA = {A,D} , SB = {A,B} , SC = {B,C} , SD = {C,D}, while the
listening sets for T2 are SA = {A,D} , SB = {A,B} , SC = {A,B,C} , SD =
{A,C,D}. Denote with qij ∈ {0, 1} an indicator function corresponding to
Si, where qij = 1, if agent i listens to agent j, and qij = 0 if there is no
incoming communication link from j to i (note that qii = 1 since each agent
listens to himself).

Communication occurs over repeated rounds. Since all agents have the
same preferences, there is no scope for strategic communication and agents
truthfully reveal their beliefs.9 Although agents do not have information
about the underlying distribution of the signals, a backward induction ar-
gument implies that, under both persuasion bias and Bayesian updating,
agents have an incentive to truthfully report their signal in the �rst round:
y1 = x. Thereafter, in each round agents listen to the guesses of those in
their listening set, update their beliefs and make a new guess. Whenever the
communication process leads all individuals to converge to the same beliefs,
these are de�ned consensus beliefs and denoted with wx, where w represents
the vector of weights attributed to the signal of each agent in the network.

9In what follows we therefore refer to beliefs, guesses, and actions as synonyms.
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These weights can be interpreted as representing agents' social in�uence.
If all agents are rational, Bayesian updating allows each individual to

extract all the private information in the network, so that consensus beliefs
are e�cient. In both T1 and T2, as signals are equally informative, all agents
within a group converge to the same belief and in equilibrium each of the four
group members is equally in�uential. Regardless of the network structure,
consensus beliefs coincide with the arithmetic mean of the signals, wex, with
we = [0.25, 0.25, 0.25, 0.25].

If individuals are subject to persuasion bias, as in DeMarzo et al. (2003),
they treat the information received in each round as new and independent,
without rationally discounting the fact that only a part of it is new, while
the remaining part has already been communicated in previous rounds. The
evolution of beliefs can be described by the updating rule

yt = Lyt−1

where L is a matrix with elements `ij = (qijπij) /
(∑

j qijπij

)
and πij denotes

the precision that agent i assigns to agent j's belief.10 Assuming that each
agent believes that all the agents he listens to have equal precision, the
updating matrix in T1 is:

L =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2


while in T2 it is:

L =


1/2 0 0 1/2
1/2 1/2 0 0
1/3 1/3 1/3 0
1/3 0 1/3 1/3


10De Marzo et al (2003) allow for individuals to vary over time the weight they assign

to their own beliefs relative to those of the others they are connected to. Thus we have

Lt = (1− λt)I + λtL

where L is the updating matrix and λt ∈ (0, 1). Values of λt closer to zero imply that
individuals have more persistent opinions, while values closer to 1 imply that individuals
place equal weights on the beliefs of all those they are connected to (including themselves).
As long as agents are not too �xed in their beliefs and the network is strongly connected,
under persuasion bias the beliefs of individuals should converge. Di�erent values of λt can
a�ect the speed of converge but not the convergence itself as well as the consensus beliefs,
as long as

∑∞
t=1 λt = ∞. Since we focus on convergence beliefs, we set λt = 1 in every

period t, without loss of generality.
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Beliefs in round t can therefore be written as yt = Lt−1x. As we consider
strongly connected networks, where no agent is isolated, beliefs will converge
over rounds. Denoting with wp the vector of weights characterizing consensus
beliefs under persuasion bias, we obtain lim

t→∞
yt = wpx.

In T1, a balanced and strongly connected network, consensus beliefs un-
der persuasion bias will be the same as under rationality. In T2, an unbal-
anced and strongly connected network, consensus beliefs under persuasion
bias will instead di�er from rational consensus beliefs. Given that agents fail
to account for repetitions of information, more connected agents are more in-
�uential in equilibrium.11 For the network structure in T2, consensus beliefs
are given by wpx with wp ' [0.42, 0.10, 0.16, 0.32]. That is, consensus beliefs
assign excessive weight to A's signal, as A is listened to by three subjects,
whereas B, C and D communicate with one subject only. Moreover, D is also
relatively more in�uent, as he communicates directly with A (indirect social
in�uence). C and, to a greater extent, B should be less in�uential in T2,
relative to T1, as they have only one outgoing link and do not communicate
directly with A.

Summing up, the hypotheses to be tested can be stated as follows:

H0 : wT1
A = wT2

A = 0.25 vs H1: w
T1
A = 0.25 < wT2

A = 0.42 (1)

H0 : wT1
B = wT2

B = 0.25 vs H1: w
T1
B = 0.25 > wT2

B = 0.10 (2)

H0 : wT1
C = wT2

C = 0.25 vs H1: w
T1
C = 0.25 > wT2

C = 0.16 (3)

H0 : wT1
D = wT2

D = 0.25 vs H1: w
T1
D = 0.25 < wT2

D = 0.32 (4)

Under the null hypothesis of rationality, each agent should be equally
in�uential in both T1 and T2. Under the alternative hypothesis of persuasion
bias, social in�uence weights should be equal in T1 but di�erent in T2.
Subjects A and, to a lesser extent, D should be more in�uential in T2 than
in T1, while subjects B and, to a lesser extent, C should be less in�uential
in T2 than in T1.

5 Results

This section presents the results. We start with a descriptive analysis of the
main features of the experimental data. We then present formal tests of the

11More precisely, an agent is more in�uential if he is listened to by many other agents
(direct social in�uence) and if the agents who listen to him are themselves in�uential
(indirect social in�uence).
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hypothesis of persuasion bias by comparing across treatments the parameters
that characterize social in�uence. Finally, we examine by simulation an al-
ternative updating rule that takes into account both outdegree and indegree,
showing that it provides a much better characterization of the experimental
data.

5.1 Overview

In each of the 6 sessions, 6 groups of four subjects implement the experi-
mental task three times, once for each phase, with 12 rounds for each phase.
We therefore have a total of 5184 observations at individual level, with 432
observations for each round.

The behavior of individual beliefs over successive rounds indicates sub-
stantial heterogeneity at both subject- and group-level. Overall, in the �rst
round, 92.4 per cent of the subjects report their own signal, while 96.3 per
cent make a guess within 20 units from their own signal. Focusing on �nal
beliefs, in the last round 28.7 per cent of the subjects correctly guess the av-
erage of the four signals within their group. Accounting for rounding errors,
37.7 per cent of the subjects make mistakes smaller than one unit. It should
be observed that the share of correct beliefs in the �nal round is higher in
T2 than in T1, re�ecting the fact that, although the network structure in T2
is not symmetric, it provides more information due to the higher number of
communication links.

The heterogeneity of opinions among subjects belonging to the same
group, represented by the average variance of the beliefs held by the four
group components, falls steadily over successive rounds in both treatments.
While the average group-level variance of beliefs is initially higher in T1 than
in T2, beliefs display a relatively larger variance in T2 in the �nal rounds.

5.2 Network Structure and Social In�uence

We now turn to analyzing how the structure of the network a�ects social in-
�uence and, in particular, whether the di�erences in social in�uence between
the two network structures are in the direction implied by the persuasion bias
hypothesis. We study social in�uence by focusing on individual beliefs in the
last round. We estimate the weights of individual signals in �nal beliefs,
assuming that the observed �nal beliefs are a linear combination of private
signals plus a random error term:

yi,T = wAx
A
i + wBx

B
i + wCx

C
i + wDx

D
i + εi,T (5)
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where xki is the private signal received by subject k in the group individual i
is in, with k ∈ (A,B,C,D); yi,T is the belief held by individual i in the last
round (T ) and εi,T is an idiosyncratic error term.

The coe�cient associated to a given signal measures the social in�uence of
the corresponding subject. We control for the e�ect of outlying observations
by eliminating from the sample the 10 per cent most extreme observations in
either round 1 (misreported signals) or round 12 (divergent beliefs). Table
1 presents OLS estimation results. Con�dence intervals at the 95% level are
reported in square brackets in order to assess the statistical signi�cance of
the theoretical predictions within treatments.

Table 1: Estimates of social in�uence weights, by treatment

T1 T2 T1 - T2
Signal A 0.24 0.25 0.01

(9.90) (14.29) (0.27)
[0.19,0.29] [0.22,0.29] [-0.05,0.06]

Signal B 0.26 0.20 -0.06
(10.92) (14.13) (-2.29)

[0.21,0.30] [0.17,0.22] [-0.11,-0.01]
Signal C 0.26 0.25 -0.02

(12.45) (21.24) (-0.75)
[0.22,0.31] [0.22,0.27] [-0.06,0.03]

Signal D 0.24 0.31 0.06
(10.95) (23.52) (2.62)

[0.20,0.29] [0.28,0.33] [0.02,0.11]
Number of observations 124 240 364

Note: the �gures in the �rst two columns are the estimates of the social in�uence
weights associated to the subject in the position indicated by the row heading, in T1 and
T2, respectively. The third column reports di�erences in social in�uence weights across
treatments. Dependent variable: individual subjects' guess at �nal round. t-statistics
reported in round brackets, 95 per cent con�dence intervals reported in square brackets.

In T1 (column 1), where the network structure is balanced, estimated
coe�cients for all network positions are similar and close to 0.25. Coe�cient
are jointly and individually not signi�cantly di�erent from 0.25. This indi-
cates that, under the balanced network structure, �nal beliefs evenly re�ect
the private information held by the four group components. Estimated social
in�uence weights are instead relatively di�erent in T2 (column 2), where the
network structure is unbalanced. As predicted by the persuasion bias hypoth-
esis, B is the least in�uential subject, with a weight (0.20) that is signi�cantly
lower than 0.25, as indicated by the con�dence interval. On the other hand,
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in contrast with the persuasion bias hypothesis, A is not the most in�uent
subject. His estimated weight is indeed 0.25, virtually unchanged with re-
spect to T1. The social in�uence weight of C is also 0.25, almost unchanged
in T2 relatively to T1. Interestingly, the most in�uential subject in T2 is
D, whose estimated social in�uence weight is 0.31, signi�cantly higher than
0.25.

Between treatments, the null hypothesis of jointly equal coe�cients in
T1 and T2 can be strongly rejected (p-value 0.006). Focusing on individ-
ual coe�cients, the di�erence between treatments, reported in column 3, is
signi�cant at the 5 per cent level for subject B and at the 1 per cent level
for subject D. It should be observed that, because of repetition over rounds
and phases, �nal round individual-level observations within the same group
of subjects may not be independent. The four subjects in each group inter-
act repeatedly over 12 rounds. In addition, the same group of four subjects
performs the experimental task three times, with a di�erent set of signals.
In order to allow for the possible dependence of �nal-round beliefs within
and across phases, we also considered test statistics and con�dence intervals
based on standard errors clustered at group and phase level, thus assuming
36 independent observations (6 groups for each of the 6 sessions). All the
results reported above for the analysis within treatments are qualitatively
una�ected. Between treatments, the change for subject B is not statistically
signi�cant, due to the larger standard errors. However, the null hypothesis of
no change for the weight of D can be rejected at the 0.04 level when account-
ing for dependence across subjects within phases and at the 0.07 signi�cance
level when also accounting for dependence across phases.

In order to further assess the robustness of the results, we estimated social
in�uence weights in T2 by network position, thus taking into account the
possible non-convergence of beliefs. The results, reported in Table 2, indicate
that the pattern described above is qualitatively robust. In particular, B and
D are the least and the most socially in�uent subjects, respectively, for each
of the four subjects in the di�erent network positions. Subject A is not
in�uent for any of the other three subjects in the social network.

Estimates of social in�uence are also qualitatively unchanged when con-
sidering each phase separately: weights range between 0.23 and 0.27 for A,
0.17 and 0.21 for B, 0.22 and 0.30 for C and between 0.25 and 0.33 for D, re-
spectively. Finally, we also checked the robustness of the results with respect
to the use of alternative identi�cation criteria for outliers (eliminating either
5, 1 or 0 per cent most extreme observations). Although standard errors do
vary across speci�cations, the size of the estimated coe�cients is virtually
unchanged. In particular, social in�uence weights range between 0.24 and
0.27 for subject A and between 0.29 and 0.32 for subject D.
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Table 2: Social in�uence weights in T2, by netrole

Subject A Subject B Subject C Subject D
Signal A 0.30 0.24 0.22 0.23

(7.77) (6.93) (7.13) (6.71)
[0.22,0.38] [0.17,0.32] [0.16,0.29] [0.16,0.30]

Signal B 0.16 0.21 0.22 0.19
(5.22) (7.58) (8.96) (6.94)

[0.10,0.22] [0.16,0.27] [0.17,0.27] [0.14,0.25]
Signal C 0.24 0.21 0.28 0.26

(9.18) (8.93) (13.54) (11.36)
[0.18,0.29] [0.16,0.25] [0.24,0.32] [0.22,0.31]

Signal D 0.30 0.33 0.28 0.31
(10.38) (12.76) (11.89) (12.22)

[0.24,0.36] [0.28,0.38] [0.23,0.32] [0.26,0.37]
N. obs. 60 60 60 60

Note: the �gures reported are the estimates of the social in�uence weights associated to
the subject in the position indicated by the row heading for the subject in the position
indicated by the row heading. Dependent variable: belief in �nal round of the subject
indicated in the column heading. Standard errors reported in round brackets, 95 per cent
con�dence intervals reported in square brackets.

Summing up, the comparison of social in�uence weights across treatments
indicates that, contrary to the predictions of the persuasion bias hypothesis,
the social in�uence of A, the agent whose outdegree is exogenously increased
in T2, is not higher in T2 relative to T1. Quite surprisingly, the social
in�uence of D is instead signi�cantly higher in T2. It should be noted that
the latter result cannot be explained by indirect social in�uence, as A is not
the most in�uent subject in T2. In the following subsection, we consider an
alternative updating rule that may explain these �ndings.

5.3 A Generalized Updating Rule

The experimental analysis indicates that, relative to a balanced network
structure, increasing the number of outgoing links of subject A does not
lead to a higher social in�uence. On the other hand, subject D, who commu-
nicates to less agents but listens to more agents than A, becomes signi�cantly
more in�uential. One possible interpretation of this result is that, under a
boundedly rational updating rule, social in�uence within a social network
may depend not only on the number of subjects one talks to (outdegree),
but also on the number of subjects one listens to (indegree). The updating
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rule proposed in the persuasion bias model does not take into account the
fact that some individuals receive more information than others. Beliefs of
di�erent agents are given equal weights, regardless of the number of agents
they, in turn, listen to. In real situations, instead, it is likely that agents
take into account how informed their neighbors are when updating their own
opinion.

We suggest that the persuasion bias updating rule should be considered
as an extreme case, whereby only outdegree matters, of a more general up-
dating rule that also takes into account agents' indegree. We thus propose
an updating rule based on a more general weighted updating matrix, whose
elements are de�ned as follows:

`ij(d,ρ) =
qijd

ρ
j∑

j qijd
ρ
j

(6)

where dj is agent j's indegree, ρ is a parameter between 0 and ∞ and,
as above, qij is equal to 1 if j belongs to i's listening set, and 0 otherwise.12

We denote the weighted updating matrix with L(d,ρ) = [`ij(d,ρ)], where
d denotes the vector of agents' indegree, so that beliefs after t rounds of
updating are given by yt = L(d,ρ)t−1x.

It should be observed that this heuristic, as the one in DeMarzo et al.
(2003), assumes that agents are incapable of properly accounting for rep-
etitions of information. However, through the parameter ρ, it allows us to
model in a continuous way the relative importance of indegree and outdegree.
When ρ equals 0, we are in the case of persuasion bias: agents update their
beliefs placing equal weights on the beliefs of those they listen to (including
themselves), regardless of the number of their incoming links. When ρ = 1,
agents update their beliefs aggregating the beliefs of those they listen to by
using weights that are proportional to their indegree. When ρ tends to ∞,
agents update their beliefs using only the beliefs of the most informed agent,
i.e. the opinion(s) held by the agent(s) with the highest indegree.

In order to assess the explanatory power of this alternative heuristic, we
simulate belief dynamics over rounds for the same sets of signals used in our
experiment, for ρ = 0 (persuasion bias) and ρ = 1 (weights proportional to
indegree). The results of the simulations, compared with the experimental
results, are presented in Table 2 and displayed in Figure 3. The updating
rule that proportionally takes indegree into account clearly outperforms the

12It is worth noticing that the number of incoming nodes of an agent's interlocutor are
part of the agent's information set only from the second round onwards, since in the �rst
round agents make their guesses on the basis of their own signal only. For the sake of
simplicity our heuristic does not make this distinction, and assumes that agents take into
account incoming nodes of those they are connected to in each communication round.
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persuasion bias heuristic. When ρ = 1, not only is the pattern of social
in�uence weights correctly predicted in the �nal round, but also the transition
dynamics are remarkably similar to the ones observed in the experimental
data.13 Interestingly, while the restrictions implied by the persuasion bias
hypothesis for the social in�uence weights of subjects A and D in T2 are
rejected by an F-test (p-value 0.00), those implied by the alternative heuristic
with weights proportional to indegree cannot be rejected (p-value 0.12).

Figure 3: Social in�uence in T2, estimated and simulated (ρ=1 and ρ =0)
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Next, rather than restricting the attention to the cases ρ = 0 and ρ = 1,
we simulate the proposed updating rule for all possible values of ρ, in order to
identify the value of ρ that maximizes explanatory power for the experimental
data. We thus de�ne the optimal ρ as the value that minimizes the sum of
squared deviations, over all individuals, between observed (experimental) and

13Note that, as mentioned above, we simulate a simpli�ed version of the persuasion bias
model of DeMarzo et al (2003), where we assume that agents place equal weights on the
beliefs of all those they listen to, which is equivalent to setting λt = 1 for every t in the
original version of the model. While this assumption does not a�ect convergence beliefs
(as long as

∑∞
t=1 λt =∞), it may a�ect the transition dynamics.
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simulated �nal beliefs:

ρ∗ = arg min(E)

E =
72∑
g=1

4∑
k=1

(yg,k,12 − ŷρg,k,12)
2

where yg,k,12 are the observed last round beliefs of agent k in group g and
ŷρg,k,12 are the corresponding simulated last-round beliefs using the updating
rule in (6) for a given value of ρ. Figure 4 presents the results of the simula-
tions for ρ between 0 and 2. As clearly shown, the value of ρ that maximizes
explanatory power for the experimental data is very close to one (1.03). That
is, agents' behavior in the experiment is consistent with an updating rule that
takes into account both outdegree and indegree, and the latter is weighted
proportionally.

Figure 4: Explanatory power for experimental data as a function of ρ
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6 A Framework for E�ort-Weighted In�uence

In this section we propose a framework that is consistent with the generalized
updating rule described above, and provides further insights on the individual
behavior underlying our experimental results. The model we develop is an
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application of Ballester et al. (2006), that relates the choices of agents to the
e�ort levels that the network members devote to processing information.

As shown in the previous section, when formulating their beliefs agents
take into account how well informed are those they listen to. Agents may
perceive a di�erent relative importance of their private information based on
their position in the network, and this may in�uence the e�ort they devote to
combining their own beliefs on the true state of the world with the beliefs of
those they listen to. More speci�cally, agents may consider their own e�ort
in aggregating information and that of the others as strategic substitutes
or complements. Since these cross e�ects (or externalities) of e�ort may
di�er based on the network structure and are unobservable, the model also
enables us to identify the pattern of cross e�ects that better explain our
experimental results. More formally, our claim is that the network structure
may endogenously a�ect utility functions of agents by in�uencing the cross
e�ects of e�ort. Altering the network structure therefore in�uences the way
in which information is aggregated and, ultimately, consensus beliefs and
social in�uence.

As an example, consider the unbalanced network structure of treatment
2. Our conjecture is that since A knows that D has more incoming links than
him, he also knows that D is in a better position to aggregate information.
Therefore, A's e�ort is a strategic substitute of D's. Moreover, since those
who listen to A know that he listened to D, they will consider A's position
for aggregating information to be more important than their own, and will
therefore see their own e�ort as a strategic substitute for A's.

6.1 Model

As in DeMarzo et al. (2003), we assume that individuals are incapable of
correctly discounting for repetitions of information, and adopt a Markovian
updating rule. However, the weight assigned by subjects to the information
received from neighbors depends on the level of e�ort that each agent devotes
to processing information. In this case, e�ort in processing information is
related to how agents aggregate the incoming stream of beliefs before making
their own choice, and therefore communicating with their neighbors. The
agents who devote more e�ort to processing information are those who are
believed to more precisely aggregate the stream of incoming messages. Since
agents are incapable of discounting repetitions by assumption, the best they
can do is to correctly average the stream of beliefs they receive. Those who
exert less e�ort, adopt a rule of thumb that is less informative on the true
state of the world and, in equilibrium, a smaller weight will be attributed to
their beliefs.
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E�ort levels chosen by individuals therefore determine the evolution of
beliefs, but exerting e�ort involves a cost that can be interpreted as a cogni-
tive cost. We assume that in each period, each agent maximizes his short-run
utility, where the utility function of agent i in each period t can be written
in the following way:

ui(yi,t, θ, ei,t, e−i,t) = −[(yi,t − θ)2]− ci(ei,t, e−i,t) (7)

where ci(ei,t, e−i,t) represents the cost function of e�ort, that may di�er
between agents but is invariant over time and depends on own e�ort, ei,t, and
on the e�ort of the others, e−i,t, in period t. In every communication round,
each agent receives a stream of beliefs, one from each network interlocutor,
and exerts a certain amount of e�ort to aggregate this information. Each
belief is considered to be more or less informative on the signal received
depending on the e�ort devoted to information processing by the agent that
makes the guess in the previous round. We assume that e�ort levels may
di�er between agents and may also vary over time. Therefore, agents use the
e�ort-weighted average stream of signals to assess the true value of θ:

E(θ | {yj,t−1,ej,t−1}qij=1) = E(θ | yi,t(et−1)),where yi,t(et−1) =
∑
j

qijej,t−1yj,t−1∑
j

qijej,t−1

(8)
where ej,t−1 represents the e�ort devoted to information processing by agent
j in period t − 1, and et−1 is the corresponding vector of e�ort levels of all
agents. We assume that processing information, by weighing incoming beliefs
based on past e�ort levels, is costly. The e�ort devoted to processing this
information determines the accuracy of each agent's belief in a given period.
We denote P as the communication process that depends on each agent's
choice of e�ort in a given period. The e�ective belief of agent i in round t,
yPi,t represents a signal on the e�ort-weighted stream of signals, for those who
listen to agent i, according to the structure of the network:

yPi,t = yi,t(et−1) + ηPi,t

We denote ηPi,t as the random deviation from the e�cient belief that depends
on the e�ort exerted by agent i in period t. The communication process
depends on e�ort through ηPi,t, normally distributed with zero mean and vari-
ance equal to a function of the e�ort level, so that σ2

i,t ≡ f(ei,t), where f(ei,t)
is a non-negative decreasing function of the agent's e�ort level in period t.

Ignoring the costs of e�ort, agent i's expected loss of utility in each period
is therefore a function of e�ort:

−E[(yPi,t − θ)2 | θ, ei,t] = −f(ei,t) (9)
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Notice that since the cost of e�ort is invariant over time, we can drop the
time subscript from the expected utility, so that the expected utility of agent
i including costs can be expressed as a function of e�ort:

E [ui(ei,e−i)] = −f(ei)− ci(ei, e−i) (10)

From (9) it is apparent that own e�ort enters positively in the agent's
utility because, independently of what the others do, passing on precise infor-
mation improves information aggregation. Since all agents' expected payo�s
are increasing in the accuracy of the aggregation process, everyone derives
positive utility from exerting a positive amount of e�ort as this increases the
quality of the information in the network.

In period 1, there are no costs of processing information since each agent
observes his own signal only, and will therefore maximize utility by exerting
the maximum amount of e�ort, implying that y1 = x.

From the second round onwards, we assume that the cost of e�ort is
represented by the following function:

ci(ei, e−i) =
1

2
φiie

2
i +

∑
j 6=i

φijeiej (11)

the �rst term implies that each agent bears the same convex cost of
e�ort where φ > 0; ei and ej denote the e�ort devoted by individuals i
and j respectively to information processing, and λ represents the weight
of the interaction components. Each agent may display complementarities
(φij < 0) or substitutabilities (φij > 0) with respect to the e�ort exerted
by those to which he is connected. Whenever agent i listens to agent j
(i.e. qij = 1), φij is di�erent from 0. When φij is negative, e�ort levels are
strategic complements. In other words, the greater is the e�ort that j devotes
to processing information, the less costly it is for agent i to exert e�ort to
process his neighbor's belief. When instead φij is positive, this means that j's
e�ort is a strategic substitute for i. This captures the behavioral assumption
that agents may perceive di�erent incentives of devoting e�ort to process the
beliefs of those they listen to, based on their position in the network.

We assume that φii = φ for each i, and that f(ei) is linear and equal
to δ − αei, where δ and α are constants such that ei ∈ [0, δ/α] for every
i. Substituting (11) in (10) the expected utility of agent i in each period t
becomes:

E[ui(ei, e−i)] = −δ + αei −
1

2
φe2i −

∑
j 6=i

φijeiej (12)

We assume that agent i's utility is concave in his own e�ort, so that in
the absence of cross e�ects, all agents will exert a positive amount of e�ort
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implying that they always have an incentive to cooperate. The cross e�ects of
e�ort depend both on the network structure and on the assumptions we make
on how the utility of agents in di�erent network positions, depends on the
e�ort of those with whom they are connected. As mentioned previously we
claim that the network structure endogenously determines the cross e�ects of
e�ort and therefore the individual preferences. This a�ects the equilibrium
levels of e�ort and therefore determines the way information is aggregated.

Given e, the e�ort weighted listening links can be written in the following
way:

`ij(e) =
qijej∑
j

qijej
(13)

where we denote the e�ort weighted listening matrix with L(e) = [`ij(e)].
Notice that the precision that agents assign to incoming messages, `ij(e)
resembles that of (6), but in this case the weights are determined by the
e�ort in aggregating information instead of the number of incoming links.
As we will see, in equilibrium these e�ort levels re�ect the network centrality
of a given agent, which positively depends on the number of incoming links.
When agents communicate repeatedly with their direct neighbors and make
their guesses by carrying out an e�ort weighted average of their incoming
stream of signals, passing it on to those that listen to them, the resulting
beliefs after t completed communication rounds are:

yt = [L(e)]t−1x

The evolution of beliefs, yt, therefore depends exclusively on the levels
of e�ort chosen by the other agents. Naturally, the weighted updating rule
should not be seen as an exact algorithm that individuals will apply, as this
seems very unrealistic. It should instead be seen as a general tendency to
weigh the messages of others based on the network structure.

We denote M = [−φij] as the square matrix that represents all cross
e�ects of e�ort. We use M as a short-hand for the simultaneous move game
with payo�s (12) and strategy spaces R+. We take a neutral stance in terms of
the magnitude of the positive and negative cross e�ect, and simply distinguish
between positive and negative e�ects. Following the procedure proposed
by Ballester et al. (2006), we can characterize a Nash equilibrium of the
game M , where the equilibrium strategies represented by e�ort levels are
proportional to the measures of Bonacich centrality in the network of local
complementarities derived from M .14

14See Appendix 2 for the derivation of equilibrium e�ort levels.
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By substituting the equilibrium vector of e�ort e∗ in the e�ort weighted
updating matrix L(e∗), we obtain the consensus beliefs for a given network
structure and matrix of e�ort complementarities. Notice that L(e∗) is related
to L(d,ρ), since equilibrium e�ort levels re�ect the network centrality of a
given agent, which positively depends on the number of incoming links.15

Making di�erent assumptions on cross e�ects may generate di�erent pre-
dictions on consensus beliefs. Considering the unbalanced network of treat-
ment 2 in our experiment, we therefore analyze di�erent possible assumptions
on the pair-wise complementarities versus substitutabilities of e�ort, in order
to determine utility functions that are more consistent with our experimental
results.

6.2 Application

The results of the experimental analysis are generally consistent with our
initial conjecture on the heterogeneous role played by agents in aggregating
information. More speci�cally, as shown in Table 4, numerical analysis sug-
gests that the greater in�uence of agent D emerges only if preferences are
such that both of the following conditions are satis�ed:

1. A considers D′s e�ort as a strategic substitute of his own.

2. C considers either A or B′s e�orts as strategic substitutes of his own.

These conditions have a rather intuitive interpretation that is consistent
with our initial conjecture. Condition (1) implies that if D devotes a certain
e�ort to processing information, A can avoid doing so and somehow conforms
to D's belief without having to spend too much e�ort processing the infor-
mation contained in D's belief. This assumption can for example be justi�ed
by the fact that since D has more incoming links, he potentially has greater
scope for information aggregation.

The underlying rational of the second assumption is somewhat related
to the �rst and relies on the fact that C's incoming links come from agents
that received messages from a potentially more informed agent, namely D.
In this case, therefore, either A or B (or both) are in a position to indirectly
aggregate information, and C may consider either A or B's e�orts as strategic
substitutes of his own.

15Our game has a unique Nash Equilbrium where the equilibrium e�ort levels are propor-
tional to the Bonacich network centrality measure. This measure was proposed in sociology
by Bonacich (1987), and counts the number of all paths (not just shortest paths) that em-
anate from a given node and therefore is positively related to the number of incoming
paths to a given node.
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The model also highlights which conditions are necessary to generate
consensus beliefs that go in the direction of persuasion bias, meaning that
an agent with more outgoing links such as A will also have greater social
in�uence. It turns out that this occurs in two possible cases. The �rst is if
all e�orts are complementary, in other words if from each agent's perspective,
the e�orts of those who communicate with him are strategic complements.
The second case is characterized by e�orts that are predominantly strategic
substitutes, with only a few exceptions. An example of this can be seen in
the last row of table (3), where only D considers C's e�ort as a strategic
complement. In this last case, the social in�uence weights of A and D turn
out to be very close to those of the Persuasion Bias model of DeMarzo et al.
(2003).

Table 4: Social In�uence weights under alternative parametrizations

Strategic Substitutes wA wB wC wD
None (∀σij = 1) 0.36 0.11 0.20 0.33
σAD = −1 0.32 0.16 0.20 0.32
σAD = σCA = −1 0.33 0.15 0.17 0.35
σAD = σCB = −1 0.33 0.15 0.17 0.35
All except σDC = 1 0.40 0.10 0.14 0.36

7 Conclusions

Humans learn most of what they know from others. Starting from this basic
premise, this paper addressed a simple but important question: Are agents'
opinions a�ected by the structure of the network through which they com-
municate? We presented an experimental investigation of the hypothesis of
persuasion bias, whereby individuals communicating through a social net-
work are unable to properly account for repetitions of information. Under
persuasion bias, individuals' social in�uence ultimately re�ects the structure
of the network and, in particular, agents' outdegree.

The main conclusion of our analysis is that, as predicted by the persuasion
bias hypothesis, agents fail to properly account for repetitions of information.
As a consequence, the structure of the network plays a signi�cant role in
determining social in�uence, and opinions generally tend to converge towards
those of the individuals who are better connected. However, contrary to
the predictions of the persuasion bias model of DeMarzo et al. (2003), our
experiment indicates that the most in�uential agents are not those who have
more outgoing links, but rather those who have more incoming links.
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We proposed a generalized boundedly rational updating rule that takes
into account both agents' outdegree and their indegree, while nesting per-
suasion bias as a special case. Intuitively, the proposed heuristic is based on
the idea that agents may take into account how informed their neighbors are
when updating their own opinion. We showed that our generalized updat-
ing rule provides not only a more plausible characterization of aggregation
of dispersed information, but also much higher explanatory power for the
experimental data. We then presented a simple theoretical model, based on
the structure of complementarity and substitutability among the e�orts that
agents devote to processing information, that provides a general framework
for characterizing information aggregation in social networks.

Overall, our analysis indicates that most of what we know partially de-
pends on the features of the social networks through which we communicate.
In particular, due to a boundedly rational process in aggregating dispersed
information, social in�uence depends not only on how much agents are lis-
tened to, but also on how much they listen to. As a result, in equilibrium,
consensus beliefs tend to be swayed towards the opinions of in�uential lis-
teners.
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Appendix 1 - Instructions

[For T1 only, translated from Italian]
Welcome and thank you for taking part in this experiment. During the

experiment talking or communicating with other participants is not allowed
in any way. If you have a question at any time, raise your hand and one of
the assistants will come to answer your question. By carefully following the
instructions you can earn an amount of euro that will depend on the choices
made by you and the other participants.

General Instructions

• 24 subjects will take part in this experiment

• The experiment takes place in 3 phases of 12 rounds each, for a total
of 36 rounds.

• At the beginning of the experiment 6 groups of 4 subjects will be formed
anonymously:

� Each subject will interact exclusively within each group without
knowing the identity of the other three subjects.

� Each of the four subjects belonging to a group will be randomly
and anonymously assigned one of four di�erent roles: A, B, C and
D.

� The composition of each group and the roles assigned to the 4
components will remain unchanged throughout the experiment.

How earnings are determined

• In the �rst round of each of the 3 phases, the computer will randomly
generate 4 integers that we will de�ne signals. Each component of the
group will be shown only one of the four signals. Signals will be denoted
xA, xB, xC , and xD

• In each round of each of the 3 phases, each subject will be asked to
guess the mean of the 4 signals extracted by the computer for that
phase: x = xA+xB+xC+xD

4

• The earnings of each subject will depend on the distance between his
choice and x:
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� At the end of the experiment the computer will randomly select
one of the 36 rounds

� Individual earnings will be equal to 20 euro minus the di�erence
(in absolute value) between x and the choice made in the selected
round.

� Both x and the choices made by each subject will contain at most
2 decimal points (i.e. 1412.00 or 21.50 or 516.33)

� If this di�erence turns out to be negative, the subject will earn 0
euro.

• Examples:

� if x = 1424 and the guess is 1424, the di�erence is 0 and earnings
are 20 euro.

� if x = 308 and the guess is 311.5,the di�erence is 3.5 and earnings
are 16.5 euro.

� if x = 803.25 and the guess is 792, the di�erence is11.25 and
earnings are 8.75 euro.

� if x = 62.5 and the guess is 30.5, the di�erence is 32 and earnings
are 0 euro, since 20− 32 < 0.

• In each round the choice that maximizes earnings depends on the in-
formation that each subject has on the signals:

� if he knows only his own signal, the optimal choice is his own
signal

� if he knows or can deduce 2 signals, his optimal choice is the mean
of the 2 signals

� if he knows or can deduce 3 signals, his optimal choice is the mean
of the 3 signals

� if he knows or can deduce 4 signals, his optimal choice is the mean
of the 4 signals

Information

• In each of the 3 phases

� In the �rst round each subject knows his own signal
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� From the second round onwards, before making his choice, each
subject will be informed by the computer of the choices made in
the previous rounds by some of the components of his group, based
on the structure represented in the following �gure:

• Therefore, before making his choice

� A will be informed of the choices made by D

� B will be informed of the choices made by A

� C will be informed of the choices made by B

� D will be informed of the choices made by C

Feedback and Payments

• At the end of each phase the computer will show to each subject the 4
signals of his group, their mean, and the choices made.

• At the end of the experiment each subject will be shown the round
the computer has selected to determine payments, the value of x for
his group, the choice he made and the corresponding amount earned in
euro.

• The experiment will terminate and the amount earned by each subject
will be paid in cash.
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Appendix 2 - Equilibrium E�ort Levels

Following the procedure proposed by Ballester et al. (2006) we can decom-
pose the matrixM in a concavity component, a global uniform substitutabil-
ity component, and a local complementarity component. This decomposition
gives us the non-negative matrix of local complementarities which we denote,
G = [gij].This represents the adjacency matrix of a network g that re�ects
the pattern of existing payo� complementarities across all pairs of players.

In order to carry out the decomposition we de�ne φ = min {φij | i 6= j}
and φ = max {φij | i 6= j}. We then let γ = −min

{
φ, 0
}
≥ 0, λ = φ +

γ ≥ 0 and gij = (φij + γ)/λ setting gii = 0, where by construction 0 ≤
gij ≤ 1. The parameter gij measures the relative complementarity in e�orts
from i's perspective with respect to the benchmark value −γ ≤ 0. This
measure is expressed as a fraction of λ that is the highest possible relative
complementarity for all pairs.

The decomposition of M allows us to rewrite the utility function of each
agent i in the following way:

ui(ei, e−i) = −δ+αei−
1

2
(β − γ) e2i−γ

n∑
j=i

eiej+λ
n∑
j=i

gijeiej for all i = 1, .., n

where γ corresponds to the weight assigned to the global substitutability
component across all players represents, φ = (β − γ) is the second order
derivative with respect to own e�ort (the concavity component), and λ∗ =
λ/β denotes the weight of local interactions with respect to self-concavity.

The Nash equilibrium is unique and interior as long as λ∗ is low enough,
more speci�cally λ∗ must be less than the inverse of the norm of the inverse
of the largest eigenvalue of G.

We therefore have that:

M = −βI− γU + λG

where I is the n-square identity matrix and U is the n-square matrix of
ones. Thus G captures all the heterogeneity in M . From Ballester et. al.
(2006) we know that this game has a unique Nash Equilibrium e∗(M) that
is interior, where equilibrium e�ort levels, e∗i can be expressed in relation to
the total e�ort e∗:

e∗i =
bi(g, λ

∗)

b(g, λ∗)
e∗

where bi(g, λ
∗) is the Bonacich centrality of agent i and b(g, λ∗) is the

sum of the Bonacich centralities of all agents in the network. This allows us
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to write `ij(e) as:

`ij(e) =
qijbj(g, λ

∗)∑
j

qijbj(g, λ∗)

Bonacich centrality of node i is de�ned as:

bi(g, λ
∗) =

∑n

j=1
mij(g, λ

∗)

where mij(g, λ
∗) =

∑∞
k=0 (λ∗)k (gij)

k count the number of paths in g

starting at i and ending at j, weighing paths of length k with (λ∗)k .
We derive convergence beliefs for di�erent assumptions on complementar-

ities versus substitutabilities of e�orts which generate di�erent G matrices
through the decomposition procedure. In order to ensure comparability of
results we set the weight of local complementarities with respect to self-
concavity, λ∗ = 1/2. This value always satis�es the properties for the exis-
tence and uniqueness of a Nash Equilibrium mentioned above. In Table 4 we
present convergence beliefs for �ve relevant cases.
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