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Abstract

We study a simple model of assigning indivisible objects to agents, such as dorm rooms to
students, or offices to professors, where each agent receives at most one object and monetary
compensations are not possible. For these problems population-monotonicity, which requires that
agents are affected by population changes in the same way, is a compelling property because ten-
tative assignments are made in many typical situations, which may have to be revised later to
take into account the changing population. We completely describe the allocation rules satisfying
population-monotonicitystrategy-proofnesandefficiency The characterized rules assign the ob-
jects by an iterative procedure in which at each step no more than two agents “trade” objects from
their hierarchically specified “endowments.”
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We study the problem of allocating heterogeneous indivisible objects among a group
of agents when each agent receives at most one object and monetary compensations are
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not possible. The classical literature on such problems is concerned with the case of initial
property rights. The problem in which each agent initially owns an object, known as the
housing markeis due taShapley and Scarf (1974 More recently, the focus of interest has
shifted to the case where there are no initial property rights and the set of objects is regarded
as the social endowment, called tieise allocation problenThe house allocation problem
is the subject of recent papers Apdulkadirgjlu and S6nmez (1999 hlers (2002)Papai
(2000) and Svensson (1999All these papers study the requirement that no agent can
manipulate the allocation to his advantage by lying about his preference relation. This
property, calledstrategy-proofnesshas also been analyzed in a probabilistic setting by
Zhou (1990)andBogomolnaia and Moulin (2008

In addition toefficiencyand strategy-proofnessve study the property gbopulation-
monotonicity(Thomson, 1983)When a change in the population is exogenous, it would
be unfair if the agents who were not responsible for this change were treated unequally.
Population-monotonicityepresents this idea of solidarity, and requires that if some agents
leave, then as a result either all remaining agents (weakly) gain or they all (weakly) lose.
When the allocation rule isfficient population-monotonicitimplies that if the population
expands then everyone is weakly worse off, and if the population shrinks then everyone is
weakly better offPopulation-monotonicitis a compelling requirement for house allocation
problems, because tentative or actual assignments are made in many typical applications,
which may have to be revised later to take into account the changing population. For
example, if tentative preliminary dorm room assignments are revised because additional
students apply for the dorms, it would be rather unreasonable to give some students better
dorm rooms than initially as a result of the extra dorm applications. Also, imagine that there
is a list of term paper topics that can be assigned to students in a class, each of which is
different from the others. Suppose that the term paper topics have been assigned to students
at the beginning of the semester and it turns out that a few students dropped the course by
the 6-week mark. Would it be reasonable to assign any remaining student a harder topic, in
their opinion, than they had initially, just because some students have dropped the course?
Finally, consider the example of assigning offices to professors. Suppose that a new wing of
the building is built with new offices, and professors are offered a choice between staying
in their old office or moving to the new wing. Some professors who signed up for an office
in the new wing change their mind the last second (say, because of the inconvenience of
actually moving). In this case, it would clearly be quite unfair to the remaining professors
who are moving to the new wing if any one of them were assigned a worse office than
they were assigned before. Similar examples of house allocation problems, in which the
population may change after a tentative assignment is made, abound.

Althoughpopulation-monotonicitis a rather important property in this context, it is also
a very demanding property when coupled véfficiencyandstrategy-proofnes©Our char-
acterization result yields a class of allocation rules, catbstticted endowment inheritance

1 Further papers on the housing market inclugleth and Postlewaite (1977)Vako (1984) Ma (1994)
Abdulkadirgdlu and S6nmez (1998andKonishi et al. (2001)for a survey, se&loulin, 1995.

2 Further studies that are concerned with the house allocation probldéngimg2000) Hylland and Zeckhauser
(1979) andSvensson (1994a related assignment problem with “deadlines” is studieBdyomolnaia and Moulin
(2002)andCres and Moulin (2001)
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rules which are essentially hierarchical rules in the following sense. They allow “trading”

of the objects by at most two agents at a time, where these two agents share the objects

available at the given stage of the procedure as “endowments.” More precisely, such a rule

partitions the set of agents into singletons and pairs, and chooses a “priority” ordering over

these singletons and pairs. If the rule is based on a partition of all singletons, then it is a

serial dictatorship(see, for examplezrgin, 2000 Svensson, 1999in which each agent

gets his favorite object among the objects that were not assigned to agents who precede this

agent in the priority ordering. At the other extreme of this set of allocation rules are the

ones that are based on a partition of the agents exclusively into pairs. These rules allow that,

according to the priority ordering of the selected pairs, each pair “trades” objects, where

each of the remaining objects is the “endowment” of one or the other agent in the pair.
Restricted endowment inheritance rules constitute a subclass fafeleendowment hi-

erarchical exchange rulestroduced byPapai (200Q)In Section 2 we define these rules,

which we call simplyendowment inheritance ruleSection 3contains the characteriza-

tion of all rules satisfyingpopulation-monotonicitystrategy-proofnessandefficiency In

Section 4 we give a short conclusion.

2. Endowment inheritancerules

2.1. The model

LetN = {1, 2,...,n} denote a finite set of agenis> 2. Let K denote a set of objects
andk = |K|. Let O represent theull object® Each agent € N is equipped with a strict
preference relatio®; over K U {0}. In other wordsRg; is a linear order ovek U {0}. Given
x,y € K U{0}, x P;y means that agemtstrictly prefersx to y. Let R denote the class of
all linear orders ovek U {0}, andR" the set of preferencg profilesR = (R;);ien Such
that foralli € N, R; € R. LetRg C R denote the class of preference relations where the
null object is the worst object. That is, K; € Ro, then all the objects are “goods”: for all
x € K, x P;0. Since, for the time being, the set of agents and the set of objects are fixed,
RN completely describes treet of(house allocatiopproblems

An allocationis a lista = (a;);cy such that for alf € N, a; € K U {0}, and none of the
objects inK is assigned to more than one agent. Note that 0, the null object, can be assigned
to any number of agents and that not all objectXihave to be assigned. Aal(ocation)
rule ¢ is a function choosing for everg € R an allocation, denoted hy(R). Given
i € N, we callg; (R) theallotmentof agenti at¢(R).

2.2. Basic properties
The first property requires that the rule chooses only (Pareto) efficient allocations.

Efficiency For all R € RY, there is no allocation such that for ali € N, a; R;¢;(R)
with strict preference holding for somee N.

3 “Receiving the null object” means “not receiving any object”.
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GivenR € RN andM C N, let Ry, denote the profiléR;);ca. Itis the restriction ofR
to the setM. We also use the notatios_; = Ry\(;y andR_; j = Rw\(i, j;- For example,
(Ri, R_;) denotes the profile obtained fromby replacingr; by R;.

The second property requires that no agent ever benefits from misrepresenting his pref-
erence relation.

Strategy-proofnes§or allR € RY, alli € N,and allR; € R, ¢;(R)R;¢;(R;, R_).

2.3. Endowment inheritance rules

Endowment inheritance rul¢Papai, 2000are based ofsale’s top trading cycle algo-
rithm, which identifies the unique core allocation in a housing mgfReth and Postlewaite,
1977) We describe this algorithm first. Given a housing market, let every agent point to
the agent who owns his first-ranked house. This way we can identifphteading cycles,
cycles of agents who wish to trade with each other in a feasible manner. Let every agent
in a top trading cycle receive his favorite house, and remove these agents from the mar-
ket with their allotted houses. Next, identify the top trading cycles in the reduced market,
carry out the corresponding trades, etc. Repeat this procedure until all agents are allotted a
house.

Endowment inheritance ruleallot objects to agents using an iterative procedure that
is similar to the top trading cycle algorithm, except that it also specifies the property
rights of the objects in an iterative hierarchical manner. Each object is the initial indi-
vidual “endowment” of an agent and we apply a round of top trading cycle exchange to
these endowments. Given that multiple endowments are allowed, after the agents in top
trading cycles are removed from the market with only their allotted objects, their unallo-
cated endowments are re-assigned as endowments to agents who are still in the market. In
other words, these objects that are left behind are “inherited” as new endowments by agents
who have not received their allotments yet. Notice that then each remaining object is the
endowment of some remaining agent and the top trading cycle algorithm is well-defined at
the second stage. We determine the allotments of agents who are in top trading cycles in
this round, remove them with their allotted objects, and determine the endowments of the
remaining agents for the next stage. And so on, until for each agent we have specified an
allotment this way.

The initial endowments and the hierarchical endowments at later rounds are determined
using a so-callegendowment inheritance tablehich consists of a permutation of the
agents for each object, indicating the order of inheritance for the particular object. Thus,
each endowment inheritance rule is defined by an endowment inheritance table. We for-
mally define the class of endowment inheritance rules and illustrate such a rule in an
example?

Let [TV denote the set of all one-to-one functions frohto N. Givenx € K, , € IV,
andi,j € N, m,(i) < w(j) means that agentis ranked higher than agerjitwith
respect to object. The function, indicates the inheritance of objeet Furthermore,

4 We refer the reader tBapai (2000Yor a detailed discussion of these rules.
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7w = (m|m, € [IV), ek is anendowment inheritance tabthat shows the inheritance of
each object.

Endowment inheritance rulg™: Let R € RY. Theny™(R) is defined in at mosk =
min{n, k} stages. Givenn € N andR € R", we give recursive definitions of the associ-
atedhierarchical endowmentg, (i, R), thetop choicesT; (i, R), trading cyclesS; (i, R),
assigned individual$V; (R), andassigned non-null object& (R), all of which are indexed
by r € {1,...,m}, the correspondingtage For every profileR € R" and stage, let
W!(R) = U._;W.(R) andF'(R) = U'_, F.(R). Let WO(R) = # and FO(R) = #.

Stagetlfagenti € N\ W/~1(R)isranked highestwith respectto object K\ F'~1(R)
among all agents itV \ W'~1(R), thenx belongs to his hierarchical endowment at stage
The null object is part of each agent’s endowment.

tth Hierarchical endowments

E:(i,R) = {x e K\ FYR)i=arg min {Trx(j)}} U {0}.
JeEN\W!'=L(R)
Next, each agente N \ W/~1(R) identifies his top choice itk U {0}) \ F'~L(R).
Top choices

T,(i, ) =x & x € (KU{0O) \ F'"Y(R)andforally € (K U{0}) \ F""X(R), xR y.

A trading cycle consists of a set of agentsNn\ W’~1(R) who would like to exchange
objects from their hierarchical endowments in a “cyclical way” such that each of them
receives his top choice.

Trading cycles

{1, -y dgbs iF {j1, .-, jg} © N\ W'=L(R) such that

I{j1, ..., jo})l = gandforallv e {1, ..., g},
Si(i, R) =
T;(ju, R) € E;(ju+1, RyWherei = j1 = jgi1,

@, otherwise

Agents in a trading cycle are assigned their top choices.

Assigned individualsW; (R) = {i € N|S;(i, R) # 0}.

Assigned non-null object#; (R) = {T;(i, R) € K|i € W;(R)}.

Note that for allR € R there exists a last stagé < m such that eitheW’ (R) = N
or F'(R) = K and for allr < t*, W/(R) # N andF'(R) # K.

Given endowment inheritance tabte for all R € R" the allocation chosen by the
endowment inheritance rulg™ is defined as follows. For alle N,

T;(i, R), ifforsomer e {1,...,m}, i € W;(R),
@7 (R) =
0, otherwise

5 Note that if an agent’s top choice is the null object, he forms a trading cycle with himself, i.e. he is assigned
the null object in his own hierarchical endowment.
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Examplel. Let N ={1,2,3,4,5) andK = {a, b, c,d, e, f}. Consider the endowment
inheritance rule defined by the following endowment inheritance tatte(t, |m, € ITV).

Mg My Me Mg Te Ty Ry Ry R3 R4 Rjs
2 1 2 1 2 2 a b b d a
1 2 1 2 1 1 f f e a b
3 3 3 3 3 3 d a ¢ b f
4 4 4 5 5 4 e ¢ a ¢ ¢
5 5 5 4 4 5 c d d e d

b e f f e

Associated with each object is a permutation of the agents (given by the column corre-
sponding to the object). For example, the first column shows that abigeigent 2's initial
endowment, which is (possibly) inherited by 3, 4, and 5, in this order. We illustrate the
use of this table for the preference profites R(’)" given above, which shows the rankings
of objects from the top down for each agent.

Stage 1The initial endowments are given by the first row of the endowment inheritance
table. The endowments afa (1, R) = {b, d} for 1 andE1(2, R) = {a, c, e, f} for 2, and
¢ for 3, 4, and 5. Thed1 (1L, R) = a, Tv(2, R) = b, T1(3,R) = b, T1(4, R) = d, and
T1(5, R) = a are the top choices of the agentskinJ {0}. Hence {1, 2} is the only cycle at
Stage 1 under which 1 receivefrom 2 and 2 receivelsfrom 1, i.e.51(1, R) = S1(2, R) =
(1,2}, Wi(R) = {1, 2}, and F1(R) = {a, b}.

Stage 2 Since agents 1 and 2 already received their allotments, ohjedts, and f
are left behind from 1's and 2’s initial endowments. These objects are inherited by 3, i.e.
E2>(3,R) ={c,d, e, f}andE2(4, R) = E>(5, R) = . Then, 3 picks his top choice, object
e, among the remaining objects. SB(3, R) = {3}, W2(R) = {3}, andF2(R) = {e}.

Stage 3Now only 4 and 5 remain in the market. Agent 4 inhefits f} and 5 inherits
{d},1.e.E3(4, R) = {c, f} andE3(5, R) = {d}. Becausdé3(4, R) = d andT3(5, R) = f,

4 and 5form a trading cycle and receive their top choice& i, f}, i.e. S3(4, R) =
S3(5, R) = {4, 5}, Wa(R) = {4, 5}, andF3(R) = {d, f}. Thenp™(R) = (a, b, e, d, f) are
the allotments td@l, 2, 3, 4, 5).

3. Theresult

We extend the model to allow population changes. ket {1, ..., p}, p > 3, be the
finite set of potential agents. L8tdenote the set of non-empty subset®ofn this context,
arule is a functiong that associates with each set of age¥ts P and each preference
profile R € RY an allocationp(R) = (¢;(R))icn-

Population-monotonicity For all N € P, all R € RY, and allM < N, either [for all
i € M, pi(Ry)Ripi(R)] or [forall i € M, ¢; (R)Ripi (Rm)].

6 For a survey ompopulation-monotonicitgeeThomson (1995)
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Our first lemma states that as a resulpopulation-monotonicitynd efficiency when
some agents leave the economy, none of the remaining agents loses. The proof is omitted.

Lemma 1. Lety be a rule satisfying population-monotonicity and efficiedEw e P,
R e RN, andy # M C N, thenforalli € M, ¢;(Ry)R; i (R).

We characterize the class of rules that population-monotonicstrategy-proof and
efficient It turns out that this class is a subclass of endowment inheritance rules: a rule
satisfying these properties must be a so-cakstricted endowment inheritance rule

A restricted endowment inheritance rule is an endowment inheritance rule in which at
most two agents are allowed to trade at a time, or more precisely, no more than two agents
can be endowed with objects at any stage of the procedure. This is ensured if the endowment
inheritance table can be “partitioned” such that the elements of the partition are either single
rows or two adjacent rows: any single row in the partition contains one agent only and any
two adjacent rows in the partition contain two agents onlyjExample 1 we have rows 1
and 2 as an element of the partition with agents 1 and 2, then row 3 with agent 3, and finally,
rows 4 and 5with agents 4 and 5. Itis clear that initially agents 1 and 2 will be allotted some
objects, whether or not they trade, then agent 3 gets his favorite object among the remaining
objects, and finally, agents 4 and 5 get their allotments.

Restricted endowment inheritance rules are similar to serial dictatorships, in comparison
with endowment inheritance rules that are not restricted this way. In a serial dictatorship,
there exists a hierarchy of the agents specified a priori, such that agents receive their fa-
vorite object from the set of objects that remain after we remove all the objects from the
market that are allotted to agents who are ranked higher in the hierarchy. For restricted
endowment inheritance rules, we choose one or two agents among the remaining agents
at each step of the procedure (as opposed to always choosing one agent in serial dicta-
torships), and allocate the favorite remaining object to the agent if he is chosen alone,
and to one or both agents if chosen in a pair. In the latter case, if one agent does not re-
ceive his first-ranked object among the remaining objects (which means that it is the other
chosen agent's favorite object as well, and it has been allocated to him), then he receives
his second-ranked object. In other words, while we have a single dictator at each stage
of the procedure for serial dictatorships, restricted endowment inheritance rules allow the
choice of “twin-dictators” as well as ordinary (single) dictators at any given stage of the
procedure.

Restricted endowment inheritance rulest w = (my|m, € I17),cx be such that

(a) forallj e P, |[{w;1(j)|x € K}| <2and
(b) forallj e P,if |{w;1(j)lx € K}| = 2, then either
(m7r(plx € Ky = (w71 — Dix € Kyor {m;1(j)lx € K} = {n71(j + DIx € K).

LetN € P, |N| = n, andR € R". Define the collection of injective functions" =
(¥ N — {1,....n}|mY e TIV),ck that is induced byr as follows: letx € K and
N = {i1,..., iy} be such thatr,(i1) < m:(i2) < --- < wW(in). Then,ﬂn-f(\’(il) =1,
'n'fcv(iz) =2,..., wfc"(in) = n. Therestricted endowment inheritance rué is defined for
allN e PandallR € R by¢™(R) = goﬂN(R), Whererp“N(R) is defined as isection 2.3
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Theorem 1. On the domairR” (R{)\’), restricted endowment inheritance rules are the only
rules satisfying population-monotonicity, strategy-proofness, and efficiency

The proof of Theorem 1is in Appendix A The following examples show logical inde-
pendence of the axioms Fheorem 1

Population-monotonicityAn endowment inheritance rule which is not a restricted en-
dowment inheritance rule (defined appropriately for variable population) satsfegy-
proofnessandefficiency but notpopulation-monotonicity

Strategy-proofnesd=ix y € K and an ordering of P, sayoc = (1,2,..., p). For
al N ¢ Pand allR € Ré\’, the rule is a serial dictatorship relative to the following
ordering: first, the rule orders accordingaahe agents that rank last, and second, the
remaining agents are ordered according td his rule violatestrategy-proofnesisecause
announcing a preference relation under whidh ranked last may be profitable. However,
the rule satisfiepopulation-monotonicitandefficiency

Efficiency The rule that assigns for all profiles to each agent the null object satisfies
population-monotonicitgndstrategy-proofnesdut notefficiency

4. Conclusion

In this study, we demonstrate that guarantegiogulation-monotonicityor the allo-
cation of indivisible objects comes with a serious price. Whereas without this solidarity
property agents can “trade” objects arbitrarily, once individual property rights are assigned,
the imposition of this property restricts the assignment of individual property rights and
therefore “trading” to at most two agents at a time, thereby rendering the selected allocation
rules essentially hierarchical. One can intuitively see plogtulation-monotonicitys vio-
lated if there is individual ownership: if | trade with an agent originally who then leaves the
market, then in the new setup the new owner of the object that | obtained previously may
want to trade with someone else, and | end up worse off, even though there are fewer agents
now for the same resources. Given the structure of this simple indivisible goods allocation
problem, our result suggests a general trade-off between solidarity and individual property
rights.

Appendix A. Proof of Theorem 1

By Papai (2000) restricted endowment inheritance rules satisfgategy-proofness
andefficiencyltis easyto check thatthey also satigpulation-monotonicitigy considering
how the allotments of the agents are constructed. In proving the convergehdea rule
satisfyingpopulation-monotonicitystrategy-proofnessandefficiency We give all proofs
for the domairR, since the proof for the larger domakis completely analogous.

First, for allx € K, we inductively definar, € I17. Second, we show that = (1) ek
satisfies conditions (a) and (b) in the definition of a restricted endowment inheritance rule.
Third, we prove thap = ¢™.
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Step 1 (Construction of the endowment inheritance table). Givenk, let R® € Rg be
such that for ali € P and ally € K, xR y. By efficiency for somej € P, ¢;(R") = x.
Definem,(j) = 1 andw;%(1) = j. Givent € {1,...,p}, let N} = P\ {w;X(D) |l €
{1,...,t}}. By efficiency for somej € N/, <pj(R;tx) = x. Definem,(j) = r + 1 and
w;l(t + 1) = j. This inductive definition yields a one-to-one functiep : P — P. Note
that givenN € P there existsj € N such that for alk € N, w,(j) < w,(i). Thus, by
®j Rji,%x(j) 1) = x andpopulation-monotonicity

@j(Ry) = x. (1)

Letx € K, N € P, andi € N. We say thaty respects the minimal right of agenfor
objectx in N ifforall R € Rg’, @i (R)R;x. A rule ¢ respects minimal rights for ageinin
N if there existst € K such thaty respects the minimal right éffor x in N.

Lemma2. Forallx € K and allN € P, there exists somg e N such thatp respects the
minimal right of agent for objectx in N.

Proof. Letx € K andj € N be such that forall € N, w,(j) < m,(i). We prove that
respects the minimal right gffor x in N. LetR € R(’)V.

If x Pjp;(R), then bystrategy-proofness; (R}, R_;) # x. By efficiencyfor somei e
N\ {j}, (p,-(Rj.C, R_j) =x.By strategy—proofnes'@,-(Rj, R, R_;;) = x. By population-
monotonicitygoi(Rj, RY) = x. This is a contradiction tar, (j) < m, (i) and(1). O

Step 2 (m = (my).ek Satisfies (a) and (b)). GiveN € P andx € K, letw : N —
{1, ..., |N|} denote the one-to-one function which is inducedmyy.e. for alli, j € N,
w (i) < 7w () & m (@) < 7))

Lemma3. Let N € P. We havei) ¢ respects minimal rights of at most two agentsvin
i.e, {(mM) YD) |x € K}| < 2;and(ii) if [{(mY)~1(D)|x € K}| = 2,then{(m)~1(2)|x €
K} = (@)1 Dlx € K}.

Proof.

(i) Suppose thap respects minimal rights of more than two agent&vinHencex > 3
and|N| > 3. Without loss of generality, let 2, 3 € N andxi, x2, x3 € K be such that
foralli € {1, 2, 3}, wi‘f(z‘) = 1 (agent has a minimal right fox; in N). LetR € Ré\’
be such that for alb € K \ {x1, x2, x3},

x3 Prx1 P1x2 Pry,
x1 Pox2 Pox3 Poy,
x1 P3x3 P3x2 P3y.

Since agents 1 and 3 have minimal rightsfpandxz in N, efficiencyimpliesg1(R) =
x3 andgs(R) = x1. Thus, because 2 has a minimal right forin N, ¢2(R) = x».
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Hence, bypopulation-monotonicity
@2(Ry\(1)) = x2 andgz(Ry\(1)) = x1. (2

Let R" = (R}, R—1) € RY be such that for aly € K \ {x1, x2, x3}, x2P{x1P{x3P;y.
Since agents 1 and 2 have minimal rightsfgandx;, efficiencyimpliesg1(R’) = x2
andg2(R’) = x3. Thus, because 3 has a minimal right f@rin N, ¢3(R’) = x3.
Hence, bypopulation-monotonicitygoz(R;V\{l}) = x1 and <p3(R§v\{1}) = x3. Since
R}V\{l} = Ry, the previous fact contradic(g).

(i) Let {i, j} = {(m))""(D]x € K} andy € K. ThenTry (i) = lormy(j) = 1
Let frrfv"(i) = 1l andx € K be such thatr? (j) = 1. LetR; € Rq be such that
forall x" € K \ {x,y}, yRjx R;x". Becausep respects the minimal right af for
y in N and of j for x in N, efficiencyimplies thaty; (R, R;, R} P = x and

N\{i,j
9j (R, Rj, Ry ;) = . Thus, bystrategy-proofnessy; (R, Ry\;)) = y- By
population-monotonicity; (Ry, ;) = ¥ andﬂy\{‘}(j) = 1. Hence,m) (j) = 2,
the desired conclusion. O

By Lemma 3 [{n 1) |x € K}| < 2 and if {m;1(D|x € K}| = 2, then{m 2(2)|x €
K} = {m7'Q)lx € K}. Let Pt = P\ {m;2(D)|x € K} andly = {7 1(D)|x € K}
By Lemma 3 [{(w?)"L(D)lx € K}| < 2 and if {(rF)"L(D)Ix € K}| = 2, then
(w12 |x € K} = {((xP")~L(D)|x € K}. Thus, by definitionj{m-1(l1+1)|x € K}| <
2and if[{m; (1 + Dlx € K}| = 2, then{m ;11 4+ 2)|x € K} = {7721 + D|x € K}.
Now, by inductionL.emma 3implies thatm satisfies (a) and (b).

Step 3 (¢ = ¢™). Suppose thap £ ¢™. Then there exisN € P andR € RS’ such that
©(R) # ¢™(R). Hence, byefficiency there existg; € N such thatpiZ(R)P,i(pil(R). Let

o5 (R) = x1(# 0). By strategy-proofnessoil(Rf.‘ll, R_;;) # x1. By efficiency for some
i € Nwe have(piz(R;.‘ll, R_;)) = x1. By strategy—proofnessoiz(R;‘ll, R;‘;, R_i i) = X1.

Hence, bypopuIation-monotonicitypiz(Rj‘ll, Rj‘zl) = x1 and by definition ofr, 7y, (i2) <

le(il)-

By strategy-proofnesand ¢£(R) = X1, wi“;(R;‘ll, R_;)) = x1. Thus, bym,, (i2) <
my, (i1), <pl?;(Rl?‘ll, R_i)) Piyx1. Letgo;;(Rfll, R_i) = x2(# 0) ande?‘z2 € Ro be such that for
ally e K\{xl},szi’gleRf;y. Thenusing the same arguments as above there isigam¥&
such thathz(i3) < Ty, (i2), (p,'3(R;C11, Rl)-czz, R_i, i,) = x2, andgog(R;;l, R;;z, R_i;.i,) Pizxo.
By strategy—proofnes@iz(Rfll, Rj“zz, R_i,.i,) = x1.Hence, byefficiencyis # i1 (otherwise
i1 andip would be strictly better off by switching their objects).

Let gpl?;(Rj‘ll, R;‘ZZ, R_i,.i,) = x3(# 0).” So, for anyl > 1, we inductively obtairi, i1,
i; # ij4+1, and 0# x; € K such thatmy, (i;4+1) < my, (i) andijy1 # ij—1. BecauseV is
finite, at some point there will be a “cycle”, i.e. there eXjsti; € N such thak < ¢ and
Ty, (i) <y, (iy). Without loss of generality, I€§ = i; and considerthe sets, . .., i;}
N and{x1,...,x} € K such that for all € {1,...,r — 1}, 7y, (i1+1) < Ty (i) and

7 Now we would choos®;? € Ro such that for ally € K \ {x3}, x3P, >x2R;> y.
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my, (1) < my, (i;). Letu = w,, (i1). By Step 2w satisfies conditions (a) and (b). Thus, by
Ty, (i2) < u—1and (b)my,(i2) < u.Similarly, foralll € {1, ... , t}, my, (i;) < u. Next, (b)
also impliesmy, (i1) > u — 1. Thus, since > y, (i;) > my, (i1) > u—1,m,, (i;) = u. This
implies that for all € {1, ..., t}, my, (i;) = u. Becausé; # i3, we havel{iy, ..., i}| > 3.
Now the two previous facts contradict (a).
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