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Abstract

We study a simple model of assigning indivisible objects to agents, such as dorm rooms to
students, or offices to professors, where each agent receives at most one object and monetary
compensations are not possible. For these problems population-monotonicity, which requires that
agents are affected by population changes in the same way, is a compelling property because ten-
tative assignments are made in many typical situations, which may have to be revised later to
take into account the changing population. We completely describe the allocation rules satisfying
population-monotonicity, strategy-proofness, andefficiency. The characterized rules assign the ob-
jects by an iterative procedure in which at each step no more than two agents “trade” objects from
their hierarchically specified “endowments.”
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We study the problem of allocating heterogeneous indivisible objects among a group
of agents when each agent receives at most one object and monetary compensations are
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not possible. The classical literature on such problems is concerned with the case of initial
property rights. The problem in which each agent initially owns an object, known as the
housing market, is due toShapley and Scarf (1974).1 More recently, the focus of interest has
shifted to the case where there are no initial property rights and the set of objects is regarded
as the social endowment, called thehouse allocation problem. The house allocation problem
is the subject of recent papers byAbdulkadirŏglu and Sönmez (1999), Ehlers (2002), Pápai
(2000), andSvensson (1999). All these papers study the requirement that no agent can
manipulate the allocation to his advantage by lying about his preference relation. This
property, calledstrategy-proofness, has also been analyzed in a probabilistic setting by
Zhou (1990)andBogomolnaia and Moulin (2001).2

In addition toefficiencyandstrategy-proofness, we study the property ofpopulation-
monotonicity(Thomson, 1983). When a change in the population is exogenous, it would
be unfair if the agents who were not responsible for this change were treated unequally.
Population-monotonicityrepresents this idea of solidarity, and requires that if some agents
leave, then as a result either all remaining agents (weakly) gain or they all (weakly) lose.
When the allocation rule isefficient, population-monotonicityimplies that if the population
expands then everyone is weakly worse off, and if the population shrinks then everyone is
weakly better off.Population-monotonicityis a compelling requirement for house allocation
problems, because tentative or actual assignments are made in many typical applications,
which may have to be revised later to take into account the changing population. For
example, if tentative preliminary dorm room assignments are revised because additional
students apply for the dorms, it would be rather unreasonable to give some students better
dorm rooms than initially as a result of the extra dorm applications. Also, imagine that there
is a list of term paper topics that can be assigned to students in a class, each of which is
different from the others. Suppose that the term paper topics have been assigned to students
at the beginning of the semester and it turns out that a few students dropped the course by
the 6-week mark. Would it be reasonable to assign any remaining student a harder topic, in
their opinion, than they had initially, just because some students have dropped the course?
Finally, consider the example of assigning offices to professors. Suppose that a new wing of
the building is built with new offices, and professors are offered a choice between staying
in their old office or moving to the new wing. Some professors who signed up for an office
in the new wing change their mind the last second (say, because of the inconvenience of
actually moving). In this case, it would clearly be quite unfair to the remaining professors
who are moving to the new wing if any one of them were assigned a worse office than
they were assigned before. Similar examples of house allocation problems, in which the
population may change after a tentative assignment is made, abound.

Althoughpopulation-monotonicityis a rather important property in this context, it is also
a very demanding property when coupled withefficiencyandstrategy-proofness. Our char-
acterization result yields a class of allocation rules, calledrestricted endowment inheritance

1 Further papers on the housing market includeRoth and Postlewaite (1977), Wako (1984), Ma (1994),
Abdulkadirŏglu and Sönmez (1998), andKonishi et al. (2001)(for a survey, seeMoulin, 1995).

2 Further studies that are concerned with the house allocation problem areErgin (2000), Hylland and Zeckhauser
(1979), andSvensson (1994); a related assignment problem with “deadlines” is studied byBogomolnaia and Moulin
(2002)andCrès and Moulin (2001).
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rules, which are essentially hierarchical rules in the following sense. They allow “trading”
of the objects by at most two agents at a time, where these two agents share the objects
available at the given stage of the procedure as “endowments.” More precisely, such a rule
partitions the set of agents into singletons and pairs, and chooses a “priority” ordering over
these singletons and pairs. If the rule is based on a partition of all singletons, then it is a
serial dictatorship(see, for example,Ergin, 2000; Svensson, 1999), in which each agent
gets his favorite object among the objects that were not assigned to agents who precede this
agent in the priority ordering. At the other extreme of this set of allocation rules are the
ones that are based on a partition of the agents exclusively into pairs. These rules allow that,
according to the priority ordering of the selected pairs, each pair “trades” objects, where
each of the remaining objects is the “endowment” of one or the other agent in the pair.

Restricted endowment inheritance rules constitute a subclass of thefixed endowment hi-
erarchical exchange rulesintroduced byPápai (2000). In Section 2, we define these rules,
which we call simplyendowment inheritance rules. Section 3contains the characteriza-
tion of all rules satisfyingpopulation-monotonicity, strategy-proofness, andefficiency. In
Section 4, we give a short conclusion.

2. Endowment inheritance rules

2.1. The model

Let N ≡ {1,2, . . . , n} denote a finite set of agents,n ≥ 2. LetK denote a set of objects
andk ≡ |K|. Let 0 represent thenull object.3 Each agenti ∈ N is equipped with a strict
preference relationRi overK ∪{0}. In other words,Ri is a linear order overK ∪{0}. Given
x, y ∈ K ∪ {0}, x Piy means that agenti strictly prefersx to y. LetR denote the class of
all linear orders overK ∪ {0}, andRN the set of (preference) profilesR = (Ri)i∈N such
that for alli ∈ N , Ri ∈ R. LetR0 � R denote the class of preference relations where the
null object is the worst object. That is, ifRi ∈ R0, then all the objects are “goods”: for all
x ∈ K, x Pi0. Since, for the time being, the set of agents and the set of objects are fixed,
RN completely describes theset of(house allocation) problems.

An allocationis a lista = (ai)i∈N such that for alli ∈ N , ai ∈ K ∪ {0}, and none of the
objects inK is assigned to more than one agent. Note that 0, the null object, can be assigned
to any number of agents and that not all objects inK have to be assigned. An (allocation)
rule ϕ is a function choosing for everyR ∈ RN an allocation, denoted byϕ(R). Given
i ∈ N , we callϕi(R) theallotmentof agenti atϕ(R).

2.2. Basic properties

The first property requires that the rule chooses only (Pareto) efficient allocations.

Efficiency: For allR ∈ RN , there is no allocationa such that for alli ∈ N , ai Riϕi(R)

with strict preference holding for somej ∈ N .

3 “Receiving the null object” means “not receiving any object”.
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GivenR ∈ RN andM ⊆ N , letRM denote the profile(Ri)i∈M . It is the restriction ofR
to the setM. We also use the notationsR−i = RN\{i} andR−i,j = RN\{i,j}. For example,
(R̄i , R−i ) denotes the profile obtained fromR by replacingRi by R̄i .

The second property requires that no agent ever benefits from misrepresenting his pref-
erence relation.

Strategy-proofness: For allR ∈ RN , all i ∈ N , and allR̄i ∈ R, ϕi(R)Riϕi(R̄i , R−i ).

2.3. Endowment inheritance rules

Endowment inheritance rules(Pápai, 2000)are based onGale’s top trading cycle algo-
rithm,which identifies the unique core allocation in a housing market(Roth and Postlewaite,
1977). We describe this algorithm first. Given a housing market, let every agent point to
the agent who owns his first-ranked house. This way we can identify thetop trading cycles,
cycles of agents who wish to trade with each other in a feasible manner. Let every agent
in a top trading cycle receive his favorite house, and remove these agents from the mar-
ket with their allotted houses. Next, identify the top trading cycles in the reduced market,
carry out the corresponding trades, etc. Repeat this procedure until all agents are allotted a
house.

Endowment inheritance rulesallot objects to agents using an iterative procedure that
is similar to the top trading cycle algorithm, except that it also specifies the property
rights of the objects in an iterative hierarchical manner. Each object is the initial indi-
vidual “endowment” of an agent and we apply a round of top trading cycle exchange to
these endowments. Given that multiple endowments are allowed, after the agents in top
trading cycles are removed from the market with only their allotted objects, their unallo-
cated endowments are re-assigned as endowments to agents who are still in the market. In
other words, these objects that are left behind are “inherited” as new endowments by agents
who have not received their allotments yet. Notice that then each remaining object is the
endowment of some remaining agent and the top trading cycle algorithm is well-defined at
the second stage. We determine the allotments of agents who are in top trading cycles in
this round, remove them with their allotted objects, and determine the endowments of the
remaining agents for the next stage. And so on, until for each agent we have specified an
allotment this way.

The initial endowments and the hierarchical endowments at later rounds are determined
using a so-calledendowment inheritance table,which consists of a permutation of the
agents for each object, indicating the order of inheritance for the particular object. Thus,
each endowment inheritance rule is defined by an endowment inheritance table. We for-
mally define the class of endowment inheritance rules and illustrate such a rule in an
example.4

Let�N denote the set of all one-to-one functions fromN toN . Givenx ∈ K, �x ∈ �N ,
and i, j ∈ N , �x(i) < �x(j) means that agenti is ranked higher than agentj with
respect to objectx. The function�x indicates the inheritance of objectx. Furthermore,

4 We refer the reader toPápai (2000)for a detailed discussion of these rules.
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� ≡ (�x |�x ∈ �N)x∈K is anendowment inheritance tablethat shows the inheritance of
each object.

Endowment inheritance ruleϕ�: Let R ∈ RN . Thenϕ�(R) is defined in at mostm ≡
min{n, k} stages. Giveni ∈ N andR ∈ RN , we give recursive definitions of the associ-
atedhierarchical endowmentsEt(i, R), the top choicesTt (i, R), trading cyclesSt (i, R),
assigned individualsWt(R), andassigned non-null objectsFt(R), all of which are indexed
by t ∈ {1, . . . , m}, the correspondingstage. For every profileR ∈ RN and staget , let
Wt(R) ≡ ∪t

z=1Wz(R) andF t(R) ≡ ∪t
z=1Fz(R). LetW0(R) ≡ ∅ andF 0(R) ≡ ∅.

Stage t: If agenti ∈ N\Wt−1(R) is ranked highest with respect to objectx ∈ K\F t−1(R)

among all agents inN \Wt−1(R), thenx belongs to his hierarchical endowment at staget .
The null object is part of each agent’s endowment.

tth Hierarchical endowments:

Et(i, R) ≡
{
x ∈ K \ F t−1(R)|i = arg min

j∈N\Wt−1(R)
{�x(j)}

}
∪ {0}.

Next, each agenti ∈ N \ Wt−1(R) identifies his top choice in(K ∪ {0}) \ F t−1(R).
Top choices:

Tt (i, R) = x ⇔ x ∈ (K ∪ {0}) \ F t−1(R)and for ally ∈ (K ∪ {0}) \ F t−1(R), xRiy.

A trading cycle consists of a set of agents inN \ Wt−1(R) who would like to exchange
objects from their hierarchical endowments in a “cyclical way” such that each of them
receives his top choice.

Trading cycles:

St (i, R) ≡




{j1, . . . , jg}, if {j1, . . . , jg} ⊆ N \ Wt−1(R) such that

|{j1, . . . , jg}| = g and for allv ∈ {1, . . . , g},
Tt (jv, R) ∈ Et(jv+1, R)wherei = j1 = jg+1,

∅, otherwise.

Agents in a trading cycle are assigned their top choices.5

Assigned individuals: Wt(R) ≡ {i ∈ N |St (i, R) �= ∅}.
Assigned non-null objects: Ft(R) ≡ {Tt (i, R) ∈ K|i ∈ Wt(R)}.
Note that for allR ∈ RN there exists a last staget∗ ≤ m such that eitherWt∗(R) = N

or F t∗(R) = K and for allt < t∗, Wt(R) �= N andF t(R) �= K.
Given endowment inheritance table�, for all R ∈ RN the allocation chosen by the

endowment inheritance ruleϕ� is defined as follows. For alli ∈ N ,

ϕ�
i (R) ≡



Tt (i, R), if for somet ∈ {1, . . . , m}, i ∈ Wt(R),

0, otherwise.

5 Note that if an agent’s top choice is the null object, he forms a trading cycle with himself, i.e. he is assigned
the null object in his own hierarchical endowment.
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Example 1. Let N ≡ {1,2,3,4,5} andK ≡ {a, b, c, d, e, f }. Consider the endowment
inheritance rule defined by the following endowment inheritance table� ≡ (�x |�x ∈ �N).

Associated with each object is a permutation of the agents (given by the column corre-
sponding to the object). For example, the first column shows that objecta is agent 2’s initial
endowment, which is (possibly) inherited by 1, 3, 4, and 5, in this order. We illustrate the
use of this table for the preference profileR ∈ RN

0 given above, which shows the rankings
of objects from the top down for each agent.

Stage 1: The initial endowments are given by the first row of the endowment inheritance
table. The endowments areE1(1, R) = {b, d} for 1 andE1(2, R) = {a, c, e, f } for 2, and
∅ for 3, 4, and 5. ThenT1(1, R) = a, T1(2, R) = b, T1(3, R) = b, T1(4, R) = d, and
T1(5, R) = a are the top choices of the agents inK ∪ {0}. Hence,{1,2} is the only cycle at
Stage 1 under which 1 receivesa from 2 and 2 receivesb from 1, i.e.S1(1, R) = S1(2, R) =
{1,2}, W1(R) = {1,2}, andF1(R) = {a, b}.

Stage 2: Since agents 1 and 2 already received their allotments, objectsc, d, e, andf
are left behind from 1’s and 2’s initial endowments. These objects are inherited by 3, i.e.
E2(3, R) = {c, d, e, f } andE2(4, R) = E2(5, R) = ∅. Then, 3 picks his top choice, object
e, among the remaining objects. So,S2(3, R) = {3}, W2(R) = {3}, andF2(R) = {e}.

Stage 3: Now only 4 and 5 remain in the market. Agent 4 inherits{c, f } and 5 inherits
{d}, i.e.E3(4, R) = {c, f } andE3(5, R) = {d}. BecauseT3(4, R) = d andT3(5, R) = f ,
4 and 5 form a trading cycle and receive their top choices in{c, d, f }, i.e. S3(4, R) =
S3(5, R) = {4,5},W3(R) = {4,5}, andF3(R) = {d, f }. Thenϕ�(R) = (a, b, e, d, f ) are
the allotments to(1,2,3,4,5).

3. The result

We extend the model to allow population changes. LetP ≡ {1, . . . , p}, p ≥ 3, be the
finite set of potential agents. LetP denote the set of non-empty subsets ofP . In this context,
a rule is a functionϕ that associates with each set of agentsN ∈ P and each preference
profileR ∈ RN an allocationϕ(R) = (ϕi(R))i∈N .

Population-monotonicity:6 For allN ∈ P, all R ∈ RN , and allM ⊆ N , either [for all
i ∈ M, ϕi(RM)Riϕi(R)] or [for all i ∈ M, ϕi(R)Riϕi(RM)].

6 For a survey onpopulation-monotonicityseeThomson (1995).
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Our first lemma states that as a result ofpopulation-monotonicityandefficiency, when
some agents leave the economy, none of the remaining agents loses. The proof is omitted.

Lemma 1. Let ϕ be a rule satisfying population-monotonicity and efficiency. If N ∈ P,
R ∈ RN , and∅ �= M ⊆ N , then for alli ∈ M, ϕi(RM)Riϕi(R).

We characterize the class of rules that arepopulation-monotonic, strategy-proof, and
efficient. It turns out that this class is a subclass of endowment inheritance rules: a rule
satisfying these properties must be a so-calledrestricted endowment inheritance rule.

A restricted endowment inheritance rule is an endowment inheritance rule in which at
most two agents are allowed to trade at a time, or more precisely, no more than two agents
can be endowed with objects at any stage of the procedure. This is ensured if the endowment
inheritance table can be “partitioned” such that the elements of the partition are either single
rows or two adjacent rows: any single row in the partition contains one agent only and any
two adjacent rows in the partition contain two agents only. InExample 1, we have rows 1
and 2 as an element of the partition with agents 1 and 2, then row 3 with agent 3, and finally,
rows 4 and 5with agents 4 and 5. It is clear that initially agents 1 and 2 will be allotted some
objects, whether or not they trade, then agent 3 gets his favorite object among the remaining
objects, and finally, agents 4 and 5 get their allotments.

Restricted endowment inheritance rules are similar to serial dictatorships, in comparison
with endowment inheritance rules that are not restricted this way. In a serial dictatorship,
there exists a hierarchy of the agents specified a priori, such that agents receive their fa-
vorite object from the set of objects that remain after we remove all the objects from the
market that are allotted to agents who are ranked higher in the hierarchy. For restricted
endowment inheritance rules, we choose one or two agents among the remaining agents
at each step of the procedure (as opposed to always choosing one agent in serial dicta-
torships), and allocate the favorite remaining object to the agent if he is chosen alone,
and to one or both agents if chosen in a pair. In the latter case, if one agent does not re-
ceive his first-ranked object among the remaining objects (which means that it is the other
chosen agent’s favorite object as well, and it has been allocated to him), then he receives
his second-ranked object. In other words, while we have a single dictator at each stage
of the procedure for serial dictatorships, restricted endowment inheritance rules allow the
choice of “twin-dictators” as well as ordinary (single) dictators at any given stage of the
procedure.

Restricted endowment inheritance rules: Let � = (�x |�x ∈ �P )x∈K be such that

(a) for all j ∈ P , |{�−1
x (j)|x ∈ K}| ≤ 2 and

(b) for all j ∈ P , if |{�−1
x (j)|x ∈ K}| = 2, then either

{�−1
x (j)|x ∈ K} = {�−1

x (j − 1)|x ∈ K} or {�−1
x (j)|x ∈ K} = {�−1

x (j + 1)|x ∈ K}.

Let N ∈ P, |N | = n, andR ∈ RN . Define the collection of injective functions�N =
(�N

x : N → {1, . . . , n}|�N
x ∈ �N)x∈K that is induced by� as follows: letx ∈ K and

N = {i1, . . . , in} be such that�x(i1) < �x(i2) < · · · < �x(in). Then,�N
x (i1) ≡ 1,

�N
x (i2) ≡ 2, . . . , �N

x (in) ≡ n. Therestricted endowment inheritance ruleϕ� is defined for

allN ∈ P and allR ∈ RN byϕ�(R) ≡ ϕ�N
(R), whereϕ�N

(R) is defined as inSection 2.3.
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Theorem 1. On the domainRN (RN
0 ), restricted endowment inheritance rules are the only

rules satisfying population-monotonicity, strategy-proofness, and efficiency.

The proof ofTheorem 1is in Appendix A. The following examples show logical inde-
pendence of the axioms inTheorem 1.

Population-monotonicity: An endowment inheritance rule which is not a restricted en-
dowment inheritance rule (defined appropriately for variable population) satisfiesstrategy-
proofnessandefficiency, but notpopulation-monotonicity.

Strategy-proofness: Fix y ∈ K and an orderingσ of P , sayσ = (1,2, . . . , p). For
all N ∈ P and allR ∈ RN

0 , the rule is a serial dictatorship relative to the following
ordering: first, the rule orders according toσ the agents that ranky last, and second, the
remaining agents are ordered according toσ . This rule violatesstrategy-proofnessbecause
announcing a preference relation under whichy is ranked last may be profitable. However,
the rule satisfiespopulation-monotonicityandefficiency.

Efficiency: The rule that assigns for all profiles to each agent the null object satisfies
population-monotonicityandstrategy-proofness, but notefficiency.

4. Conclusion

In this study, we demonstrate that guaranteeingpopulation-monotonicityfor the allo-
cation of indivisible objects comes with a serious price. Whereas without this solidarity
property agents can “trade” objects arbitrarily, once individual property rights are assigned,
the imposition of this property restricts the assignment of individual property rights and
therefore “trading” to at most two agents at a time, thereby rendering the selected allocation
rules essentially hierarchical. One can intuitively see thatpopulation-monotonicityis vio-
lated if there is individual ownership: if I trade with an agent originally who then leaves the
market, then in the new setup the new owner of the object that I obtained previously may
want to trade with someone else, and I end up worse off, even though there are fewer agents
now for the same resources. Given the structure of this simple indivisible goods allocation
problem, our result suggests a general trade-off between solidarity and individual property
rights.

Appendix A. Proof of Theorem 1

By Pápai (2000), restricted endowment inheritance rules satisfystrategy-proofness
andefficiency. It is easy to check that they also satisfypopulation-monotonicityby considering
how the allotments of the agents are constructed. In proving the converse, letϕ be a rule
satisfyingpopulation-monotonicity, strategy-proofness, andefficiency. We give all proofs
for the domainR0, since the proof for the larger domainR is completely analogous.

First, for allx ∈ K, we inductively define�x ∈ �P . Second, we show that� = (�x)x∈K
satisfies conditions (a) and (b) in the definition of a restricted endowment inheritance rule.
Third, we prove thatϕ = ϕ�.
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Step 1 (Construction of the endowment inheritance table). Givenx ∈ K, letRx ∈ RP
0 be

such that for alli ∈ P and ally ∈ K, xRiy. By efficiency, for somej ∈ P , ϕj (Rx) = x.
Define�x(j) ≡ 1 and�−1

x (1) ≡ j . Given t ∈ {1, . . . , p}, let Nx
t ≡ P \ {�−1

x (l) | l ∈
{1, . . . , t}}. By efficiency, for somej ∈ Nx

t , ϕj (Rx
Nx
t
) = x. Define�x(j) ≡ t + 1 and

�−1
x (t + 1) ≡ j . This inductive definition yields a one-to-one function�x : P → P . Note

that givenN ∈ P there existsj ∈ N such that for alli ∈ N , �x(j) ≤ �x(i). Thus, by
ϕj (R

x
Nx

�x (j)−1
) = x andpopulation-monotonicity,

ϕj (R
x
N) = x. (1)

Let x ∈ K, N ∈ P, andi ∈ N . We say thatϕ respects the minimal right of agenti for
objectx in N if for all R ∈ RN

0 , ϕi(R)Rix. A ruleϕ respects minimal rights for agenti in
N if there existsx ∈ K such thatϕ respects the minimal right ofi for x in N .

Lemma 2. For all x ∈ K and allN ∈ P, there exists somej ∈ N such thatϕ respects the
minimal right of agentj for objectx in N .

Proof. Let x ∈ K andj ∈ N be such that for alli ∈ N , �x(j) ≤ �x(i). We prove thatϕ
respects the minimal right ofj for x in N . LetR ∈ RN

0 .
If x Pjϕj (R), then bystrategy-proofness, ϕj (Rx

j , R−j ) �= x. By efficiency, for somei ∈
N \ {j}, ϕi(Rx

j , R−j ) = x. By strategy-proofness, ϕi(Rx
j , R

x
i , R−j,i ) = x. By population-

monotonicity, ϕi(Rx
j , R

x
i ) = x. This is a contradiction to�x(j) < �x(i) and(1). �

Step 2 (� ≡ (�x)x∈K satisfies (a) and (b)). GivenN ∈ P andx ∈ K, let �N
x : N →

{1, . . . , |N |} denote the one-to-one function which is induced by�, i.e. for all i, j ∈ N ,
�N
x (i) ≤ �N

x (j) ⇔ �x(i) ≤ �x(j).

Lemma 3. LetN ∈ P. We have(i) ϕ respects minimal rights of at most two agents inN ,
i.e., |{(�N

x )
−1(1)|x ∈ K}| ≤ 2; and(ii) if |{(�N

x )
−1(1)|x ∈ K}| = 2, then{(�N

x )
−1(2)|x ∈

K} = {(�N
x )

−1(1)|x ∈ K}.

Proof.

(i) Suppose thatϕ respects minimal rights of more than two agents inN . Hence,k ≥ 3
and|N | ≥ 3. Without loss of generality, let 1,2,3 ∈ N andx1, x2, x3 ∈ K be such that
for all i ∈ {1,2,3}, �N

xi
(i) = 1 (agenti has a minimal right forxi in N ). LetR ∈ RN

0
be such that for ally ∈ K \ {x1, x2, x3},

x3P1 x1P1 x2P1y,

x1P2 x2P2 x3P2y,

x1P3 x3P3 x2P3y.

Since agents 1 and 3 have minimal rights forx1 andx3 inN , efficiencyimpliesϕ1(R) =
x3 andϕ3(R) = x1. Thus, because 2 has a minimal right forx2 in N , ϕ2(R) = x2.
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Hence, bypopulation-monotonicity,

ϕ2(RN\{1}) = x2 andϕ3(RN\{1}) = x1. (2)

Let R′ = (R′
1, R−1) ∈ RN

0 be such that for ally ∈ K \ {x1, x2, x3}, x2P
′
1x1P

′
1x3P

′
1y.

Since agents 1 and 2 have minimal rights forx1 andx2, efficiencyimpliesϕ1(R
′) = x2

andϕ2(R
′) = x1. Thus, because 3 has a minimal right forx3 in N , ϕ3(R

′) = x3.
Hence, bypopulation-monotonicity, ϕ2(R

′
N\{1}) = x1 andϕ3(R

′
N\{1}) = x3. Since

R′
N\{1} = RN\{1}, the previous fact contradicts(2).

(ii) Let {i, j} = {(�N
x )

−1(1)|x ∈ K} and y ∈ K. Then �N
y (i) = 1 or �N

y (j) = 1.
Let �N

y (i) = 1 andx ∈ K be such that�N
x (j) = 1. Let Rj ∈ R0 be such that

for all x′ ∈ K \ {x, y}, y Rjx Rjx
′. Becauseϕ respects the minimal right ofi for

y in N and of j for x in N , efficiencyimplies thatϕi(Rx
i , Rj , R

y
N\{i,j}) = x and

ϕj (R
x
i , Rj , R

y
N\{i,j}) = y. Thus, bystrategy-proofness, ϕj (Rx

i , R
y
N\{i}) = y. By

population-monotonicity, ϕj (R
y
N\{i}) = y and �

N\{i}
y (j) = 1. Hence,�N

y (j) = 2,
the desired conclusion. �

By Lemma 3, |{�−1
x (1)|x ∈ K}| ≤ 2 and if |{�−1

x (1)|x ∈ K}| = 2, then{�−1
x (2)|x ∈

K} = {�−1
x (1)|x ∈ K}. Let P 1 ≡ P \ {�−1

x (1)|x ∈ K} and l1 ≡ |{�−1
x (1)|x ∈ K}|.

By Lemma 3, |{(�P 1

x )−1(1)|x ∈ K}| ≤ 2 and if |{(�P 1

x )−1(1)|x ∈ K}| = 2, then

{(�P 1

x )−1(2)|x ∈ K} = {(�P 1

x )−1(1)|x ∈ K}. Thus, by definition,|{�−1
x (l1+1)|x ∈ K}| ≤

2 and if |{�−1
x (l1 + 1)|x ∈ K}| = 2, then{�−1

x (l1 + 2)|x ∈ K} = {�−1
x (l1 + 1)|x ∈ K}.

Now, by induction,Lemma 3implies that� satisfies (a) and (b).

Step 3 (ϕ = ϕ�). Suppose thatϕ �= ϕ�. Then there existN ∈ P andR ∈ RN
0 such that

ϕ(R) �= ϕ�(R). Hence, byefficiency, there existsi1 ∈ N such thatϕ�
i1
(R)Pi1ϕi1(R). Let

ϕ�
i1
(R) ≡ x1(�= 0). By strategy-proofness, ϕi1(R

x1
i1
, R−i1) �= x1. By efficiency, for some

i2 ∈ N we haveϕi2(R
x1
i1
, R−i1) = x1. By strategy-proofness, ϕi2(R

x1
i1
, R

x1
i2
, R−i1,i2) = x1.

Hence, bypopulation-monotonicity, ϕi2(R
x1
i1
, R

x1
i2
) = x1 and by definition of�, �x1(i2) <

�x1(i1).
By strategy-proofnessand ϕ�

i1
(R) = x1, ϕ�

i1
(R

x1
i1
, R−i1) = x1. Thus, by�x1(i2) <

�x1(i1), ϕ
�
i2
(R

x1
i1
, R−i1)Pi2x1. Letϕ�

i2
(R

x1
i1
, R−i1) ≡ x2(�= 0) andRx2

i2
∈ R0 be such that for

ally ∈ K\{x1},x2P
x2
i2
x1R

x2
i2
y. Then using the same arguments as above there is somei3 ∈ N

such that�x2(i3) < �x2(i2), ϕi3(R
x1
i1
, R

x2
i2
, R−i1,i2) = x2, andϕ�

i3
(R

x1
i1
, R

x2
i2
, R−i1,i2)Pi3x2.

By strategy-proofness,ϕi2(R
x1
i1
, R

x2
i2
, R−i1,i2) = x1. Hence, byefficiency, i3 �= i1 (otherwise

i1 andi2 would be strictly better off by switching their objects).
Let ϕ�

i3
(R

x1
i1
, R

x2
i2
, R−i1,i2) ≡ x3(�= 0).7 So, for anyl ≥ 1, we inductively obtainil, il+1,

il �= il+1, and 0 �= xl ∈ K such that�xl (il+1) < �xl (il) andil+1 �= il−1. BecauseN is
finite, at some point there will be a “cycle”, i.e. there existik, it ∈ N such thatk < t and
�xt (ik) < �xt (it ). Without loss of generality, leti1 = ik and consider the sets{i1, . . . , it } ⊆
N and {x1, . . . , xt } ⊆ K such that for alll ∈ {1, . . . , t − 1}, �xl (il+1) < �xl (il) and

7 Now we would chooseRx3
i3

∈ R0 such that for ally ∈ K \ {x3}, x3P
x3
i3
x2R

x3
i3
y.
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�xt (i1) < �xt (it ). Let u ≡ �x1(i1). By Step 2,� satisfies conditions (a) and (b). Thus, by
�x1(i2) ≤ u−1 and (b),�x2(i2) ≤ u. Similarly, for all l ∈ {1, ... , t}, �xl (il) ≤ u. Next, (b)
also implies�xt (i1) ≥ u−1. Thus, sinceu ≥ �xt (it ) > �xt (i1) ≥ u−1,�xt (it ) = u. This
implies that for alll ∈ {1, . . . , t}, �xl (il) = u. Becausei1 �= i3, we have|{i1, . . . , it }| ≥ 3.
Now the two previous facts contradict (a).
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