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Abstract

The framework of Geweke (1982. Journal of the American Statistical Association 77,

304–324.) and Hosoya (1991. Probability Theory and Related Fields 88, 429–444.) is adopted

to construct a simple test for causality in the frequency domain. This test can also be applied to

cointegrated systems. To study the large sample properties of the test, we analyze the power

against a sequence of local alternatives. The finite sample properties are investigated by means

of Monte Carlo simulations. Our methodology is applied to investigate the predictive content

of the yield spread for future output growth. Using quarterly US data we observe reasonable

leading indicator properties at frequencies around one year and typical business cycle

frequencies.
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1. Introduction

In the special issue of The Journal of Econometrics on causality, Granger (1988)
emphasized the relevance of the frequency-domain causation decomposition
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especially in the case of cointegrated systems with causality at the zero frequency (see
also Granger and Lin, 1995). Frequency-domain causality measures and test
procedures were suggested by Granger (1969), Geweke (1982) and Hosoya (1991).
We follow this approach and suggest simple empirical tests to assess the predictive
power at some given frequencies.

Geweke (1982) and Hosoya (1991) proposed a causality measure at a particular
frequency based on a decomposition of the spectral density. Yao and Hosoya (2000)
developed a Wald-type test procedure for causality at some given frequency, which is
based on a complicated set of nonlinear restrictions on the autoregressive
parameters. To overcome this difficulty, Yao and Hosoya (2000) apply the delta
method based on numerical derivatives.

Using a bivariate vector autoregressive (VAR) model, we propose a simple test
procedure that is based on a set of linear hypotheses on the autoregressive
parameters. This test procedure can easily be generalized to allow for cointegration
relationships and higher-dimensional systems.

Our framework can be used to disentangle short- and long-run predictability.
Using postwar US data, we found that the yield spread is a powerful predictor for
short-run fluctuations of economic growth. We also find predictive power of the term
spread at typical business cycle frequencies. No predictive power is observed for
cyclical fluctuations between 1 and 2 years.

The rest of the paper is organized as follows. The frequency-domain approach of
causality is introduced in Section 2 and the empirical test procedures are
considered in Section 3. Section 4 investigates the power properties of the test.
Section 5 presents the results of our empirical study and Section 6 offers some
conclusions.
2. Causality in the frequency-domain

Our framework is based on the work of Geweke (1982) and Hosoya (1991), who
proposed measures of causality in the frequency-domain. First, let zt ¼ ½xt; yt�

0 be a
two-dimensional vector of time series observed at t ¼ 1; . . . ;T : It is assumed that zt

has a finite-order VAR representation of the form

YðLÞzt ¼ et, (1)

where YðLÞ ¼ I �Y1L� � � � �YpLp is a 2� 2 lag polynomial with Lkzt ¼ zt�k:We
assume that the error vector et is white noise with EðetÞ ¼ 0 and Eðete0tÞ ¼ S; where S
is positive definite. For ease of exposition we neglect any deterministic terms in (1)
although in empirical applications the model typically includes a constant, trend or
dummy variables.

Let G be the lower triangular matrix of the Cholesky decomposition G0G ¼ S�1

such that EðZtZ
0
tÞ ¼ I and Zt ¼ Get: If the system is assumed to be stationary, the MA
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representation of the system is

zt ¼ FðLÞet ¼
F11ðLÞ F12ðLÞ

F21ðLÞ F22ðLÞ

" #
e1t

e2t

" #

¼ CðLÞZt ¼
C11ðLÞ C12ðLÞ

C21ðLÞ C22ðLÞ

" #
Z1t

Z2t

" #
, ð2Þ

where FðLÞ ¼ YðLÞ�1 and CðLÞ ¼ FðLÞG�1: Using this representation the spectral
density of xt can be expressed as

f xðoÞ ¼
1

2p
jC11ðe

�ioÞj2 þ jC12ðe
�ioÞj2

� �
.

The measure of causality suggested by Geweke (1982) and Hosoya (1991) is defined
as

My!xðoÞ ¼ log
2pf xðoÞ
jC11ðe�ioÞj

2

� �
ð3Þ

¼ log 1þ
jC12ðe

�ioÞj2

jC11ðe�ioÞj
2

� �
. ð4Þ

The measure is zero if jC12ðe
�ioÞj ¼ 0; in which case we say that y does not cause x at

frequency o:
If the elements of zt are Ið1Þ and cointegrated, then the autoregressive polynomial

YðLÞ has a unit root. The remaining roots are outside the unit circle. Subtracting zt�1

from both sides of (1) gives

Dzt ¼ ðY1 � IÞzt�1 þY2zt�2 þ � � � þYpzt�p þ et

¼ eYðLÞzt�1 þ et, ð5Þ

where eYðLÞ ¼ Y1 � I þY2Lþ � � � þYpLp: If y is not a cause of x in the usual
Granger sense, then the ð1; 2Þ-element of YðLÞ (or eYðLÞ) is zero (cf. Toda and
Phillips, 1993). In the frequency domain the measure of causality can be defined by
using the orthogonalized MA representation

Dzt ¼ eFðLÞet

¼ eCðLÞZt, ð6Þ

where eCðLÞ ¼ eFðLÞG�1; Zt ¼ Get; and G is a lower triangular matrix such that
EðZtZ

0
tÞ ¼ I : Note that in a bivariate cointegrated system b0 eCð1Þ ¼ 0; where b is a

cointegration vector such that b0zt is stationary (cf. Engle and Granger, 1987). As in
the stationary case the resulting causality measure is

My!xðoÞ ¼ log 1þ
jeC12ðe

�ioÞj2

jeC11ðe�ioÞj
2

" #
. (7)

The causality measure can be extended to higher-dimensional systems. Hosoya
(2001) approach is based on the bivariate causality measure after ‘‘conditioning out’’
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the third variable. Assume that we want to measure the causal effect of y1t on y2t in a
three-dimensional system with yt ¼ ½y1t; y2t; y3t�

0: Let wt denote the projection
residual from a projection of y3t onto the Hilbert space Hðy1t; y2t; yt�1; yt�2; . . .Þ:
Furthermore, utðvt) is the projection residual from a projection of y1tðy2tÞ on
Hðwt;wt�1; . . .Þ: From the representation

Dy1t

Dy2t

Dy3t

264
375 ¼ C11ðLÞ C12ðLÞ C13ðLÞ

C21ðLÞ C22ðLÞ C23ðLÞ

C31ðLÞ C32ðLÞ C33ðLÞ

264
375 Z1t

Z2t

Z3t

264
375,

it follows that ut ¼ C11ðLÞZ1t þC12ðLÞZ2t and vt ¼ C21ðLÞZ1t þC22ðLÞZ2t: The
causality measure suggested by Hosoya (2001) is equivalent to the bivariate
causality measure between ut and vt

My1!y2jy3 ðoÞ �Mu!vðoÞ,

and, therefore, the causality measure in higher-dimensional system can be written as
a bivariate causality measure with appropriately transformed variables.
3. Empirical test procedures

To test the hypothesis that y does not cause x at frequency o we consider the null
hypothesis

My!xðoÞ ¼ 0 (8)

within a bivariate framework. Yao and Hosoya (2000) suggest to estimate My!xðoÞ
by replacing jC11ðe

�ioÞj and jC12ðe
�ioÞj in (4) with estimates obtained from the fitted

VAR. Let l ¼ vecðY1; . . . ;Yp;SÞ denote the vector of parameters. Then the delta
method gives rise to the expansionbMy!xðoÞ ¼My!xðoÞ þDlðlÞ

0
ðbl� lÞ þ opðT

�1=2Þ, (9)

where bMy!xðoÞ denotes the estimated causality measure that is based on
estimated VAR parameters and DlðlÞ denotes the vector of derivatives of
My!xðoÞ with respect to l (cf. Yao and Hosoya, 2000, Section 3). Under
suitable regularity conditions the asymptotic distribution of the Wald statistic for
(8) is given by

W ¼ T bMy!xðoÞ
h i2

=HðblÞ!d w21,

where HðblÞ ¼ Dlð
blÞ0V ðblÞDlð

blÞ and V ðblÞ is the asymptotic covariance matrix of bl:
Unfortunately, the expression jC12ðe

�ioÞj is a complicated nonlinear function of
the VAR parameters and, the derivative Dlð

blÞ is therefore difficult to evaluate. Yao
and Hosoya (2000) suggest using a numerical differentiation instead of the exact
analytical expression.

In what follows, a much simpler approach is proposed to test the null hypothesis
(8). From (4) it follows that My!xðoÞ ¼ 0 if jC12ðe

�ioÞj ¼ 0: Using CðLÞ ¼
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YðLÞ�1G�1 and

C12ðLÞ ¼ �
g22Y12ðLÞ

jYðLÞj
,

where g22 is the lower diagonal element of G�1 and jYðLÞj is the determinant of
YðLÞ: It follows that y does not cause x at frequency o if1

jY12ðe
�ioÞj ¼

Xp

k¼1

y12;k cosðkoÞ �
Xp

k¼1

y12;k sinðkoÞi

�����
����� ¼ 0,

where y12;k is the (1,2)-element of Yk: Thus, a necessary and sufficient set of
conditions for jY12ðe

�ioÞj ¼ 0 isXp

k¼1

y12;k cosðkoÞ ¼ 0, (10)

Xp

k¼1

y12;k sinðkoÞ ¼ 0, (11)

Since sinðkoÞ ¼ 0 for o ¼ 0 and o ¼ p; restriction (11) can be dropped in these
cases.

Our approach is based on the linear restrictions (10) and (11). To simplify
the notation, we let aj ¼ y11;j and bj ¼ y12;j ; so that the VAR equation for xt is
written as

xt ¼ a1xt�1 þ � � � þ apxt�p þ b1yt�1 þ � � � þ bpyt�p þ e1t. (12)

The hypothesis My!xðoÞ ¼ 0 is equivalent to the linear restriction

H0: RðoÞb ¼ 0, (13)

where b ¼ ½b1; . . . ;bp�
0 and

RðoÞ ¼
cosðoÞ cosð2oÞ � � � cosðpoÞ

sinðoÞ sinð2oÞ � � � sinðpoÞ

" #
.

The ordinary F statistic for (13) is approximately distributed as F ð2;T � 2pÞ for
o 2 ð0;pÞ:

It is interesting to consider the frequency domain causality test within a
cointegrating framework. To this end we replace xt in regression (12) by
Dxt; with the right-hand side of the equation remaining the same. An interesting
special case is the test at frequency o ¼ 0 (see also Granger and Lin, 1995).
In this caseeYðe0Þ ¼ Y1 � I þY2 þ � � � þYp � P,
1Note that g22 is positive due to the assumption that S is positive definite.
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which is sometimes called the ‘‘impact matrix’’. Using the VECM representation of a
cointegrated system

Dzt ¼ Pzt�1 þ
Xp�1
j¼1

GjDzt�j þ et,

the test of causality at frequency zero boils down to a test of the hypothesis p12 ¼ 0
in the regression

Dxt ¼ p11xt�1 þ p12yt�1 þ
Xp�1
k¼1

g11;kDxt�k

þ
Xp�1
k¼1

g12;kDyt�k þ e1t, ð14Þ

where pij and gij;k denote the ði; jÞ element of P and Gk; respectively. In empirical
work the test of the hypothesis p12 ¼ 0 is often called a test of long-run causality (e.g.
Toda and Phillips, 1993; Caporale and Pittis, 1999).

To see that a zero ð1; 2Þ-element of the matrix P implies jeC12ð1Þj ¼ 0; we
employ the decomposition P ¼ ab0; where b is the cointegration vector and a is a
vector of loading coefficients. In a bivariate cointegrated system, a zero ð1; 2Þ-element
of the matrix P implies that the first element of a is zero. Consequently, the
second element of the orthogonal complement a? is zero. From Johansen (1991) it is
known thateCð1Þ ¼ eFð1ÞG�1 ¼ b?ða

0
?Gb?Þ

�1a0?G�1,

where G ¼ I �
Pp�1

j¼1 Gj : Since G is lower triangular and the second element of a? is
zero, it follows that eC12ð1Þ ¼ 0:

It is known (cf. Toda and Phillips, 1993) that in a bivariate cointegrated system
with zt�Ið1Þ the least-squares estimator of p12 is asymptotically normal and, thus,
the Wald test for the hypothesis p12 ¼ 0 has a standard limiting distribution.
However, if xt�Ið0Þ and yt�Ið1Þ; then the test does no longer have a standard
limiting distribution. The reason is, that in this case the coefficient p12 is attached to
the nonstationary variable yt�1; whereas all other variables in Eq. (15) are stationary.
Hence, the estimator of p12 possesses a nonstandard limiting distribution (Sims et al.,
1990). Similar problems exist in higher-dimensional systems if some block of the
matrix P is singular (Toda and Phillips, 1993).

A convenient way of overcoming this difficulty was suggested by Toda and
Yamamoto (1995) and Dolado and Lütkepohl (1996). They showed that the Wald
test of restrictions involving nonstationary variables has a standard asymptotic
distribution if the VAR model is augmented with a redundant lag, that is, instead of
using the VAR(p) model, the restrictions are tested by using a VAR(pþ 1) model.
This approach can also be used to establish standard inference for the frequency
domain causality test.

Finally, our approach can be generalized to test for causality in higher-
dimensional systems. A natural way is to include the third variable in the
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autoregression so that

y1t ¼
Xp

j¼1

ajy1;t�j þ
Xp

j¼1

bjy2;t�j þ
Xp

j¼1

gjy3;t�j þ et. (15)

Such a regression is also used for the usual Granger causality test in three-
dimensional systems. To test the hypothesis My2!y1jy3ðoÞ ¼ 0; the linear restriction
(13) on the parameter vector b ¼ ½b1; . . . ;bp�

0 is tested.
Using several examples, Hosoya (2000) argued that it is inappropriate to condition

on the past of y3t: He therefore suggested a modified test procedure that is based on
the residuals wt from a regression of y3t on y1t; y2t and yt�1; . . . ; yt�p (see also Section
2). The hypothesis that y2 is a cause of y1 at frequency o in Hosoya’s (2000) sense
can be tested by an F-test of the restriction given in (13) in the regression

y1t ¼
Xp

j¼1

ajy1;t�j þ
Xp

j¼1

bjy2;t�j þ
Xp

j¼0

gjwt�j þ et.

It is important to note that in Hosoya’s approach the information of contempora-
neous values of y3t enter the r.h.s. of the regression in form of the variable wt: This
does not fit well to the notion of causality as a measure of the predictive content. On
the other hand, leaving out the contemporaneous information of the variable y3t may
give spurious inference on causality, as demonstrated by Hosoya (2000).
4. Power

To study the local power of the frequency domain causality test, we consider the
simple model

xt ¼ boðLÞyt�1 þ ut, (16)

where boðLÞ ¼ a 1� 2 cosðoÞLþ L2
� �

is a Gegenbauer polynomial, and fytg; futg are
mutually independent white noise processes. Despite of the simplicity of this model
we are able to derive some important features of the test. More general models
involving additional parameters do not lead to additional insight.

The gain function of the filter boðLÞ is zero at frequency o so that y does not cause
x at frequency o:We first study the properties of the test for oao0; where o� o0 is
OðT�1=2Þ: Specifically, we consider the sequence

oT ¼ o0 þ c=
ffiffiffiffi
T
p

,

so that bT ðLÞ ¼ a 1� 2 cosðoT ÞLþ L2
� �

is used instead of boðLÞ in (16). Thus, we
study the local power of the test when the frequency being tested converges to the
true frequency at a suitable rate. The following proposition gives the distribution of
the Wald statistic under the sequence of local alternatives.

Theorem. Let xt be generated as xt ¼ bT ðLÞyt�1 þ ut; where fytg and futg are

independent zero-mean white noise processes with Eðy2
t Þ ¼ s2y and Eðu2

t Þ ¼ s2u: Under

the local alternative oT ¼ o0 þ c=
ffiffiffiffi
T
p

the Wald statistic is asymptotically distributed
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as noncentral w2 with noncentrality parameter

l2 ¼
s2y 2ca sinðo0Þ½ �

2

s2u 1þ 2 cosðo0Þ
2

� � .
Proof. The null hypothesis that y does not cause x at frequency o0 is equivalent to
Rðo0Þb ¼ 0 in the model xt ¼ b0wt þ ut; where wt ¼ ½yt�1; yt�2; yt�3�

0 and b ¼
½a;�2a cosðoT Þ; a�0: Using the matrix

Qðo0Þ ¼ Rðo0Þ
0;R?ðo0Þ

0
� �0

,

where

Rðo0Þ ¼ ½1 � 2 cosðo0Þ 1�,

R?ðo0Þ ¼
cosðo0Þ 1 cosðo0Þ

� sinðo0Þ 0 sinðo0Þ

" #
,

we can rewrite the model as

yt ¼ b0Qðo0Þ
�1Qðo0Þwt þ ut

¼ b�0w�t þ ut

¼ b�1w�1t þ b�2
0
w�2t þ ut,

where w�1t ¼ Rðo0Þwt ¼ yt�1 � 2 cosðo0Þyt�2 þ yt�3 and w�2t ¼ R?ðo0Þwt: Accord-
ingly, the null hypothesis that y does not cause x at frequency o0 is equivalent to
b�2 ¼ 0:

Using a Taylor expansion around o0; the process can be represented as

xt ’ b0
ðLÞyt�1 � T�1=22ca sinðo0Þyt�2 þ ut,

where b0
ðLÞ ¼ a 1� 2 cosðo0ÞLþ L2

� �
: By construction w�1t and w�2t are orthogonal,

so that the Wald statistic is asymptotically equivalent to

xW ðo0Þ ¼
1

s2u

Xeutw
�
2t
0

	 
 X
w�2tw

�
2t
0

	 
�1 X
w�2teut

	 

,

where

eut ¼ ut � T�1=22ca sinðo0Þyt�2,

and s2u ¼ Eðu2
t Þ: Using

Eðyt�2w�2tÞ ¼
s2y
0

" #

Eðw�2tw
�
2t
0
Þ ¼ s2y

1þ 2 cosðo0Þ
2 0

0 2 sinðo0Þ
2

" #
,
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we obtain

lim
T!1

E s�1u

X
w�2tw

�
2t
0

	 
�1=2 X
yt�2w

�
2t

	 
� �
¼

sy½2ca sinðo0Þ�

su

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2 cosðo0Þ

2½ �
p

0

24 35.
Therefore, the noncentrality parameter of the limiting w2 distribution of xW ðo0Þ

results as

l2 ¼
s2y 2ca sinðo0Þ½ �

2

s2u 1þ 2 cosðo0Þ
2

� � : &

From this result two important conclusions can be drawn. Firstly, the test suffers
from a ‘‘leakage problem’’, that is, the test cannot distinguish causal effects at
frequencies that are close to each other. Secondly, the power of the test depends
sensitively on the frequency under consideration. The maximal power against local
alternatives is at o0 ¼ p=2: For o0! 0 and o0! p the local power against
causality at frequencies close to the hypothesized frequency tends to the size. To
appreciate this result note that in the Gegenbauer polynomial a different choice of
the frequency will change the coefficient attached to the lagged value from 2a cosðo0Þ

to 2a cosðo0 þ dÞ: For small values of d we have cosðo0 þ dÞ � cosðo0Þ � sinðo0Þd: It
follows that for frequencies around p=2 the effect on the coefficient is maximal,
whereas for frequencies close to 0 or p the value of the coefficient changes only
slightly. This should be taken into account when comparing the test results at
different frequencies (Table 1).

To investigate the reliability of our asymptotic results we simulated time series
according to (16) with a ¼ 1; s2u ¼ s2y ¼ 1 and T ¼ 500: The variable y is not a cause
of x at the sequence of frequencies oT ¼ o0 þ c=

ffiffiffiffi
T
p

; whereas the test was performed
at frequency o0: For causality at o0 ¼ p=2 the empirical power is very close to the
asymptotic power. For o0 ¼ p=4 and 3p=4 we found that for small values of c the
actual power is well approximated by the asymptotic power. The approximation
becomes less accurate as c increases.
Table 1

Actual and asymptotic power

c o0 ¼ p=4 o0 ¼ p=2 o0 ¼ 3p=4

Actual Asympt. Actual Asympt. Actual Asympt.

0.5 0.073 0.069 0.131 0.133 0.070 0.069

1.0 0.141 0.133 0.409 0.416 0.126 0.133

1.5 0.282 0.250 0.768 0.771 0.222 0.250

2.0 0.488 0.416 0.954 0.957 0.356 0.416

2.5 0.708 0.603 0.996 0.996 0.501 0.603

3.0 0.877 0.771 1.000 1.000 0.643 0.771

Note: Rejection frequencies of 10,000 Monte Carlo replications based on the model (16) with a ¼ 1: The
sample size is T ¼ 500 and the 0.05 significance level is used.
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Fig. 1. Empirical power.
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To investigate the finite sample properties of the tests for a more complicated data
generating process, we generated the data according to the stationary model:

xt ¼ 0:1xt�1 þ 0:3 boðLÞyt�1 þ e1t,

yt ¼ �xt�1 þ 0:1 yt�1 � 0:2 yt�2 þ 0:3 yt�3 þ e2t,

where

et�Nð0;SÞ;
X
¼

0:5 0:2

0:2 0:5

� �
and boðLÞ ¼ 1� 2 cosðoÞLþ L2: At frequency o the gain function of the polynomial
is zero and therefore, y is not a cause of x at this particular frequency.

For the Monte Carlo experiments we computed the rejection frequencies based on
10,000 replications of the process with sample size T ¼ 100 and 300. In Fig. 1 the
empirical power functions are plotted for the frequencies o ¼ fjp=8; j ¼ 1; . . . ; 4g:
Since the power is (roughly) symmetric around o ¼ p=2; we do not show the results
for o4p=2:
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As expected, all power functions have a minimum at the typical frequency of the
Gegenbauer polynomial boðLÞ: The minimum of all graphs is close to 0.05, verifying
that the tests have reasonable size properties. Furthermore, the power of the test
increases substantially with the sample size. It is also interesting to note that for o
approaching zero, the power is close to the size for frequencies in the neighborhood
o: This confirms our theoretical findings from the local power analysis.
5. Empirical results

There is already a rich literature that demonstrates the remarkable predictive
power of interest rate spreads for real economic growth. Examples include Bernanke
(1990), Estrella and Hardouvelis (1991), Estrella and Mishkin (1995), Davis and
Fagan (1997), Boulier and Stekler (1999), to name a few. Stock and Watson (1989,
1993) found that interest rate spreads are among the most promising leading
variables from the perspective of business cycle forecasting for the US.

To achieve desirable indicator properties it is important that the change in interest
rates immediately affects the term structure, whereas monetary policy affects real
activity with some delay. The empirical literature demonstrates that changes in the
term spread affect output with a time lag of 2 up to 16 quarters. Accordingly, the
yield spread is a reliable leading indicator of economic activity up to one year ahead
(e.g. Estrella and Hardouvelis, 1991; Plosser and Rouwenhorst, 1994; Bonser-Neal
and Morley, 1997; Hamilton and Kim, 2002).

In this section, we apply causality tests in the frequency domain to assess the
predictive content of the term spread for future economic growth. We used quarterly
data of real GDP (Y t), government 10-year bond yield (Rt) and the 3-month bond
yield (rt) for the US economy, as extracted from the Saint-Louis Federal Reserve
Bank database. The sample period is 1959q1–1998q4: Since we found a unit root in
the autoregressive representation of real GDP, we used first differences of the logged
series (i.e. growth rates). The spread (st) was computed as the difference of the long-
run (Rt) and short-run (rt) interest rates.

2

First we specified a bivariate system. According to the AIC criterion, a VAR(6)
model was selected.3

The results of the causality tests in the frequency domain are presented in Fig. 2.
This figure reports the test statistics along with their 5% critical values (broken lines)
for all frequencies in the interval ð0;pÞ: It turns out that the null hypothesis of no
predictability is rejected in the range o 2 ½1:8; 2:4� corresponding to a cycle length
between 2.5 and 3.5 quarters. This result is in line with the former findings that the
spread is a powerful predictor for economic activity at a lag horizon of 2–3 quarters.
2Applying unit root tests to the spread series we found that the spread is stationary. The results of the

unit root tests are available from the authors upon request.
3AICðp ¼ 0Þ ¼�0:0500; AICðp¼ 1Þ ¼ �2:5933; AICðp¼ 2Þ ¼ �2:5920; AICðp¼ 3Þ ¼ �2:6222;

AICðp¼ 4Þ ¼�2:5600; AICðp¼ 5Þ ¼�2:6393; AICðp¼ 6Þ ¼�2:6730; AICðp¼ 7Þ ¼�2:6000; AICðp¼ 8Þ ¼

�2:5593:
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Table 2

Cointegration tests

H0 l-max 95% Trace 95%

r ¼ 0 20.31 21.0 30.49 29.7

rp1 9.56 14.1 10.18 15.4

rp2 0.62 3.8 0.62 3.8

Note: r is the cointegration rank and the column ‘‘95%’’ reports the critical values according to a

significance level of 0.05.
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Fig. 2. Causality tests (bivariate system).
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We also find predictability at frequencies less than 0.8, which corresponds to
(business cycle) frequencies with a wave length of more than 2 years. This result
suggests that the behavior at business cycle frequencies is well reproduced in the one-
step-ahead forecasts of economic growth. Accordingly, the spread variable is a useful
predictor of the business cycle.

Next, we investigate whether there is predictive power of the term structure over
and above that provided by other variables reflecting the stance of monetary policy.
Following Estrella and Mishkin (1995), Anderson and Vahid (2001) and others, we
enhance the VAR system by including the (log of the) real balances (M2/P), as
extracted from Saint-Louis Federal Reserve Bank database. From the literature on
money demand systems (e.g. Hoffman and Rasche, 1996) it is known that the
variables output, interest rates and the monetary base may be characterized by a
long-run relationship that is usually interpreted as a money demand function.
Therefore, a system that includes the monetary base, interest rates and output has to
be tested for a possible cointegration relationship (Table 2).

Applying Johansen’s (1988) cointegration tests for a trivariate system including
the log of output, the log of real money base and interest rates yields ambiguous
results: the l-max test accepts the hypothesis of no cointegration, whereas the trace
test rejects at a 5% significance level. All tests are performed by using an unrestricted
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Fig. 3. Causality tests (trivariate, no cointegration): (a) According to Hosoya’s measure and (b) According

to Geweke’s measure.
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constant in the VAR representation.4 Therefore, we consider both cases. The results
of the trivariate system, without cointegration, displayed in Fig. 3, are roughly
similar to the bivariate case. Fig. 3(a) presents the results of the tests based on
Hosoya’s (2001) measure of causality. For this test the contemporary information in
the additional variable is included whereas in Fig. 3(b) the tests using Geweke’s
causality measure based on the past of the variables alone. It turns out that the
different information sets do not affect the results to a great extent. Moreover, the
results are qualitatively similar to the results of the bivariate model; the hypothesis of
no causality is rejected for frequencies in the intervals ½0; 0:4� and around o ¼ 2:

Finally, Geweke’s variant of the causality measure is used to test for causality,
where it is assumed that the system is cointegrated. Since the results of Hosoya’s
approach are very similar, we do not present the respective results. Overall, the
findings are quite similar to the ones obtained when assuming a stationary system.
4If a restricted trend is included which enters only in the error correction terms we do not find any

cointegration relation at a 5% nominal size. Nevertheless, the trace test for r ¼ 0 has a value of 41:14 just

below the 5% significance level.
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Fig. 4. Causality tests (trivariate, cointegrated system).
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This is expected for frequencies larger than zero. However, this similarity can also be
observed at frequencies close to zero. This might be due to the fairly weak evidence
for cointegration presented above (Fig. 4).
6. Discussion

Based on the work of Geweke (1982) and Hosoya (1991) we suggest a simple test
procedure that allows us to test for predictability at some pre-specified frequency. It
is shown that the test procedure can also be adapted to test for causality in
cointegrated systems. In cointegrated systems the definition of causality at frequency
zero is equivalent to the concept of ‘‘long-run causality’’ as considered by Toda and
Phillips (1993), for example.

In stationary systems the concept of long-run causality is not as obvious. Assume
that the xt is predicted using only the past of the series xt�1;xt�2; . . . : If the spectral
density of the resulting forecast error at low frequencies can be explained by the
additional past information of yt; then yt is said to be a long-run cause for xt:
Although, in a stationary framework there exists no long-run relationship between
time series, a series may nevertheless explain future low frequency variation of
another time series. Consequently, our concept does not postulate that a variable yt

affects another variable xt at a infinite time horizon. Rather, causality at low
frequencies implies that the additional variable is able to forecast the low frequency
component of the variable of interest one period ahead. This is an important
conceptual difference to the approach suggested by Dufour and Renault (1998,
2005).

The new frequency domain causality tests are applied to investigate the predictive
power of the yield spread for real economic growth. Our empirical results
demonstrate once again the good leading indicator properties of the yield spread
at typical business cycle frequencies.
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