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Abstract 

Using a sample of French crop farms during the 1999-2006 period, we test whether less 

technically efficient farmers are more likely to engage in organic farming in order to benefit 

from conversion subsidies. Despite some limitations in our data, we find no evidence of such 

selection effect. On the contrary, our estimation results indicate that more technically efficient 

farmers are more likely to convert to organic farming. This finding is found to be robust to the 

method of calculation of efficiency scores, either parametric or non-parametric. This study 

also confirms that farm’s characteristics (education, farm size and legal status) and farmers’ 

practices under conventional farming do impact the probability of conversion to OF. 
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1. Introduction  

A number of food-safety events along with increasing concerns for sustainability of 

ecosystems make organic farming (OF) an appealing option for both governments and 

consumers. As a consequence, most governments, particularly in the United States (US) as 

well as in the European Union (EU), have encouraged farmers to convert to OF by 

distributing conversion subsidies. In an era of falling income in the agricultural sector, this 

subsidy scheme may have attracted “subsidy-hunters” into OF, who are also likely to be less 

productive (and hence less efficient) than conventional farmers. This “selection problem” has 

been discussed by Pietola and Oude Lansink (2001) and Tzouvelekas et al. (2001) but tested 

only once, as far as we know: Kumbhakar et al. (2009), on a sample of Finnish farms, 

estimate simultaneously technical efficiency (TE) and organic adoption, and find that 

inefficiency did not increase the probability of adoption. In this article we test the selection 

hypothesis on a sample of French crop farms by assessing the impact of past TE on the 

decision to convert to OF.  

This article adds to the growing literature linking adoption of OF and farmers’ efficiency 

measures. A number of articles report TE scores for organic and conventional farmers. 

However, the comparison of their respective TE scores does not tell whether one group is 

more efficient than the other since they likely operate under different technologies. Also, it 

does not inform on whether technical efficiency before conversion plays a role or not. The 

only evidence so far is found in Kumbhakar et al. (2009) for a sample of Finnish farms. We 

propose to address a similar question through a different approach. By contrast to Kumbhakar 

et al. (2009) who perform a joint estimation, we employ a two-stage approach by estimating 

the influence of several determinants, including TE calculated in a first stage, on the 

probability to convert to OF. In order to draw robust conclusions, technical efficiency scores 

are calculated using both parametric methods (stochastic frontier) and non-parametric 

methods (bias-corrected Data Envelopment Analysis (DEA), and Free Disposal Hull (FDH)). 

In addition we take into account that French farmers operate in very different agro-climatic 

conditions when calculating the TE scores.  

Our article also provides the first comprehensive analysis of factors driving the adoption of 

OF in France, a country which lies behind other European partners in terms of organic food 
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production.1 Our results can be useful to policy makers who are “under pressure” since the 

French government (through the Grenelle de l’Environnement) has set as an objective a 

threefold increase of the area under OF between 2007 and 2012 (i.e., an increase from 2% to 

6%). At the end of 2008, only 2.1% of the national utilized agricultural area (UAA) were 

under OF. 

Section 2 explains the modeling framework. In Section 3, we describe the data and discuss 

our hypotheses regarding the role of the main variables of interest on OF adoption. In Section 

4, we present the methodology for calculating TE scores and estimating the probability of 

conversion to OF. The results are commented in Section 5. Section 6 concludes. 

 

2. Modeling framework 

We assume that a representative crop farmer (currently using conventional practices) takes the 

decision to adopt organic technology (OT) or to continue with the conventional technology 

(CT) based on the comparison of his/her expected profit under the two technologies during 

the next five years. In France this duration corresponds to the period during which the farmer 

receives subsidies for conversion after the conversion occurred. Since the conversion to OF is 

not an irreversible decision, the farmer may decide, at the end of the five-year period, to 

switch back to conventional farming.  

For simplicity, we assume that the farmer owns one unit of land, and that all this land is 

converted to OF in case of adoption of this technology. In addition, we assume that converting 

to OT does not alter the crop pattern on the farm. We also assume that the farmer is risk-

neutral and we neglect the discount factor. A farmer will adopt OT in year t if and only if  
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with OT OT OT OT OT OT
t t t t t tp y w x sΠ = − +  and CT CT CT CT CT CT

t t t t t tp y w x sΠ = − + , the t-th period 

profit under the OT and CT, respectively. Variables p, y, w, x, and s denote respectively 

output prices, output levels (and in our case, yields), input prices, input quantities, and 

subsidies received by the farms. The underlying technology is assumed to be different for 
                                                 
1 Among others, with 2% of the total arable land under OF in 2007, France lies behind Italy (9%), Spain (4%), 

Germany (5%), Sweden (10%), and Portugal (6%). 

Source: Agence Bio, document available at http://www.agencebio.org/upload/pagesEdito/fichiers/bioUE.pdf. 
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organic and conventional farming: ( )OT OT OT OT;t t ty f x θ=  and ( )CT CT CT CT;t t ty f x θ=  where 

OT
tθ  and CT

tθ  represent farmer’s TE under OT and CT, respectively. Although most of the 

machinery can be used in both technologies, the ban of applying synthetic fertilizers and plant 

protection in OF suggests that both technologies and production practices are different.  

In general, we expect the price of organic products to be higher than the price of conventional 

products once the production has been organically certified: OT CT in 1 and 2t tp p t t= + +  and 

OT CT from 3 onwardst tp p t> + , as the farmer cannot sell products under organic labeling 

before three years of conversion have passed2. The price differential should compensate (at 

least partly) for the loss in productivity since yield under OT is expected to be lower than 

yield under CT ( )OT CT
t ty y< . Input prices are assumed to be the same ( )OT CT

t tw w= .3 The 

impact of converting to OT on input costs is ambiguous ex ante since we expect a decrease in 

the use of fertilizers and plant protection under OT but an increase in the use of labor and 

machinery costs. Finally, under the assumptions of unchanged crop pattern on the farm and 

similar agricultural policy over the period considered, subsidies received by the farm are 

higher under OT due to the specific subsidies received by the farmer during the period of 

conversion ( )OT CT
t ts s> . Subsidies are provided to compensate the loss in revenues due to 

technical difficulties implying lower yields during the conversion period, and to the 

impossibility for the farmer to sell at the organic price during the first years of the conversion 

period. 

The decision of each farmer to convert to OF will thus depend, among other things, on 

production technology, organic price premium, costs differentials, and farmer’s characteristics 

including technical efficiency. Since all these factors may differ across crops and 

geographical areas, the decision to convert to OF remains an empirical question.  

 

                                                 
2 In France farmers are allowed to sell their products under the organic label after two years of conversion for 

field crops and three years for permanent crops. For simplicity, we used the duration of three years in our model. 

3 This may be a strong assumption since seeds and authorized fertilizers may indeed be more expensive than 

those used in conventional farming. Unfortunately, we do not have any statistical evidence to support this claim.  
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3. Description of the data and variables used in the analysis 

3.1. Database 

We use farm-specific data extracted from the French Farm Accountancy Data Network 

(FADN) database between 1999 and 2006. These data have been combined with NUTS2 and 

NUTS3 regional data from the French Institute for Environment (IFEN) and the French 

Observatory for Rural Development (Observatoire du Développement Rural (ODR).4 

The FADN database includes accounting data for a sample of professional farms above a 

specific size threshold, with a five-year rotating sampling system. Only crop farms are 

considered here. In the FADN database farms are classified according to their production 

specialization based on their products’ gross margin: at least 66 percent of the gross margin 

must come from a specific crop or group of crops. The classification is the standard EU 

classification called Type of Farming (TF). The TF considered here include farms specialized 

in cereal, oil- and protein-seeds (COP) (TF13), in other field crops (TF14), in fruits and 

vegetables (TF28), in horticulture (TF29), in high quality wine (TF37), in other grape 

production (TF38), in permanent crops (TF39) and in mixed crop farming (TF60). All values 

relating to production were deflated by the national price index of agricultural output with 

base 2000. Values relating to capital were deflated by the national price index of inputs 

contributing to investment in agriculture, and values relating to variable inputs were deflated 

by the national price index of inputs currently consumed in agriculture, both with base 2000. 

Within the FADN database, information on whether the farm has engaged in OF is available 

since 2002 only. The specific variable enables to identify farms that are fully operating under 

CT, and farms that are fully operating under OT. Farms that are partially operating under CT 

and OT are not considered here due to data unreliability. Therefore, we consider that a farm 

has converted to OF in period t if it was fully operating under CT at year t-1 and fully 

operating under OT at year t. Since information on OF practices is available since 2002 only, 
                                                 
4 The EU Nomenclature of Territorial Units for Statistics (NUTS) defines standard territorial units in the EU 

(http://ec.europa.eu/eurostat/ramon/nuts/home_regions_en.html). In France, NUTS1 level corresponds to the 

national territory, NUTS2 regions are the 22 French administrative regions (“régions”) and NUTS3 regions are 

the 96 French administrative sub-regions (“départements”). 

Data from IFEN and ODR are available through the following websites: 

http://www.stats.environnement.developpement-durable.gouv.fr/bases-de-donnees.html, and 

http://esrcarto.supagro.inra.fr/, respectively. 
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the first conversion period that is considered here is therefore 2003. The earlier years of data 

(1999-2002) will be used to calculate TE scores of the farmers still present in the FADN 

sample during the 2003-2006 years. 

Table 1 presents the number and share of farms having converted to OF during the period 

from 2003 until 2006. The number of farms adopting the OT is in general low, and this may 

be due to the fact that we cannot consider the partial conversions in our database. Overall 56 

farms in our sample have converted to OF in the selected TFs, which represents 0.9% of the 

sampled farms. A higher rate of conversion is observed for TF38 (other grape production). 

Among the 56 farms, 15 have converted to OF in 2003, 7 in 2004, 17 in 2005, and 17 in 2006. 

 

Table 1: Number of farms having converted in the sample per TF 

 2003-2006 

TF13 10 (0.6%) 

TF14 8 (0.9%) 

TF28 4 (1.4%) 

TF29 4 (1.9%) 

TF37 13 (1.3%) 

TF38 6 (1.9%) 

TF39 6 (1.4%) 

TF60 5 (0.3%) 

Total 56 (0.9%) 

Note: the figures in brackets represent the number of farms having converted given as a share of the TF sample 

over the period 2003-2006. 

 

3.2. Factors hypothesized to influence OF adoption 

Farmer’s characteristics 

It is commonly acknowledged that non-economic factors such as political and ideological 

perspectives, sensitivity to environmental problems, health and food quality considerations 

may induce a farmer to convert to OF. In a survey of 550 organic farmers made in Sweden in 

1990, 79% responded that the primary reason for converting was non-economic (i.e. 

enjoyment, environment, health, food quality, ergonometric or previous experience) instead of 

being related to reduce grain surplus, market adjustment, better economy or support provided 
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(Lohr and Salomonsson, 2000). Our data do not contain any variable describing the farmer’s 

opinion about issues related to environment, health and food quality. However we will control 

for the farmer’s level of education. Since better educated persons are often more sensitive to 

these issues but also because of the assumed link between education and knowledge regarding 

new technologies, we hypothesize better educated farmers to be more likely to adopt OT. In a 

review of factors influencing the adoption of conservation agriculture practices (including, but 

not restrained to, OT), Knowler and Bradshaw (2007) find that “education, be it specific or 

general, commonly correlates positively with the adoption of conservation agriculture 

practices; however, some analyses have found education to be an insignificant factor or even 

to negatively correlate with adoption”. Finally, we will introduce in our model a variable 

measuring the share of agri-environmental subsidies in total operating subsidies received by 

the farmer, as a proxy for his/her environmental awareness and environmental practices. We 

hypothesize that a farmer getting more agri-environmental subsidies is more likely to convert 

to OF. 

Farm’s characteristics  

We will control for farm size. Pietola and Oude Lansink (2001), for a sample of Finnish 

farms, find that farmers with large land areas and, consequently, good opportunities for 

practicing extensive farming technologies, are more likely to switch to OF. The marginal 

effect of land area on the probability to adopt OT was estimated at 0.5. The situation may be 

different in France, though, since the largest farms, which are commonly located in plains, are 

usually the most productive ones (in terms of yields). On the contrary, farms in less favored 

areas are usually smaller. Hence the yield differential between organic and conventional 

farming ( )ot cty y−  is expected to be lower for smaller farms, which should then have a 

higher probability to adopt OT. For the particular case of France, we thus hypothesize that 

larger farms (as measured by the farm UAA) will be less likely to adopt OT. 

Policies 

Even if the theory indicates that the higher the subsidies to OF, the greater the probability of 

adoption should be, there is little evidence on the magnitude of the effect. Pietola and Oude 

Lansink (2001) find that the probability of switching to OF increases at an increasing rate 

with increasing premium subsidies to the OF for Finnish farms during 1994-1997. They 

estimate that a 1% increase in the premium subsidy rate for OF increases the probability of 

choosing OT by 0.2%. Interestingly, the elasticity of the probability of conversion to the non-
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organic specific subsidy rate for land is the same. This latter result may suggest that the 

subsidy to support conversion may be seen by some farmers as a way to increase their 

revenues, at least during the period of conversion. Hence policies promoting OF may suffer 

from selection problems because subsidies may attract less productive conventional farmers to 

OF. Tzouvelekas et al. (2001), in a study of the olive-growing sector in Greece, make a 

similar analysis. They assess that a “loose” eligibility criterion for receiving the conversion 

subsidy has attracted “subsidy-hunters” not truly interested in producing organically but rather 

in absorbing the “organic” financial aid. Kumbhakar et al. (2009), for a sample of Finnish 

dairy farms (followed during the period from 1995 to 2002), also find evidence that higher 

subsidies increase the probability of OT adoption. 

In what follows, we will estimate the subsidy that each farmer would get over the next five 

years if converting to OF in the next year. This calculation is based on the assumption that the 

whole area is converted to OF and that the crop pattern does not change.5 We hypothesize that 

a higher expected subsidy will increase the probability to convert to OF. 

We will also introduce in the model the total amount of Common Agricultural Policy (CAP) 

subsidies received by the farm (as a ratio of its total output) to control for the dependency of 

farmers upon subsidies in general. Finally, some specific subsidies may be distributed by local 

administrations to encourage adoption of OF. Because we do not have such information, we 

will use as a proxy the average amount of subsidies received per farm in the département 

where each farm of our sample is located. The effect of the non-organic subsidies on the 

probability to adopt the OT may reflect the attitude of the farmer towards subsidies but may 

be ambiguous. On the one hand, “subsidy-hunters” may be interested in both non-organic and 

organic subsidies, implying a positive effect. On the other hand, farmers receiving a large 

amount of subsidies may find it sufficient and may not be interested in getting additional 

subsidies. 

Potential change in input costs 

Farmers who make an intensive use of fertilizers and plant protection may experience a larger 

reduction in input costs after adoption of OT, and may thus be more likely to adopt. However, 

a non-intensive use of fertilizers and plant protection (before adoption) could also indicate 

farmers’ environmental awareness and thus a higher probability to adopt. Also, farmers who 

use (before adoption) a relatively low level of fertilizers and pesticides are more likely to use 

                                                 
5 Crop-specific conversion subsidies were obtained from Ministère de l’Agriculture (2001). 
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a technology which is more similar to the OT and may thus be more likely to adopt OT. The 

effect of the intensity of fertilizer and plant protection use (before conversion) is therefore 

ambiguous but we expect the latter to dominate. In the forthcoming empirical application, we 

will use the ratio of fertilizer expenditure over the standard gross margin as a measure of 

intensity of fertilizer use.6 

Potential change in revenues 

We would expect that farms for which the expected loss in revenue after conversion from CT 

to OT is lower to be more likely to adopt OT. The revenue differential will depend on both 

yield and price differentials between OT and CT. In regions where yield has been historically 

high we expect a lower probability of conversion.  

The price differential between OT and CT also has an impact on expected revenues. Official 

statistics regarding the price of organic products do not exist in France. We therefore make 

use of the information available in our FADN sample to compute a price index for organic 

products and build a variable that measures the price premium that farmers could get if they 

were switching to OF. Again, this calculation is made under the assumption that the cropping 

pattern remains unchanged and that the entire crop area is converted.7 We are not aware of 

any study using such a variable to explain adoption. Pietola and Oude Lansink (2001) find 

that a 1% output price decrease increases the probability of choosing OT by 0.4%, but output 

price in their model is the same for both organic and conventional products. We expect 

farmers with a higher expected price premium to have a higher probability to adopt OT. 

Technical efficiency 

As mentioned earlier, there exists a number of studies comparing the TE of organic producers 

and conventional producers but few of which try to assess the influence of TE (before 

adoption) on the decision to convert to OF. Some studies suggest that organic farmers are 

more efficient technically compared to conventional farmers (Tzouvelekas et al. 2001 

applying stochastic frontier to data on olive-growers in Greece; Oude Lansink et al. 2002 

                                                 
6 As far as we know, there is no study comparing the cost of organic versus conventional farming with an 

empirical analysis on a sample of farms. Cobb et al. (1999), with a case-study of one farm in England, find that 

switching to OF induces higher labor costs and higher fixed costs (in this particular farm the conversion to 

organic agriculture required different machinery). 

7 The price index for organic products was calculated from the FADN data, using the quantities and values of 

products sold by farmers fully engaged in organic production. 
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applying DEA on data from crop and livestock farms in Finland). Other studies suggest the 

opposite: Serra and Goodwin (2009), using the local maximum likelihood method introduced 

by Kumbhakar et al. (2007), find that (Spanish) organic farms have efficiency levels that are 

below conventional farms. These authors argue that disparities between their results and 

results from other studies could be due to the difference in methodology. Sipiläinen and Oude 

Lansink (2005), in an unpublished paper, find that organic dairy farms are less technically 

efficient than conventional farms in Finland, using stochastic frontier distance functions. 

Strictly speaking, the difference between average technical efficiencies between organic and 

conventional farmers cannot be interpreted to suggest that one group is more efficient than the 

other one since production frontiers are different for organic and conventional holdings. 

Differences in efficiency simply indicate that farms belonging to the group with the higher 

average TE operate closer to their production frontier than farms from the other group do to 

theirs. In a recent article Mayen et al. (2010), using formal testing, reject the hypothesis that 

organic and conventional farms employ a single, homogeneous technology using data on US 

dairy farms. They also find that organic dairy technology is 13% less productive than that 

used by conventional farms and find little difference in TE across the two groups. 

To our knowledge, the only study which considers TE as a potential factor driving adoption of 

OT is Kumbhakar et al. (2009). They propose a joint estimation where TE drives both 

technology choice and output. Using a sample of Finnish dairy farms (over the period from 

1995 to 2002), their results suggest that inefficiency is not a driving force behind adoption of 

OT (inefficiency has a negative effect on the probability of adoption). They also find that on 

average, organic farms are about 5% less efficient than conventional farms. 

In the forthcoming empirical application, we consider four-year average of TE (before 

adoption for future OF adopters) in order to smooth for climate shocks. 

Risk 

OF is generally perceived to be riskier than conventional farming, as organic farmers are 

restricted in the use of pesticides and artificial fertilizers that may help the farmer in reducing 

production risk (Gardebroek et al., 2010). Also, as it is the case with any new technology, a 

farmer willing to adopt OT has to face uncertainty regarding expected revenues and costs 

since it may take some time for him/her to learn about this new technology. Sipiläinen and 

Oude Lansink (2005), using data on Finnish dairy farms, estimate the length of the conversion 

and learning process of OF to be on average 6-7 years. 
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Gardebroek et al. (2010) estimate the Just-Pope stochastic production function using panel 

data of Dutch organic and conventional specialized arable farms covering the period 1990–

1999. They find evidence that manure and fertilizers are risk-increasing inputs on organic 

farms but risk-decreasing inputs on conventional farms. Capital and land are found to reduce 

production risk while labor and other variable inputs are found to increase production risk in 

both farm types. However, unobserved differences in risk management or soil types are found 

to be much more important in explaining output risks on both farm types than variations in 

inputs used.  

Using data from a sample of Spanish farms specialized in the production of arable crops, 

Serra et al. (2008) find evidence that both conventional and organic farmers are risk averse. 

Both groups are found to exhibit decreasing absolute risk aversion (DARA) but organic 

farmers have preferences that are very close to constant absolute and relative risk aversion 

(CARA and CRRA). The authors explain that these differences may come from the fact that 

organic farmers in the sample considered are wealthier than conventional growers (and may 

thus be willing to take more risk). 

The measurement of risk aversion goes beyond the scope of this article. However, we will 

consider explanatory variables that may be linked to unobserved risk aversion. We include a 

categorical variable to control for the legal status of the farm which distinguishes between 

farms managed through a sole proprietorship, partnership management, and companies. In the 

latter, private assets are separated from professional assets so we would expect farms run as 

companies to be less risk averse than individual farms, in particular if there is no partnership 

in farm management.  

We will also control for the ratio of debt to assets and assume that farms with a higher share 

of debt will be less likely to convert to OF due to their current financial vulnerability. 

Social learning / neighborhood effects 

As far as we know, the role of social learning and neighborhood effects on the adoption of OT 

has not been studied yet. However, it is recognized that information provided about new 

technologies (by other farmers, media, meetings, extension officers) usually positively 

correlates with adoption of these technologies (Knowler and Bradshaw 2007). Thus we should 

expect CT farmers neighboring OT farmers to learn more quickly about the technology and to 

have a higher probability to adopt OT. We will use the share of UAA under OT in the 
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département where the farmer is located as a proxy for neighborhood effects in our regression 

models. 

3.3. Descriptive statistics of the data 

Table 2 presents descriptive statistics of the surveyed French farms during the years 1999-

2006. Overall, 7,702 farms were included in the survey over this period. The largest farms in 

our sample are those specialized in COP (TF13) and other field crops (TF14), with an average 

UAA of 142 hectares (ha) and 111 ha respectively. These farms receive the highest amount of 

operational subsidies, on average, and are the least labor-intensive farms.  

 

Table 2: Descriptive statistics of the data used; averages for the whole period 1999-2006 

Type of 
farming 

Number of 
farms 

UAA (ha) Total output 
(euros) 

On-farm labor 
(AWU) 

Total operational 
subsidies (euros) 

TF13 2,505 142 109,193 1.6 52,939 

TF14 1,298 111 186,270 2.4 36,063 

TF28 412 14 261,059 4.8 6,647 

TF29 275 4 255,058 4.7 2,031 

TF37 1,441 23 231,215 3.4 3,477 

TF38 517 41 128,975 2.5 7,860 

TF39 603 32 196,269 5.2 15,356 

TF60 651 81 151,978 2.6 28,457 

Note: 1 AWU (Annual Working Unit) corresponds to a full-time equivalent of 2,200 hours of labor per year. 

 

A summary description of the variables that will be used as explanatory factors in the OF 

adoption model is available in Appendix A1. 

 

4. Methodology 

4.1. A two-stage approach 

We proceed in two steps. In the first step, we calculate the TE scores of all farms present in 

the FADN sample between 1999 and 2006. As it will be explained below, we use three 

competing methods to obtain TE scores and take into account that farmers operate in different 

agro-climatic conditions. In the second step, we estimate the probability of a farm converting 

to OF in the next year as a function of a set of farm and farmer characteristics including the 
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farmer’s average TE score computed over the past four years. The second-stage estimation is 

made on a selected sample of farms: those farms that are present at least one year during the 

2003-2006 period and for which the TE score could be calculated over the four past years. 

Since our sample is a rotating sample, we are not able to control for entry and exit of farms 

over time. We believe that this procedure will not induce selection bias in the second-stage 

estimation.  

We chose to calculate the average TE score over the past four years in order to get a “robust” 

measure of TE for each farmer. Indeed, farmers may exhibit lower TE scores when facing 

adverse weather conditions. A four-year average allows smoothing such effects. Going further 

than four years would have entailed the loss of too many observations at the second-stage of 

the analysis. Further details on the methodology are provided in the following. 

4.2. First stage: calculation of TE 

In the literature two main approaches compete to calculate TE: parametric methods, in 

particular stochastic frontier (SF), and non-parametric methods, in particular DEA and FDH. 

The SF approach relies on estimating a production function with a double error term, 

including a random error term and a term representing the technical inefficiency (Aigner et al. 

1977; Meeusen and van den Broeck 1977). This method enables to account for noise, but may 

give rise to misspecification errors. By contrast, DEA is a deterministic method but does not 

rely on specification assumptions (see Farrell 1957; Charnes et al. 1978). The idea behind 

DEA is to construct, with linear programming, a piece-wise frontier that envelops all 

observations of the sample used. The distance of an observation to the frontier represents its 

technical inefficiency, with observations on the frontier being fully technically efficient and 

with a TE score of 1. FDH relies on the same idea, except that the convexity assumption of 

the frontier is relaxed, and thus the frontier is step-wise and envelops the observations more 

closely than DEA does (see Tulkens 1993). 

In order to draw robust conclusions, the three approaches, namely SF, DEA and FDH, are 

used here. In each case the model includes one single output, namely total output in value, and 

four inputs, namely UAA (ha), total labor used in Annual Working Units (AWU; 1 AWU 

corresponds to one full-time equivalent that is to say 2,200 hours of labor per year), 

intermediate consumption in value, and the value of assets. The Translog function is specified 

for the SF approach. An input-oriented model is assumed for DEA and FDH. The assumption 

of variable returns to scale (VRS) is made for the DEA model. Separate frontiers are 

constructed per TF. In addition, in the case of DEA and FDH, yearly frontiers are constructed, 
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while a single frontier on the merged period is estimated with SF, including a trend in the 

production function. 

Farmers’ TE may be affected by agro-climatic conditions, and the efficiency scores calculated 

may not reflect only farmers’ management practices but may also incorporate some 

inefficiency component due to unfavorable natural conditions if the latter are not controlled 

for in the efficiency model. In our case, this may in turn affect the influence of TE on the 

probability to convert. For this reason, TE frontiers are constructed separately for groups of 

farms, depending on their agro-climatic conditions. Farms are firstly classified into two or 

three groups within each TF with a hierarchical agglomerative clustering procedure based on 

annual municipality data relating to slope, altitude, average monthly minimal temperatures, 

average monthly maximal temperatures, average water deficits and average monthly climatic 

indices (calculated with sunshine and frost durations and evapotranspiration). Then TE is 

calculated with separate frontiers for each cluster in each TF. 

Non-parametric methods are sensitive to outliers. For this reason, in addition to cleaning 

manually inconsistent data, outliers were removed before efficiency computations with DEA 

and FDH based on Wilson’s (1993) outlier detection method that relies on comparing 

geometric volumes spanned by subsets of data. Moreover, efficiency results from the DEA 

method may be affected by sampling variation. This problem, inherent to the method, implies 

that distance from the frontier (and thus inefficiency) may be underestimated if the most 

performing units of the population are not included in the sample at hand. To correct for this 

problem, bootstrapping followed by bias-correction or confidence interval construction is the 

only method available (Simar and Wilson 2000a). Here the smooth homogenous bootstrap 

proposed by Simar and Wilson (1998, 2000b) is used to provide bias-corrected technical 

efficiency scores for DEA. 

4.2. Second stage: estimation of the determinants of the conversion to OF 

Following (1), we assume that farmer i decides to convert to OF in period t if the expected net 

benefit of this decision is positive, that is if  

( ) ( )
5 5

* OT CT

1 1

0
t t

it it it
t t

d E E
+ +

+ +

≡ Π − Π >∑ ∑ .  (2) 

The latent variable, *itd , is not observed; only the decision to adopt OT or not is known to the 

econometrician. We assume that farm i’s expected net benefit from converting to OF can be 
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modeled as follows: * '
it it itd ε= +X β , where the vector X it includes characteristics of the farm 

and its environment. The decision model at time t is thus written as 

* ' 0it it itd ε= + ≥X β . (3) 

And the probability that farmer i adopts OT in year t is estimated using the following Probit 

model: 

( )'
it it itd F ν= +X β , (4) 

where dit equals 1 if the expected net benefit *
itd  is positive, and 0 otherwise. Function F is 

the cumulative distribution of the itε  error term, assumed standard normal. Maximum-

likelihood provides consistent estimates of the parameter vector β . 

Our purpose is to model the decision to convert to OF. In the data used farms that do adopt 

OT take the decision to convert to OF only once. Therefore, in our adoption model, a farm 

that converts to OF is included in the sample only once, in the year that the conversion is 

made, and excluded from the sample in the subsequent years (Khanna and Damon 1999 

followed a similar approach). Since it is likely that the decision to adopt OT is made a year 

before the actual conversion, and in order to eliminate simultaneity bias, all explanatory 

variables are measured in year t-1.  

The number of farms adopting OT is quite small in our sample (see Table 1), which makes it 

necessary, first, to estimate a unique adoption model with all TF merged and, second, to 

estimate the conversion model on a choice-based sub-sample in order to get a more balanced 

proportion of adopters and non-adopters (see Greene 2003). At this stage, 25 farms that 

converted to OF during the 2003-2006 period are included in our final sample along with 147 

non-adopters randomly drawn from the entire population of non-adopters over the period. The 

random draw is designed such that non-adopters appear only once in the final sample. In order 

to correct the bias induced by over-sampling one group of farms, we estimate the model using 

the weighted endogenous sampling maximum likelihood (WESML) estimator derived by 

Manski and Lerman (1977). The log-likelihood function is written as follows: 

( ) ( ) ( ){ },
ln ln 1 ln 1it it iti t

L d F d Fρ  = + − −  ∑ ' '
it itX β X β   (5) 
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where itd  describes the adoption decision ( 0itd =  or 1itd = ), 

( ) ( )( )1 1 0 01it it itd dρ κ ζ κ ζ= + − , with 1κ  and 0κ  the true population proportions 

(obtained from the representative sample of farms), and 1ζ  and 0ζ  the proportions of 

adopters and non-adopters in the choice-based sample.8  

Three regression models will be estimated, differing in the TE score used as an explanatory 

variable: one regression including the average (over the past four years) TE score calculated 

with DEA under VRS and corrected for sampling bias; one regression including the average 

TE score calculated with FDH; one regression including the average TE score estimated with 

SF. 

 

5. Results 

5.1. Technical efficiency 

Table 3 presents technical efficiency averages per TF calculated with the three different 

methods, with ex ante clustering of farms depending on the agro-climatic conditions. We 

distinguish farmers who converted to OF and farmers who use a CT during the years 2003-

2006. For farmers who converted to OF, we report the average TE score before conversion. 

For each of the three TE scores (DEA-based, FDH-based, SF-based), we performed mean 

comparison tests between the two groups of farmers with the same TF (under the assumption 

that the variances in the two sub-samples are unequal). We indicate in the table when the null 

assumption that the two means are equal is rejected. We present graphs of the distribution of 

the TE scores for both groups of farmers in Appendix A2. 

The average TE scores by TF vary depending on the computation method. For all TFs, the 

average TE score obtained using FDH is higher than the TE score calculated from the SF, 

itself being higher than the TE score obtained with DEA under VRS assumption. 

 

                                                 
8 The first and second derivatives of the log-likelihood function are weighted likewise and the asymptotic 

covariance matrix is corrected (Greene 2003). 
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Table 3: Technical efficiency results a: averages over the period 1999-2006 

 Bias-corrected DEA-based 

TE score 

FDH-based 

TE score 

SF-based 

TE score 

 Farms 
under CT 

Farms 
under future 

OT b 

Farms 
under CT 

Farms 
under future 

OT b 

Farms 
under CT 

Farms 
under future 

OT b 

TF13 0.73 0.74 0.90 0.92 0.79 0.82(**) 

TF14 0.71 0.75(*) 0.91 0.98(***) 0.81 0.78(*) 

TF28 0.69 0.75 0.94 0.94 0.80 0.77 

TF29 0.78 0.77 0.97 0.97 0.81 0.81 

TF37 0.56 0.51(**) 0.78 0.70(***) 0.71 0.67(***) 

TF38 - - - - 0.68 0.62(**) 

TF39 0.65 0.63 0.89 0.91 0.71 0.71 

TF60 0.72 0.75 0.92 0.93 0.78 0.83(***) 

       

Total 
number of 
farms 

5,778 63 5,778 63 6,152 69 

a Larger scores indicate higher TE. 

b (*), (**), (***) respectively indicates that the null assumption that the two means are equal is rejected at the 

10%, 5%, and 1% level of significance. 

 

The mean comparison tests based on TE scores calculated with DEA indicate that farmers in 

TF14 (field crops) who will convert to OT have higher average TE scores than farmers who 

will keep operating with CT. The same conclusion is reached from the mean comparison test 

applied to FDH-based TE scores but we get the opposite result from the SF-based TE scores. 

The mean comparison tests provide consistent results across the three types of TE scores for 

TF37 (high quality wine): farmers who will convert to OT have significantly lower TE scores 

than farmers who will remain with CT. Finally, mean comparison tests indicate significantly 

different SF-based TE scores between farmers who decide to convert to OF and farmers 

operating under CT in TF13 (COP), TF38 (other grape production) and TF60 (mixed 

cropping).  
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5.2. Determinants of the conversion to OF 

We present below the estimation results of the three Probit regression models, which differ 

only by the method of calculation of the TE scores (DEA-based, FDH-based, and SF-based) 

used as an explanatory variable. The three models are estimated on a sample of 172 farmers. 

A number of models were estimated differing on the explanatory variables’ combination, and 

we kept the one which provided the best fit to our data.9 In this model, the TE score has been 

interacted with the size of the farm (UAA), with the potential conversion subsidy that the 

farmer could receive if converting next year (POTCONVSUBS) and with the potential 

difference in price between organic and convention products (POTDIFPRICE). Standard 

errors have been corrected following the method described earlier. Some descriptive statistics 

of the explanatory variables used in the final model are presented in Appendix A3. In order to 

control for the representativity of our final sample of non-organic farmers, we perform mean 

comparison tests for each explanatory variable between the 147 non-organic farmers 

randomly drawn and the entire sample of non-organic farmers. The means are not statistically 

different except in one case: the second category of the education variable. Based on these 

findings, we are confident that the randomly drawn sample of non-organic farmers is 

representative of the entire population of non-organic farmers. 

Results of the Probit estimations are presented in Table 4. Interestingly, only the TE score 

calculated from SFs is found to have a significant impact on the probability of conversion 

directly as well as indirectly through its cross effects with farm size (TE × UAA) and potential 

subsidies from conversion (TE × POTCONVSUBS). However, the marginal effect of past TE 

on the probability to convert to OF is found to be positive in the three models. In all three 

cases, the predicted probability of conversion is positively related to average past TE (see 

Figure 1). Our findings thus support those of Kumbhakar et al. (2009). 

 

                                                 
9 In particular, farmer’s age and regional dummies were tested. 
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Table 4: Results of the estimation of the probability to convert to OF 

Probability of conversion 
to OF in the next year 

DEA-based 
TE 

P>z FDH-based 
TE 

P>z SF-based 
TE 

P>z 

       
Constant -7.137 0.036 -12.876 0.065 3.987 0.140 
TE score 
(past 4-year average)  

7.116 0.150 11.428 0.119 -8.736 0.022 

UAA 0.000 0.993 0.013 0.447 -0.043 0.011 
EDUC = 1 (ref.) - - - - - - 
EDUC = 2 0.106 0.685 0.068 0.808 0.187 0.499 
EDUC = 3 0.706 0.028 0.602 0.070 0.742 0.038 
STATUS = 1 (ref.) - - - - - - 
STATUS = 2 0.208 0.403 0.094 0.708 0.154 0.528 
STATUS = 3 0.838 0.017 0.883 0.019 0.923 0.013 
SH_ENVSUBS 0.015 0.062 0.015 0.069 0.007 0.241 
DEBTTOASSET -0.054 0.760 -0.123 0.557 0.039 0.797 
FERT_SGM -1.339 0.265 -1.635 0.208 -1.296 0.400 
SUBTOOUT 0.109 0.918 0.519 0.623 1.326 0.250 
POTDIFPRICE 0.021 0.570 0.017 0.769 -0.073 0.116 
POTCONVSUBS 0.013 0.166 0.024 0.177 -0.017 0.033 
TE x UAA -0.002 0.874 -0.016 0.394 0.049 0.011 
TE x POTCONVSUBS -0.021 0.145 -0.028 0.156 0.023 0.052 
TE x POTDIFPRICE -0.021 0.745 -0.008 0.903 0.101 0.125 
REG_SH_UAAOT -8.174 0.301 -6.286 0.506 -11.611 0.214 
REG_FARMSUBS 0.000 0.945 0.000 0.882 0.000 0.673 
REG_N_FERTAREA 0.000 0.898 0.001 0.823 -0.001 0.890 
Year 2003 (0/1) -0.011 0.980 0.053 0.901 0.131 0.768 
Year 2004 (0/1) 0.315 0.379 0.443 0.216 0.319 0.318 
Year 2005 (0/1) 0.714 0.033 0.766 0.020 0.622 0.057 
       
Log-pseudolikelihood -7.527  -7.378  -7.577  
Pseudo R2 0.147  0.164  0.142  

Note: in bold, significant effects. 

 

The three models also provide consistent findings on the positive role of education: better 

educated farmers are found to be more likely to convert to OF than less educated farmers. 

More educated farmers may be more sensitive to environmental and food safety issues, they 

may also learn more quickly about new technologies, than less educated farmers. The legal 

status of the farm is also found to be a significant driver of conversion to OF. Farms with 

company-type status are more likely to convert to OF than farms with sole proprietorship. 

This result may be explained by farms in sole proprietorship being liable for all farm debts. 

These two findings confirm our expectation. 
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In the Probit model using SF-based TE, smaller farms (when size is measured by UAA) are 

found to be more likely to adopt OT, which is probably explained by smaller farms getting 

lower yields under CT than larger farms (and thus expecting a lower yield loss if converting 

to OF). 

In two out of the three Probit regression models, we find the expected result that farmers 

receiving more agri-environmental subsidies (as a percentage of total subsidies) are more 

likely to convert to OF. Also, farmers who incur higher fertilizers expenditure (relatively to 

their standard gross margin) are less likely to convert to OF (this variable is however not 

significant in any of the three models). The role of the potential difference in prices (organic 

versus non-organic products) and the potential conversion subsidies that could be received 

annually if converting next year is indeterminate. We find a (non-significant) positive effect 

in two Probit regression models but a (non-significant) negative effect in one model. The 

variables observed at the aggregate level of NUTS2 and NUTS3 regions are not significant.  

 

Figure 1: Predicted probability of conversion as a function of TE scores 
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In Table 5, we present the elasticity of the probability of conversion with respect to the four 

main variables of interest: 4-year average of TE score, UAA, potential difference in prices, 
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and potential subsidies after conversion, for the three regression models. Elasticities have 

been computed at the sample mean. 

 

Table 5: Elasticity of the probability of conversion 

Elasticity of the probability of conversion 
with respect to: 

Elasticity Standard Error p-value 

    
Model with DEA-based TE scores 
TE score 0.891 1.597 0.577 
UAA -0.437 0.721 0.545 
Potential difference in prices -0.200 0.256 0.436 
Potential conversion subsidies -0.632 1.942 0.745 
    
Model with FDH-based TE scores 
TE score 2.643 3.048 0.386 
UAA -0.122 0.763 0.873 
Potential difference in prices -0.269 0.282 0.341 
Potential conversion subsidies -0.029 2.276 0.990 
    
Model with SF-based TE scores 
TE score 4.740 2.702 0.079 
UAA -1.467 0.872 0.092 
Potential difference in prices -0.109 0.197 0.580 
Potential conversion subsidies 0.625 2.143 0.770 

Note: in bold, significant elasiticities. 

 

Elasticities of the probability of conversion with respect to TE scores are found to be positive 

in the three models, but significant only when TE scores are calculated using the SF approach. 

Elasticity with respect to farm size (UAA) is negative in the three models but significant only 

in the case of SF-based TE. The elasticities with respect to the potential difference in prices 

and with respect to the potential subsidies are not found significant. The low number of OT 

adopters in our sample probably explains the lack of significance of most elasticities.  

The TE scores were calculated taking into account that farmers may operate in different agro-

climatic conditions. In order to test for the role of such conditions on OT adoption, we re-

calculated the TE scores without taking into account heterogeneity in agro-climatic conditions 

(i.e., without any clustering). The graphs showing how the predicted probability of conversion 

to OF varies as a function of TE scores are presented in Appendix A4. Interestingly, in two 

out of the three Probit models, the relationship is now found negative. Hence, not controlling 
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for agro-climatic conditions when calculating TE scores may lead to the misleading 

conclusion that less efficient farmers have a higher probability to adopt the OT.  

 

6. Conclusion 

Using a sample of French farms over the 1999-2006 period, we test whether less technically 

efficient farmers are more likely to convert to OF in order to benefit from conversion 

subsidies. Despite some limitations in our data, we find no evidence of such selection effect 

and our findings support those of Kumbhakar et al. (2009) on Finnish farms. On the contrary, 

our estimation results indicate that more technically efficient farmers are more likely to 

convert to OF. This finding is found to be robust to the method of calculation of TE scores, 

either parametric (SF) or non-parametric (bias-corrected DEA or FDH). This study also 

confirms that farm’s characteristics (education, farm size) and farmers’ practices under the CT 

(as measured by the share of agri-environmental subsidies in total subsidies and expenditure 

in fertilizers) do impact the probability of conversion to OF. 

The low number of OT adopters in our sample was the main limitation of our analysis and 

probably explains the lack of significance of a number of variables. With a higher number of 

observations, we could have tested for heterogeneous responses across different types of 

farming or geographical areas. We also expect in the future to be able to assess how TE has 

evolved for farmers who converted to OF.  
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Appendices 

 

Appendix A1: Description of the explanatory variables used in the OF adoption model. 

 
Variable name Measurement 

unit 
Description Source 

Farm and farmer-specific data 
UAA  ha Farm’s UAA FADN 1999 to 2006 
EDUC Categorical  

variable 
Farmer’s education level  
1. No or primary education 
2. Low secondary education 
3. High secondary education 

FADN 1999 to 2006 

STATUS Categorical  
variable 

Farm’s legal status 
1. Sole proprietorship 
2. Partnership 
3. Companies 

FADN 1999 to 2006 

SH_ENVSUBS % Farm’s share of agri-
environmental subsidies in 
total operating subsidies 

FADN 1999 to 2006 

DEBTTOASSET ratio Farm’s debt to asset ratio FADN 1999 to 2006 
FERT_SGM ratio Farm’s fertilizers 

expenditure to standard 
gross margin 

FADN 1999 to 2006 

SUBTOOUT ratio Farm’s total operating 
subsidies to total output 

FADN 1999 to 2006 

POTDIFPRICE euro Potential difference in prices 
between organic and 
conventional products, for 
the farm 

Authors’ own 
calculation based on 
FADN 1999-2006  

POTCONVSUBS euro/ha Potential yearly conversion 
subsidies, for the farm if 
converting next year 

Authors’ own 
calculation based on 
FADN 1999-2006 

NUTS3 (“département”) region-specific data 
REG_SH_UAAOT Ratio UAA under OT to regional 

UAA 
IFEN  

REG_FARMSUBS Euro Average amount of CAP 
(pillar 1 and pillar 2) 
subsidies received by farm 
beneficiaries 

ODR 

NUTS2 (“région”) region-specific data 
REG_N_FERTAREA kg/ha Average ratio of regional 

amount of nitrogen used to 
regional fertilizable area 

IFEN 
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Appendix A2: Distribution of TE scores for farmers with CT (left graphs) and farmers 

who will convert to OT between 2002 and 2006 (right graphs) 
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TE scores computed from DEA 
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TE scores computed from FDH 
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TE scores computed from SF 
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Appendix A3: Descriptive statistics of the explanatory variables in the Probit models 

(averages for the 2003-2006 period and mean-comparison test) 

 
Farmers with future 

OT 
Farmers with CT, 
random sample 

Farmers with CT, 
full sample 

Mean comparison 
test between  
(B) and (C) 

  

Average (A) Average (B) Average (C) p-value 

Number of farmers 25 147 2,755  

     

DEA-based TE score 0.64 0.65 0.66 0.40 

FDH-based TE score 0.86 0.86 0.87 0.55 

SF-based TE score 0.76 0.76 0.77 0.26 

UAA 75 91 92 0.84 

EDUC = 1  0.20 0.30 0.36 0.11 

EDUC = 2 0.40 0.57 0.49 0.04 

EDUC = 3 0.40 0.13 0.15 0.46 

STATUS = 1  0.44 0.56 0.54 0.54 

STATUS = 2 0.36 0.37 0.40 0.42 

STATUS = 3 0.20 0.07 0.06 0.70 

SH_ENVSUBS 6.0 3.4 2.9 0.59 

DEBTTOASSET 0.96 0.80 2.00 0.69 

FERT_SGM 0.10 0.13 0.13 0.90 

SUBTOOUT 0.17 0.19 0.19 0.89 

POTDIFPRICE -9.17 -8.32 -10.25 0.49 

POTCONVSUBS 328 320 329 0.46 

REG_SH_UAAOT 0.02 0.02 0.02 0.75 

REG_FARMSUBS 7,348 8,419 8,187 0.45 

REG_N_FERTAREA 138 139 138 0.64 
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Appendix A4. Results when TE scores are calculated without taking into account that 

farmers operate in different agro-climatic conditions. 

 

Predicted probability of conversion as a function of TE scores 
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Elasticity of the probability of conversion  

Elasticity of the probability of conversion 
with respect to TE score: 

Elasticity Standard Error p-value 

    
DEA-based TE scores -0.652 1.367 0.633 
FDH-based TE scores -0.171 2.017 0.933 
SF-based TE scores 3.894 2.333 0.095 

 

 


