
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2008–103 

 
  

A MODEL OF PARTNERSHIP FORMATION 
 

 

By Dolf Talman, Zaifu Yang 
 
 
 

December 2008 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



A Model of Partnership Formation∗

Dolf Talman† and Zaifu Yang‡

December 10, 2008

Abstract

This paper presents a model of partnership formation. A set of agents wants to
conduct some business or other activities. Agents may act alone or seek a partner
for cooperation and need in the latter case to consider with whom to cooperate and
how to share the profit in a collaborative and competitive environment. We pro-
vide necessary and sufficient conditions under which an equilibrium can be attained.
In equilibrium, the partner formation and the payoff distribution are endogenously
determined. Every agent realizes his full potential and has no incentive to deviate
from either staying independent or from the endogenously determined partner and
payoff. The partnership formation problem contains the classical assignment market
problem as a special case.
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1 Introduction

Partnership is one of the most common and fundamental relation patterns in society.

There is a set of agents who wish to conduct business or some other economic activities.

Each agent may act alone or seek a partner for cooperation. When an agent acts as a

sole proprietor, he gains a certain payoff by himself, which could be his outside option.
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When an agent cooperates with another agent, they obtain a joint payoff and this value

has to be divided between the two partners. Different partners generate different joint

payoffs and thus may lead to a different payoff share for an agent. In this collaborative

and competitive environment, each agent has to evaluate what is more profitable, acting

alone or seeking a partner. In the latter case, he has to decide with whom to cooperate

and how to share the joint payoff in a satisfactory way. We may imagine that after an

initial period of negotiation and bargaining, a number of partners and independents will be

formed. Under proper circumstances, this process will reach an equilibrium state in which

every agent is satisfied in the sense that no further more favorable deals could be obtained.

In equilibrium, all agents realize their full potential and have no incentive to deviate from

either staying independent or cooperating with the endogenously determined partner.

Our analysis is closely related to the models on assignment markets studied by Koop-

mans and Beckmann (1957), Shapley and Shubik (1972), Shapley and Scarf (1974), Craw-

ford and Knoer (1981), Kelso and Crawford (1982), Svensson (1983), Quinzii (1984),

Kaneko and Yamamoto (1986), and Yamamoto (1987). In their classic papers, Koop-

mans and Beckmann (1957) and Shapley and Shubik (1972) investigate assignment mar-

kets from the viewpoint of equilibrium theory and cooperative game theory, respectively.

In such markets, there are many buyers and sellers, and transactions are bilateral, namely,

bring together a buyer and a seller of a single commodity. By means of duality theory

in linear programming it is shown that the set of Walrasian equilibrium price vectors is a

nonempty lattice and coincides with the core. Shapley and Scarf (1974) consider a swap

market model without monetary transfers and show the existence of a core allocation.

Svensson (1983), Quinzii (1984), Kaneko and Yamamoto (1986), and Yamamoto (1987)

extend the models of Koopmans and Beckmann (1957), Shapley and Shubik (1972) by

allowing nonlinear utilities in both money and items.

Crawford and Knoer (1981) propose a price adjustment process for the assignment

markets studied by Koopmans and Beckmann (1957), Shapley and Shubik (1972) and

prove that their process converges to an equilibrium. Kelso and Crawford (1982) examine

a job assignment model in which each firm can hire many workers but each worker is

allowed to work only at one firm. They prove through a salary adjustment process that

there exists an equilibrium, if every firm views all workers as substitutes. This latter

condition is called gross substitutes and has been widely used in auction, matching and

housing models, see for instance, Roth and Sotomayor (1990), Gul and Stacchetti (1999,

2000), Milgrom (2000), Ausubel (2006), Sun and Yang (2006), and Ostrovsky (2008).

This paper presents a new model, the partnership formation problem that subsumes

and extends the assignment models studied by Koopmans and Beckmann (1957), Shapley

and Shubik (1972), and Crawford and Knoer (1981). In these assignment models the role
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of an agent is exogenously given and each agent is either a buyer (firm) or a seller (worker).

So, all agents are exogenously split into two disjoint groups. Agents in the same group

do not have any involvement with each other and cannot work together as partners. In

the current model, the role of an agent need not be exogenously given and each agent

may stay alone or work together with someone else. Precisely, because it is possible for

an agent to form a partnership with anyone else, this creates not only more opportunities

for agents to form partners but also more obstacles to cooperate. We provide necessary

and sufficient conditions for the existence of an equilibrium in the partnership formation

problem. Second, more importantly, we give a complete characterization of the set of

solutions to the problem and offer a general sufficient condition. The condition is always

satisfied by the assignment market models, and so it explains why the assignment models

always possess an equilibrium.

In the partnership formation problem, permitted coalitions only consist of at most two

individuals. Simple as they are, such coalitions are compelling, relatively easy to form,

and widely observed in real life. For example, most transactions, trade, and merger occur

bilaterally. Furthermore, conditions for equilibrium existence are rather mild and thus

can be easily satisfied. In addition, an analysis on partnership formation may yield useful

insights into many practical situations how stable partnerships can be built and such an

analysis is also a necessary step to the study of more general coalition formation problems.

From a different perspective, the following three papers deal with the latter problem. Hart

and Kurz (1983) examine a general coalition formation problem. Assuming that players’

prospects in various coalition structures are evaluated by a coaliton structure value, they

study stable coalition structures using a strategic form game. Aumann and Myerson (1988)

investigate endogenous formation of cooperation structure under which players’ payoffs

follow the Myerson value, i.e., the Shapley value in graph games. Qin (1996) considers a

cooperation-formation game in which players choose independently with whom they wish

to cooperate in a given coalitional game, and players’ payoffs are specified by a solution

imposed on the coalitional game. He shows how cooperation evolves under best-response

and fictitious-play learning processes.

The rest of the paper proceeds as follows. In Section 2 we present the model. In

Sections 3 we establish all existence results. In Section 4 we conclude.

2 The model

Suppose there are n agents and let N = {1, 2, . . . , n} denote the set of agents. Each agent

wishes to engage in a business activity and seeks a partner to cooperate or acts alone. If

two agents i and j in N , j 6= i, cooperate, they make a total payoff of v({i, j}). The value
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v({i, j}) may differ for different pairs i and j. If agent i ∈ N acts alone, he will have a

payoff of v({i}). We call v(·) the value function. For any positive integer k, let Ik denote

the set {1, · · · , k}.

Definition 2.1 An assignment on N is a partition P = {U1, · · · , Uk} of N satisfying

that |Uh| ≤ 2 for every h ∈ Ik.

When, for an assignment P = {U1, · · · , Uk} on N , |Uh| = 2 for some h ∈ Ik, we say

that the two agents in Uh are partner of each other or are being matched in P , and when

|Uh| = 1, we say that the single agent in Uh is a sole proprietor or an independent in P .

An assignment is a complete matching if every agent has a partner. A payoff vector is a

vector r ∈ IRn with ri the payoff or revenue of player i ∈ N .

In this economic environment, while bearing in mind that any other agent j could be

both his partner and competitor, each agent i ∈ N has to contemplate whether to act

alone or seek a partner and how to share the joint payoff in case of cooperation. If agent

i acts alone, he will get a payoff of v({i}). An agreement or contract between agents i

and j would specify how the joint payoff v({i, j}) should be divided when the agreement is

signed by both agents who consent to be partner of each other. Of course, a rational agent

i will not rush to form a partnership with another agent j merely because agent j could

offer him immediately a payoff share higher than his own value v({i}). He will instead try

to squeeze payoff gain as much as possible from any other agent and ultimately enter a

partnership with someone until he has contented himself that no better contracts could be

obtained with someone else. We look for an equilibrium state in which every agent will

be satisfied with staying independent or cooperating with a specific partner and with his

payoff share and therefore has no incentive to deviate. This problem is called the partner

formation problem and is denoted by (N, v).

Definition 2.2 An allocation (P, r) for the partner formation problem (N, v) consists

of an assignment P on N and a payoff vector r ∈ IRn satisfying that ri = v({i}) if agent

i ∈ N is an independent in P and rj + rh = v({j, h}) if agents j ∈ N and h ∈ N are

partners of each other in P .

An allocation is therefore an assignment and a payoff vector such that the payoff of a

sole proprietor is equal to his own value and if two agents are matched they get a total payoff

equal to their joint value. The following equilibrium concept yields for each partnership

formation problem a stable set of allocations.

Definition 2.3 An equilibrium for the partner formation problem (N, v) is an alloca-

tion (P ∗, r∗) satisfying that r∗i ≥ v({i}) for every i ∈ N and r∗j + r∗h ≥ v({j, h}) for every

j, h ∈ N , j 6= h.

4



An allocation is an equilibrium if every agent receives a payoff at least equal to the value

when he is an independent and every pair of agents receives a total payoff at least equal to

the value they get when they are matched. So, no agent has an incentive to deviate from

being an independent or from the endogenously determined partner and payoff.

Definition 2.4 An assignment P̄ = {Ū1, · · · , Ūk} on N is socially optimal for the

partnership formation problem (N, v) if

k∑

i=1

v(Ūi) ≥
l∑

j=1

v(Uj)

for any assignment P = {U1, · · · , Ul} on N .

The next lemma shows that an equilibrium assignment is socially optimal.

Lemma 2.5 If an allocation (P ∗, r∗) is an equilibrium for the partner formation prob-

lem (N, v), then the assignment P ∗ is socially optimal.

Proof. Let P ∗ = {U∗
1 , · · · , U∗

k} and take any assignment P = {U1, · · · , Ul}. Let K =

{Ui | |Ui| = 1, i ∈ Il} and L = {Ui | |Ui| = 2, i ∈ Il}. Since (P ∗, r∗) is an allocation, we

have
∑k

i=1 v(U∗
i ) =

∑
i∈N r∗i . From the definition of an equilibrium, we get

∑k
i=1 v(U∗

i ) =
∑

i∈N r∗i
=

∑
{i}∈K r∗i +

∑
{j,h}∈L(r∗j + r∗h)

≥ ∑
{i}∈K v({i}) +

∑
{j,h}∈L v({j, h})

=
∑l

j=1 v(Uj).

This shows that the equilibrium assignment P ∗ is socially optimal. 2

The following example shows that an equilibrium allocation may not always exist.

There are three agents with payoffs given by v({i}) = 0 for i = 1, 2, 3, v({1, 2}) = 3,

v({1, 3}) = 5, v({2, 3}) = 3. It is easy to see that the assignment P = {{1, 3}, {2}} is the

unique socially optimal assignment. It is sufficient to consider the allocation (P, r) where

r = (r1, r2, r3) = (r1, 0, 5 − r1) with r1 ≥ 0. Then r1 + r2 < 3 = v({1, 2}) if r1 < 3 and

r2 + r3 < 3 = v({2, 3}) if r1 > 2. This demonstrates that (P, r) cannot be an equilibrium.

In the classical assignment problem as studied by Koopmans and Beckmann (1957),

Shapley and Shubik (1972), Crawford and Knoer (1981), there are two types of agents: a

group N1 of buyers (firms) and a group N2 of sellers (workers). When a buyer i ∈ N1 and a

seller j ∈ N2 cooperate, they can achieve a value of v({i, j}). When each agent i ∈ N1∪N2

acts independently, he gets a payoff of v({i}). As will be shown in Section 3, this problem

can be formulated as a special case of the partnership formation problem.
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3 Existence results

In this section we state conditions under which the partnership formation problem has

an equilibrium. First, we give necessary and sufficient conditions. Consider the following

linear programming problem:

(P) min
∑n

i=1 ri

s.t.
∑

i∈U ri ≥ v(U), ∀U ⊆ N, |U | ≤ 2.

Its dual linear programming problem is given by

(D) max
∑

U⊆N, |U |≤2 λUv(U)

s.t. λ{h} +
∑

l 6=h λ{h,l} = 1, ∀h ∈ N

λU ≥ 0,∀U ⊆ N, |U | ≤ 2.

The following theorem establishes an intimate relation between the partnership forma-

tion problem and an integer linear programming problem.

Theorem 3.1 The partnership formation problem has an equilibrium if and only if the

dual linear programming problem (D) has an integer optimal solution.

Proof. Let λU∗1 = 1, · · ·, λU∗
k

= 1, λU = 0 for all other U ⊆ N , |U | ≤ 2, constitute an

integer optimal solution of the dual linear programming problem (D), for some U∗
1 , · · · , U∗

k

with |U∗
i | ≤ 2 for all i ∈ Ik. By the n equality constraints of (D), every h ∈ N appears in

U∗
1 , · · · , U∗

k exactly once. This implies that P ∗ = {U∗
1 , · · · , U∗

k} is a partition of N and thus

an assignment on N . By the well-known duality theorem of linear programming theory

(see Dantzig (1963)) and since both (P) and (D) have feasible solutions, the minimal value

of the primal linear programming problem (P) is equal to the maximal value
∑k

i=1 v(U∗
i ) of

the dual problem (D). So, there is an optimal solution r∗ = (r∗1, · · · , r∗n) of the problem (P)

such that
∑n

i=1 r∗i =
∑k

i=1 v(U∗
i ). By the complementarity theorem of linear programming

theory, we know that for every i ∈ Ik,
∑

j∈U∗i
r∗j = v(U∗

i ). Moreover, from (P) it follows

that
∑

j∈U r∗j ≥ v(U) for any U ⊂ N , |U | ≤ 2. This shows that (P ∗, r∗) is an equilibrium.

Suppose that (P ∗, r∗) is an equilibrium with assignment P ∗ = {U∗
1 , · · · , U∗

k}. By defi-

nition of an equilibrium r∗ is a feasible solution of the primal problem (P) and
∑n

i=1 r∗i =
∑k

i=1 v(U∗
i ). We will show that

∑k
i=1 v(U∗

i ) is the minimal value of the primal problem (P).

Let K = {U∗
i | |U∗

i | = 1, i ∈ Ik} and L = {U∗
i | |U∗

i | = 2, i ∈ Ik}. Take any feasible

solution r = (r1, · · · , rn) of (P). Because ri ≥ v({i}) for every i ∈ N and rj +rh ≥ v({j, h})
for all j, h ∈ N , j 6= h, we have

∑n
i=1 ri =

∑
{i}∈K ri +

∑
{j,h}∈L(rj + rh)

≥ ∑
{i}∈K v({i}) +

∑
{j,h}∈L v({j, h})

=
∑k

i=1 v(U∗
i ).
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Hence, by the duality theorem and since both (P) and (D) have feasible solutions, the

maximal value of the dual problem (D) is equal to
∑k

i=1 v(U∗
i ). Define λU∗1 = 1, · · · , λU∗

k
= 1,

and λU = 0 for all other U ⊆ N , |U | ≤ 2. Then the complementarity theorem implies that

these parameters yield an integer optimal solution of the dual problem (D). 2

The theorem gives a necessary and sufficient condition under which an equilibrium

exists. We now give a more natural sufficient condition under which an equilibrium exists.

A sequence S = (i1, · · · , il) of l different elements of N is a proper ordering if i1 < ij, for all

j > 1, and i2 < il when l ≥ 3. For i, j ∈ N , i 6= j, let M(i, j) = v({i, j})− v({i})− v({j})
be the marginal value of i and j of becoming partners.

Assumption 3.2 For any proper ordering S = (i1, · · · , il) with l odd and l ≥ 3, it holds

that (i) there exists some j, 1 ≤ j ≤ l, such that

M(ij−1, ij) + M(ij, ij+1) < M(ij−1, ij+1),

or (ii) there exist j and h between 1 and l with j ≥ h + 2 such that

M(ih, ih+1) + M(ij, ij+1) < M(ih, ij+1) + M(ih+1, ij),

where k − 1 = l when k = 1 and k + 1 = 1 when k = l.

This assumption says intuitively that, for any (proper) ordering of the agents with odd

length, there is some agent with respect to whom the marginal value of his two neighbors

in the ordering of becoming partners exceeds the total marginal values of them of becoming

partners with him, and if there is not such an agent there are two nonconsecutive agents

in the ordering with respect to whom the total marginal values of becoming partners with

the successor in the ordering of the other exceeds the total marginal value of becoming

partners with their own successor in the ordering. Under this assumption we have the

following theorem.

Theorem 3.3 Under Assumption 3.2 the partnership formation problem (N, v) has an

equilibrium.

To prove the theorem, we need to introduce an auxiliary result concerning the structure

of the set W of feasible solutions to the dual linear programming problem (D). Clearly, W

is a nonempty bounded polyhedron and is therefore a polytope in IRm with m = 1
2
n(n−1).

An element x of IRm will be denoted by

x = (x{1}, x{2}, · · · , x{n}, x{1,2}, · · · , x{1,n}, x{2,3}, · · · , x{2,n}, . . . , x{n−2,n}, x{n−1,n}).

Let C be the family of collections C = {S1, · · · , Sk} of proper orderings on N with

Sh = (ih1 , · · · , ihlh), h ∈ Ik, satisfying that {T1, · · · , Tk} is a partition of N , where Th =
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{ih1 , · · · , ihlh}, h ∈ Ik. For such C ∈ C, the vector q(C) ∈ IRm is defined by, for all h ∈ Ik,

qTh
(C) = 1 if lh = 1 or 2, q{ihj , i

h
j+1}(C) = 1

2
for j = 1, · · · , lh if lh ≥ 3, where j + 1 = 1

when j = lh, and qU(C) = 0 for all other U ⊆ N , |U | ≤ 2. Clearly, q(C) is an element of

W for any C ∈ C. Finally, let C0 be the subfamily of collections C = {S1, · · · , Sk} in C of

proper orderings on N with odd length or length equal to 2.

The next result gives a complete and useful characterization of the polytope W and

also presents a new class of polytopes whose vertices have components with values of only

0, 1
2
, and 1. It tells us the precise structure of the polytope W and thus enables us to know

how to achieve an integer optimal solution to the problem (D) and thus an equilibrium to

the partnership formation problem.

Lemma 3.4 The points q(C), C ∈ C0, are all the vertices of the polytope W .

Proof. The polytope W is equal to the set

{x ∈ IRm | Ax = e(N), x ≥ 0},
where A is an n×m-matrix with Uth column equal to AU =

∑
i∈U e(i) for U ⊂ N , |U | ≤ 2,

with e(i), i ∈ N , the ith unit vector in IRn, and e(N) =
∑n

i=1 e(i). We first show that for

every C ∈ C0 the point q(C) is a vertex of W . So, let C = {S1, · · · , Sk} be a collection of

proper orderings on N with Sh = (ih1 , · · · , ihlh), h ∈ Ik, satisfying for all h ∈ Ik that lh is odd

or equal to 2. Let the matrix B be defined as follows. For h ∈ Ik, the matrix B contains

column A{ih1} if Sh = (ih1), the two columns A{ih1 ,ih2} and A{ih2} if Sh = (ih1 , i
h
2), and the lh

columns A{ihj ,ihj+1} for j = 1, · · · , lh, where j + 1 = 1 when j = lh. Clearly, the matrix B is

a square matrix. Since lh is odd whenever lh > 2, the matrix B is of full rank. Moreover it

holds that q(C) = B−1e(N). Therefore, the matrix B is a feasible basis matrix and q(C)

is a vertex of W .

To prove the converse, take any feasible basis matrix B = (AU1 , . . . , AUn) of the matrix

A, so x = B−1e(N) ≥ 0. Suppose there is a row in B with only one element equal to one

and let this element correspond to the Uth column of the matrix A. Then at the basic

solution x corresponding to basis matrix B it must hold that xU = 1. Let H be equal to

N . If U = {i1} for some i1 ∈ H, perform a singleton-elimination: define sequence S = (i1),

delete i1 from H, and delete from the matrix B the row indexed by i1 and the column

indexed by U . If U = {i1, i2} for some i1, i2 ∈ H, where without loss of generality i1 < i2,

perform a pair-elimination: define sequence S = (i1, i2), delete from the set H both indices

i1 and i2, and delete from the matrix B the two rows indexed by i1 and i2 and any column

indexed by some U ′ containing i1 or i2 or both. Since x{i1,i2} = 1 it holds that x{i1,j} = 0

for all j ∈ H, j 6= i2, and x{h,i2} = 0 for all h ∈ H, h 6= i1.

This singleton- and pair-elimination of indices from H and rows and columns of B is

continued until no row of the remaining B is left that contains only one 1. In this way

8



a family of sequences of one or two elements of N being a partition of the set N \ H is

generated. We now prove that in each step of the elimination process the reduced matrix

B has full column-rank. By definition the initial matrix B is regular and therefore has full

column-rank. Clearly, by a singleton-elimination the new matrix B has full column-rank

again, because the column and the row of B being deleted are both unit vectors with a 1

as common element. At a pair-elimination step, two rows and one or more columns of B

are deleted. If more than one column is deleted from B, then, for the two rows that are

deleted, we have that one row is a unit vector and its 1 belongs to a column that is deleted,

and from the other row all ones belong to columns that are also deleted. Therefore the

remaining matrix B must have full column-rank. If only one column is deleted, the two

rows that are deleted are identical unit vectors. Since B has full column-rank and two rows

are identical, B must have at least one row more than columns and the remaining columns

still have full rank and therefore also the new matrix B.

After the singleton- and pair-elimination process the remaining matrix B has full

column-rank and therefore its number of columns is at most equal to its number of rows.

Moreover, each row of B has at least two ones, while by definition every column has at

most two ones. This can only be the case if the matrix B is a square matrix, has full rank,

and every row and column of B has precisely two ones. Let i1 be the smallest index in

the remaining index set H, then there exist j and h in H such that {i1, j} and {i1, h} are

indices of columns of B. Notice that j 6= h because B has full rank. Take i2 = j if j < h

and i2 = h if j > h. Now there must exist a chain {i1, i2}, · · · , {il−1, il}, {il, i1} of indices

of columns of the matrix B for some l ≥ 3. Next a chain-elimination is performed: define

sequence S = (i1, · · · , il), delete from the set H the indices i1, · · · , il, and delete from B

the l rows indexed by i1, · · · , il and the l columns indexed by the indices of the chain. We

repeat this chain-elimination on the remaining H and B until the index set H has become

empty. Clearly, any sequence S = (i1, · · · , il) obtained at a chain-elimination step is a

proper ordering with l ≥ 3. We still have to prove that S has odd length. Suppose that S

has even length, then the columns of the initial matrix B indexed by {i1, i2}, · · ·, {il−1, il},
{il, i1} are linearly dependent. This contradicts the fact that the matrix B has full rank.

For each proper ordering S = (i1, · · · , il) obtained in a chain-elimination step, it holds at

the solution x that x{ih,ih+1} = 1
2

for all h ∈ Il, where h + 1 = 1 when h = l.

Let C be the complete collection of proper orderings obtained at any singleton-, pair-

and chain-elimination step. Then C is an element of C0 and q(C) = B−1e(N). Since the

matrix B is any feasible basis, this implies that every vertex of W is equal to q(C) for some

C ∈ C0, which completes the proof. 2

Now we are ready to prove Theorem 3.3. In the proof, two basic ideas will be used. That

is, case (i) of Assumption 3.2 implies that for the players i1, · · · , il in the chain induced by
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the sequence S = (i1, · · · , il), they can do better by breaking the chain into a single player

ij and linking players ij−1 and ij+1 to form a new sub-chain. Case (ii) of the assumption

implies that for the players i1, · · · , il in the chain induced by the sequence S = (i1, · · · , il),
they can do better by breaking the chain into two sub-chains. The chain is broken between

players ij and ij+1 and between ih and ih+1 and then player ij is linked to player ih+1 to

form one sub-chain and player ij+1 is linked to player ih to form another sub-chain. In

both cases the sub-chains have smaller length than the original chain.

Proof of Theorem 3.3: Suppose the problem has no equilibrium, then the dual

linear programming problem has only non-integer optimal solutions. By Lemma 3.4 there

exists a vertex q(C), C ∈ C0, solving the dual problem (D), where C = {S1, · · · , Sk} is

a collection of proper orderings of odd length or length equal to 2. Because q(C) is not

an integer vector, we can assume without loss of generality that Sk = (i1, · · · , il) for some

odd number l, l ≥ 3. From Assumption 3.2 it follows that in case (i) there exists some j,

1 ≤ j ≤ l, such that

M(ij−1, ij) + M(ij, ij+1) < M(ij−1, ij+1),

and in case (ii) there exist j and h between 1 and l with j ≥ h + 2 such that

M(ih, ih+1) + M(ij, ij+1) < M(ih, ij+1) + M(ih+1, ij),

where p− 1 = l when p = 1 and p + 1 = 1 when p = l.

In case (i), we obtain

v({ij−1, ij}) + v({ij, ij+1}) < v({ij−1, ij+1}) + 2v({ij}).

If in case (i) it holds that l = 3, take C̄ = {S1, · · · , Sk−1, S̄k, S̄k+1}, where S̄k is a proper

reordering of the sequence (ij−1, ij+1), i.e., S̄k = (ij−1, ij+1) when ij−1 < ij+1 and S̄k =

(ij+1, ij−1) when ij−1 > ij+1, and S̄k+1 = (ij). Since C̄ is a collection of proper orderings, the

point q(C̄) is an element of W . The difference of the value of the dual linear programming

problem at q(C̄) and the vertex q(C) equals

v({ij}) + v({ij−1, ij+1})− (
1

2
v({ij−1, ij}) +

1

2
v({ij, ij+1}) +

1

2
v({ij−1, ij+1})) > 0.

Therefore q(C) is not an optimal solution of problem (D).

If in case (i) it holds that l ≥ 5, take C̄ = {S1, · · · , Sk−1, S̄k, S̄k+1}, where S̄k is a proper

reordering of the sequence (i1, · · · , ij−1, ij+1, · · · , il) and S̄k+1 = (ij). Since C̄ is a collection

of proper orderings, the point q(C̄) is an element of W . The difference of the value of the

dual linear programming problem at q(C̄) and the vertex q(C) equals

v({ij}) +
1

2
v({ij−1, ij+1})− (

1

2
v({ij−1, ij}) +

1

2
v({ij, ij+1})) > 0.
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Therefore q(C) is not an optimal solution of problem (D).

In case (ii), we obtain

v({ih, ih+1}) + v({ij, ij+1}) < v({ih, ij+1}) + v({ih+1, ij}).
If in case (ii) it holds that j = h+2, take C̄ = {S1, · · · , Sk−1, S̄k, S̄k+1}, where S̄k is a proper

reordering of the sequence (ih+1, ih+2), i.e., S̄k = (ih+1, ih+2) when ih+1 < ih+2 and S̄k =

(ih+2, ih+1) when ih+1 > ih+2, and S̄k+1 is a proper reordering of (i1, · · · , ih, ih+3, · · · , il).
Since C̄ is a collection of proper orderings, the point q(C̄) is a vertex of W . The difference

of the value of the dual linear programming problem at q(C̄) and the vertex q(C) equals

v({ih+1, ih+2}) +
1
2
v({ih, ih+3})− (

1
2
v({ih, ih+1}) +

1
2
v({ih+1, ih+2}) +

1
2
v({ih+2, ih+3})) > 0.

Therefore q(C) is not an optimal solution of problem (D).

Finally, if in case (ii) it holds that j > h+2, take C̄ = {S1, · · · , Sk−1, S̄k, S̄k+1), where S̄k

is a proper reordering of the sequence (i1, · · · , ih, ij+1, · · · , il) and S̄k+1 is a proper reordering

of the sequence (ih+1, · · · , ij). Since C̄ is a collection of proper orderings, the point q(C̄)

is a vertex of W . The difference of the value of the dual linear programming problem at

q(C̄) and the vertex q(C) equals

1

2
v({ih, ij+1}) +

1

2
v({ih+1, ij})− (

1

2
v({ih, ih+1}) +

1

2
v({ij, ij+1})) > 0.

Therefore q(C) is not an optimal solution of problem (D).

This shows that the dual linear programming problem (D) doesn’t have any non-integer

optimal solution, and therefore it must have an integer optimal solution. Consequently,

the partnership formation problem has an equilibrium. 2

Next, we investigate what condition can ensure the existence of a complete matching in

equilibrium. A value-function v is said to be super-additive if v({i, j}) > v({i}) + v({j})
for all i, j ∈ N , i 6= j. Super-additivity implies that all agents are complementary to

each other, cooperation gives a higher joint value than the sum of the individual values.

The following result asserts that if the value function satisfies super-additivity, all agents,

except one in case the number of agents is odd, are being matched in equilibrium.

Theorem 3.5 Suppose the value function of the partnership formation problem is

super-additivity. Then, at any equilibrium, there is a complete matching if the number

of agents is even, whereas precisely one agent is not being matched if the number of agents

is odd.

Proof. Suppose n is even, and let (P ∗, r∗) be an equilibrium. If agent i ∈ N is an

independent in P ∗, then there must be another independent in P ∗, say, j ∈ N , j 6= i. Since

both i and j are independents in P ∗, it holds that r∗i = v({i}) and r∗j = v({j}). But then

11



r∗i + r∗j = v({i}) + v({j}) < v({i, j}), which contradicts that (P ∗, r∗) is an equilibrium.

Hence, there can be no independents in P ∗.

Suppose n is odd, and let (P ∗, r∗) be an equilibrium. It is clear that at least one agent

must be an independent in P ∗. If more than one agent is an independent in P ∗, let i and

j be two independents in P ∗. This means that r∗i = v({i}) and r∗j = v({j}). But then

r∗i +r∗j = v({i})+v({j}) < v({i, j}), which also contradicts that (P ∗, r∗) is an equilibrium.

Hence, precisely one agent is an independent in P ∗. 2

Finally, we show that the classical assignment problem mentioned in Section 2 can be

formulated as a partnership formation problem satisfying Assumption 3.2. The classical

assignment problem consists of two disjoint groups of agents, N1 and N2. Agents that

belong to the same group cannot be matched. If agent i ∈ N1 and agent j ∈ N2 are

matched, their value is equal to v({i, j}). Agents that are not being matched can get some

value by their own, v({i}) for agent i ∈ N , where N = N1 ∪ N2 is the set of all agents.

An equilibrium is then as described before, except that no two agents of the same group

can be matched. To show that this problem fits the framework above, we assign artificially

a value to any pair of agents in a same group. Take any positive number a satisfying

a > 2 max{|v({i, j}) − v({i}) − v({j})||i ∈ N1, j ∈ N2}, then we define for any i, j ∈ N1

and any i, j ∈ N2, j 6= i,

v({i, j}) = −a + v({i}) + v({j}).

Observe that M(i, j) = −a whenever i and j belong to the same group. The next theorem

shows that an equilibrium of this induced partnership formation problem always exists and

is an equilibrium of the assignment problem.

Theorem 3.6 Consider the induced partnership formation problem as described above.

Then this problem satisfies Assumption 3.2. Therefore it has an equilibrium, and any

equilibrium of it is an equilibrium of the assignment problem.

Proof. To show that the induced partnership formation problem satisfies Assumption 3.2,

let S = (i1, · · · , il) be a proper ordering on the set N of all agents with l odd and l ≥ 3,

and let T = {i1, · · · , il}. Suppose that T ⊂ N1 or T ⊂ N2. Then M(i1, i2) = M(i2, i3) =

M(i1, i3) = −a, and therefore case (i) of Assumption 3.2 is satisfied because a > 0. Next,

suppose T ∩ N1 6= ∅ and T ∩ N2 6= ∅. Since l is odd and l ≥ 3, there exists j ∈ Il such

that ij−1 and ij in N1 and ij+1 in N2 or such that ij−1 and ij in N2 and ij+1 in N1, where

j − 1 = l when j = 1 and j + 1 = 1 when j = l. In both cases M(ij−1, ij) = −a and

therefore

M(ij−1, ij) < −2 max{|M(i, j)||i ∈ N1, j ∈ N2} ≤ M(ij−1, ij+1)−M(ij, ij+1),
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and so case (i) of Assumption 3.2 is satisfied. Hence, from Theorem 3.3 it follows that the

induced partnership formation problem has an equilibrium.

Let (P ∗, r∗) be any equilibrium of the induced partnership formation problem and let

P ∗ = {U∗
1 , · · · , U∗

k}. We still have to prove that for all h ∈ Ik it holds that if |U∗
h | = 2 then

U∗
h ∩N1 6= ∅ and U∗

h ∩N2 6= ∅. Suppose U∗
h ⊂ N1 or U∗

h ⊂ N2 and let U∗
h = {i1, i2}. From

the definition of equilibrium it follows that

r∗i1 + r∗i2 = v({i1, i2}) = −a + v({i1}) + v({i2}) < v({i1}) + v({i2}),
because a > 0. On the other hand, in equilibrium it must hold that r∗i1 ≥ v({i1}) and

r∗i2 ≥ v({i2}), which implies r∗i1+r∗i2 ≥ v({i1})+v({i2}), yielding a contradiction. Therefore,

an equilibrium of the induced partnership formation problem is an equilibrium for the

assignment problem. 2

4 Conclusion

In this paper we have introduced the partnership formation problem and proposed an equi-

librium solution for the problem. The equilibrium solution endogenously provides answers

to the question of partnership formation and that of payoff division. We have identified

necessary and sufficient conditions and established equilibrium existence theorems for the

model. In particular, Assumption 3.2 is very intuitive and general and is satisfied by the

classical assignment models.

The current study leaves us with some natural questions. As mentioned earlier, for

the assignment market models studied by Koopmans and Beckmann (1957), Shapley and

Shubik (1972), Crawford and Knoer (1981) have proposed a competitive adjustment process

which mimics the behavior of real competitive markets and finds an equilibrium. It is of

considerable interest and difficulty to develop a similar competitive process that imitates

the behavior of real partnership formation and endogenously yields partnership structure

and payoff distribution in finitely many rounds of negotiations. It is also equally challenging

to investigate what happens when uncertainty or imperfect information is introduced into

the payoff that each agent or each pair of agents can achieve.

References

[1] R.J. Aumann and R.B. Myerson (1988), “Endogenous formation of links between play-

ers and coalitions: an application of the Shapley value,” in The Shapley Value: Essays

in Honor of Lloyd S. Shapley (A.E. Roth, Ed.), pp. 175-191, Cambridge University

Press, New York.

13



[2] L. Ausubel (2006), “An efficient dynamic auction for heterogeneous commodities,”

American Economic Review, 96, 602-629.

[3] V.P. Crawford and E.M. Knoer (1981), “Job matching with heterogeneous firms and

workers,” Econometrica, 49, 437-450.

[4] G.B. Dantzig (1963), Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

[5] F. Gul and E. Stacchetti (1999), “Walrasian equilibrium with gross substitutes,” Jour-

nal of Economic Theory, 87, 95-124.

[6] F. Gul and E. Stacchetti (2000), “The English auction with differentiated commodi-

ties,” Journal of Economic Theory, 92, 66-95.

[7] S. Hart and M. Kurz (1983), “Endogenous formation of coalitions,” Econometrica, 51,

1047-1064.

[8] M. Kaneko and Y. Yamamoto (1986), “The existence and computation of competitive

equilibria in markets with an indivisible commodities,” Journal of Economic Theory,

38, 118-136.

[9] A. Kelso and V.P. Crawford (1982), “Job matching coalition formation and gross

substitutes,” Econometrica, 50, 1483-1504.

[10] T.C. Koopmans and M. Beckmann (1957), “Assignment problems and the location of

economic activities,” Econometrica, 25, 53-76.

[11] P. Milgrom (2000), “Putting auction theory to work: the simultaneous ascending

auction,” Journal of Political Economy, 108, 245-272.

[12] M. Ostrovsky (2008), “Stability in supply chain network,” American Economic Re-

view, 98, 897-923.

[13] C.Z. Qin (1996), “Endogenous formation of cooperation structures,” Journal of Eco-

nomic Theory, 69, 218-226.

[14] M. Quinzii (1984), “Core and competitive equilibria with indivisibilities,” Interna-

tional Journal of Game Theory, 13, 41-60.

[15] A. Roth and M. Sotomayor (1990), Two-Sided Matching, Cambridge University Press,

New York.

14



[16] L.S. Shapley and H. Scarf (1974), “On cores and indivisibilities,” Journal of Mathe-

matical Economics, 1, 23-37.

[17] L.S. Shapley and M. Shubik (1972), “The assignment game I: the core,” International

Journal of Game Theory, 1, 111-130.

[18] N. Sun and Z. Yang (2006), “Equilibria and indivisibilities: gross substitutes and

complements,” Econometrica, 74, 1385-1402.

[19] L.G. Svensson (1983), “Large indivisibilities: an analysis with respect to price equi-

librium and fairness,” Econometrica, 51, 939-954.

[20] Y. Yamamoto (1987), “Competitive equilibria in a market with indivisibility,” in The

Computation and Modelling of Economic Equilibria (A.J.J. Talman and G. van der

Laan, eds.), pp. 193-204, North-Holland, Amsterdam.

15


