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Abstract

The breakdown of short-term funding markets was a key feature of the global fi-
nancial crisis of 2007/8. Combining insights from the literature on global games
and network growth, we develop a simple model that sheds light on how network
topology interacts with the funding structure of financial institutions to determine
system-wide crises. We show how the arrival of bad news abouta financial insti-
tution leads others to lose confidence in it and how this, in turn, spreads across
the entire interbank network. The rate of system-wide bank failure is rendered
endogenous, depending crucially on both the rate at which bad news arrives and
on the maturity of debt contracts. The conditions under which the financial sys-
tem makes a sharp transition from a dense network of credit relations to a sparse
network where credit freezes readily occur are characterized. Our results also em-
phasize the role of hysteresis – once broken, credit relations take a long time to
re-establish as a result of common knowledge of the equilibrium. Our findings
shed light on the nature of public policy responses both during and after the crisis.

JEL classification: C72, G01, G21.

Key words: interbank networks, credit crisis, liquidity freeze

Preprint submitted to Elsevier August 10, 2011



1. Introduction

The global financial crisis of 2007/8 has highlighted the intertwined nature of
financial systems. The emergence of financial instruments inthe form of credit
default swaps, collateralized debt obligations, and othercredit derivative products
vastly increased the connectivity between financial institutions worldwide. The
heavy reliance of many of these institutions on short-term wholesale funding mar-
kets resulted, moreover, in a dramatic increase in rolloverrisk at a system level.
What initially began as a localized difficulty in the US sub-prime mortgage market
rapidly escalated beyond the United States – once some financial institutions were
found to be in difficulty, investors became wary of lending to each other and inter-
bank markets quickly froze, pushing many banks and other financial intermediaries
into difficulty.

Figure 1 illustrates how the arrival of news of losses at troubled hedge funds,
downgrades of structured financial products, and concerns about asset quality in-
creased funding pressures on all banks. These changes was not gradual but abrupt
and sharp. Before the crisis, banks required some 10 basis points of compensation
for making one-month loans to each other. By September 2007,that compensation
premium had risen to around 100 basis points. The ensuing collapse of the invest-
ment banks Bear Stearns and Lehman Brothers in 2008 resultedin the premium
rising more than thirty-fold from pre-crisis levels. Notwithstanding the subsequent
large-scale public sector bailouts of the banking system inmany countries, it has
taken over 12 months since the troubles at Lehman Brothers for this premium to
return to pre-crisis levels. The compensation premium for three and six month
loans followed a similar pattern, spiking after the collapse of Lehman Brothers.
However, their return to pre-crisis levels has been more prolonged.

The global scale of the breakdown in the interbank markets has been with-
out precedent and poses challenges for our understanding ofsystemic risk. The
rollover decision of banks in short-term debt markets is typically modeled as a co-
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ordination game between lenders involved with asingle, risky, counterparty. As
Morris and Shin (2003, 2008) point out, when market participants have imper-
fect common knowledge of fundamentals, strategic uncertainty about the actions
of other participants can be more important than structuraluncertainty concerning
the soundness of balance sheets. In such global games, the arrival of bad news
about a debtor’s balance sheet causes small seeds of doubt toreverberate across all
lenders, leading potentially to a mass withdrawal of lending which forces the bank
into early liquidation.

The recent crisis, however, is noticeable for the multiplicity of counterparties
and overlapping groups of creditors. As Morris and Shin (2008) observe, banks
such as Northern Rock in the UK were – ultimately – fishing fromthe same pool
of short-term funding as investment banks such as Bear Stearns and BNP Paribas
that were sponsoring off-balance sheet vehicles that used asset-backed commercial
paper. As a result, banks participating in the interbank market were party to many
coordination games at the same time. As lenders, they were involved in as many
coordination games as counterparties to whom they had extended loans. And, as
borrowers, they were also subject to coordination games being played by the cred-
itors lending to them.

The analysis of the systemic consequences of rollover risk must, therefore,
be able to ‘scale up’ the insights from global game models to the system level.
Moreover, it must also take into account the dynamic nature of credit relationships
– the short-term nature of unsecured funding in interbank markets is such that loans
are continually maturing and being established between new, as well as existing,
counterparties.

In an authoritative survey, Allen and Babus (2009) argue that viewing mod-
ern interbank markets as networks may offer insights for the breakdown of global
funding markets in 2007/8. They hint at the consequences of a scaling up of global
games, suggesting that small exogenous changes in investorrisk and the arrival of
adverse information may have system-wide consequences. They pose the possibil-
ity of an equilibrium with an empty network – one in which financial institutions
are loathe to lend to each other. Bech and Atalay (2010) also suggest that interbank
market can be viewed as a financial network in which banks are nodes and loans
are directed links and note, moreover, that credit relations are established through
a random matching process. Loans take place through an anonymous brokered
market in which borrowers and lenders learn about each otheronly after a match is
established at an agreed upon loan rate1.

In this paper, we build on these insights to better understand how funding ma-

1See also Pritsker (2009).
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turity and network structure interact to generate systemicfinancial crises. Specifi-
cally, we extend the insights of the game-theoretic analysis of coordination failure
in debt markets to the system level using a model of network growth. In so doing,
we provide a plausible account of the interbank credit freeze that characterized the
global financial crisis of 2007/8. The model shows how the arrival of bad news
about a financial institution can lead others to lose confidence in it and how this,
in turn, spreads across the entire system. Our results also highlight the role of
hysteresis – once rollover risk crystallizes and creditorstake flight, credit relations
between institutions can take a very long time to re-establish.

A crucial feature of our model is the rate at which bad news about the cred-
itworthiness of a bank arrives. This, together with the maturity structure of debt
contracts, determines the (endogenous) rate of link decay in the network. Intu-
itively, when bad news arrives an intermediary may be forcedinto default by the
ensuing foreclosures. This leads to a rearrangement of balance sheets across the
financial system – creditors who have lent to it lose assets, while intermediaries
who borrowed from the defaulter lose liabilities. As a result, there is a possibility
that some counterparties may be placed under stress, precipitating further rounds
of foreclosures. We discuss the properties of the stationary state of these processes.

Our results may be summarized as follows. The financial system can converge
to a “good” equilibrium in which a dense network of credit relations exists and the
risk of a run, and subsequent default, is negligible. But a “bad” equilibrium is also
possible – here the credit network is sparse because investors are more skittish and
prone to prematurely foreclosing their credit relationships. The transition between
the two equilibria is sharp. In the case that interbank loanshave lengthy maturities
in comparison to the rate at which bad arrives, both states exhibit a degree of re-
silience; once a crisis tips the system into the sparse state, the restoration of credit
relations requires considerable effort, with model parameters needing to shift well
beyond the turning point. And when the system reverts to a good state, it is robust
even to deteriorating conditions.

2. Related literature

Our paper complements several recent studies of the global financial crisis.
Allen et.al (2010) also consider the interaction between network structure and
funding maturity. Their analysis explicitly takes optimalnetwork formation and
strategic behavior into account and suggests investor’s rollover decisions depend
on the structure of the network, investors’ opportunity costs, and the magnitude of
bankruptcy costs. But their analysis is static in nature andfocuses on a network in
which there are six banks. Caballero and Simsek (2009) also develop a model of a
(small) financial network in order to study systemic risk. They appeal to the rising
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costs of understanding the structure of the network as the basis for complexity. If
information about the network structure is costless, thereis no foreclosure. But if,
following a shock, these information costs rise sharply, banks’ inability to under-
stand the structure of the network to which they belong leadsthem to withdraw
from their loan commitments2.

May et.al (2008), Haldane (2009) and Schweitzer et al. (2009) highlight the
importance of developing models of financial system resilience using more gen-
eral techniques and insights from the literature on networks and complex systems.
Recent analyses in this vein include May and Arinaminpathy (2010), Gai and Ka-
padia (2010), and Gai et.al (2011). Although these models allow for an arbitrary
number of financial institutions, the underlying topology of interactions and the
balance sheets of the intermediaries are static. Moreover,strategic interactions are
not taken into account3.

Finally, it should be noted that several recent studies consider the interbank
freeze without recourse to network methods. Prominent among these is Acharya
et al. (2011) who also highlight the role played by information arrival relative
to rollover frequency. Their focus, however, is on the debt capacity of assets
used as collateral for short-term borrowing. He and Xiong (2011) consider how
rollover risk leads to bank runs in an explicitly dynamic game-theoretic setting
involving a single borrower. Their model is characterized by coordination prob-
lems among creditors with debt contracts of random maturity. Brunnermeier and
Oehmke (2010) develop a model of the equilibrium maturity structure for a finan-
cial institution that borrows from multiple creditors, while Diamond and Rajan
(2011) show how liquidity risk can arise from the fear of asset firesales.

3. The model

Consider a population ofN ∈ N risk-neutral financial institutions, “banks” for
short, engaged in bilateral credit relationships with eachother. A financial system
of this kind can be viewed as a directed network, with nodes representing the fi-
nancial institutions and outgoing links reflecting loans from one bank to another.
The credit network is dynamic, with debt contracts (or links) continuously being
established and terminated as they reach maturity. To keep matters simple, suppose

2See Allen and Babus (2009) for a review of models of financial crisis. The focus of analytical
models involving a small number of banks follows in the seminal footsteps of Allen and Gale (2000)
who model contagion in a four-bank system.

3Related work that draws on network techniques to explore contagion also includes Hatchett and
Kühn (2009), Giesecke and Weber (2006), Nier et.al. (2007), and Afonso and Shin (2011). The
latter use lattice-theoretic techniques to study systemicrisk in high-value payment systems.
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that all loans take the same nominal value.
The financial position of banki at time t ∈ R

+ is summarized by the assets
and liabilities on its balance sheet. Assets include holdings of liquid assets (cash),
b0

i ∈ R
+, as well as loans made to other banks,b(t)

i ∈ N. Liabilities, namely the

monies owed by banki to its counterparties, are denoted byℓ (t)
i ∈ N and reflect

the number of incoming links. The level of assets and liabilities are related to each
other via the adjacency matrixA(t) ∈ {0, 1}NxN. The matrix elementa(t)

i j denotes
whether at timet bank i holds an asset against bankj or not. Thus, the assets and
liabilities of banki are

b(t)
i =

N
∑

j=1

a(t)
i j , and ℓ

(t)
i =

N
∑

j=1

a(t)
ji . (1)

Since every liability is someone else’s asset, every outgoing link for one node is an
incoming link for another node. So the total amount of assetsin the system matches
the total liabilities at all times, or equivalently, the average in-degree equals the
average out-degree〈b(t)〉 = 〈ℓ (t)〉, where the angled bracket refers to the average
over all banks. That said, individual banks may be in surplusor deficit in their
individual financial positions. The average connectivity,ρ(t) = 〈ℓ (t)〉 of the network
offers a summary measure of the extent of global financial marketintegration in
what follows.

The dynamic evolution of the network is punctuated by timetν-episodes where
theℓ (tν)

i lenders of banki engage in a game to decide whether to prematurely fore-
close their loans toi. We first describe this foreclosure game, before clarifyingthe
dynamics of the network.

3.1. Foreclosure game

At a timetν, the creditors of banki receive adverse information abouti’s future
profits and viability. At this time, banki hasℓi liabilities, bi interbank assets, and
b0

i holdings of cash. The adverse information becomes common knowledge to all
ℓi creditors, who must decide whether to withdraw their funds (foreclose), thereby
minimizing losses werei to fail, or roll over to maturity. Following Morris and
Shin (1998, 2008), we model this decision by a binary action,simultaneous move
game involvingℓi-players (creditors) in an incomplete information setting. To keep
notation concise, we drop the timetν index from the balance sheet variables for the
remainder of this section.

For each creditorj, foreclosure yields a payoff of zero, whereas rolling over
yields a payoff of 1− c j > 0, provided that the number of lenders who opt out does
not exceedbi+b0

i , on the asset side of banki’s balance sheet. If, however, more than
bi + b0

i financial institutions opt out, this depletes the financial resources of bank
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i, who is forced into default. This results in lenderj, who decided to roll over, to
incur a loss ofc j ∈ R. Following Morris and Shin (2008), we refer toc j as thecost
of miscoordinationto j. The cost of miscoordination reflects the opportunity cost
to creditor j of rolling over the loan and being confronted with little liquidation
value, instead of investing in an alternative (safe) asset such as government bonds.
It is also a measure of the difficulty of achieving coordination in practice – when
c j is high, coordination may be difficult to achieve because creditors are doubtful
whether others will roll over their loans to the borrower.

The payoff matrix for creditor j, in terms of the numberℓ′i of creditors other
than j who roll over, is therefore

ℓ′i ≥ bi + b0
i − 1 ℓ′i < bi + b0

i − 1
foreclose 0 0
roll over 1− c j −c j

, (2)

where the payoff to rolling over a loan is increasing in the number of lenders
who roll over their loans. As the global games literature makes clear, with common
knowledge of payoffs we have a tri-partite classification of costs. Forc j < 0 the
benefits from rolling over the loan always outweigh foreclosure and hence rolling
over is the dominant pure strategy equilibrium. On the otherhand whenc j > 1
the converse is true and foreclosure is dominant. Finally, for c j ∈ [0, 1] there are
multiple equilibria.

3.1.1. Unique equilibrium of the foreclosure game
Suppose thatc j is a random variable drawn from an arbitrary distribution that is

common to all banks4. The properties of binary action, simultaneous move global
games with a finite number of players have been investigated by Morris and Shin
(2003) and Frankel et al. (2003). These papers demonstrate via the iterative dele-
tion of dominated strategies that the unique surviving Bayes-Nash equilibrium is a
“threshold-strategy,” which isnoise independent.

Here, we follow Morris and Shin (2003) and suppose that bankshaveLapla-
cian beliefsabout the costs faced by other creditors. This implies that abank
who is indifferent between actions believes that the fraction of other counterparties
who roll over their loans is an uniformly distributed randomvariable with support
{0, 1/(ℓi − 1), 2/(ℓi − 1), . . . , 1}. We exploit this simplification for the exposition
of our equilibrium solution.

4This relaxes the assumption of common knowledge of payoffs as the costcj is private to bankj.
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Theorem 1. The unique equilibrium for the foreclosure game, under Laplacian
beliefs, amounts to allℓi counterparties of bank i utilizing the threshold-strategy

{

rollover if c j ≤ c⋆

foreclose if cj > c⋆
with c⋆ ≡

bi + b0
i

ℓi
. (3)

Formally, the criticalc⋆ is also a function of timetν, sincebi andℓi are dynamic
variables. However, to keep notation concise we drop the time index forc⋆ in this
section. A heuristic proof for Theorem 1 is provided in Appendix A.

Theorem 1 offers a simple and intuitive explanation for rollover risk, wherec⋆

is an asset-to-liability ratio, which measures whether bank i has sufficient resources
to meet its obligations. Whenc⋆ is large, banki has a surplus of assets. The costs
of miscoordination faced by the creditors ofi will typically be less thanc⋆, thereby
facilitating coordination between creditors and resulting in the rollover of loans.
On the other hand, whenc⋆ is small, the converse is true – banki typically has too
large a debt to service with its current assets. In this case,creditors are likely to
panic and foreclose against banki, thereby precipitating bankruptcy.

The noise independence of this result implies that strategic uncertainty is rel-
evantevenin the absence of uncertainty on the costs of other players. In what
follows, given our emphasis on the collective behavior of the network, we assume
c j = c for all banks j, irrespective of the counterparty. To simplify matters fur-
ther, we also treat the liquid asset holdings of banks,b0

i to be constant across the
network so thatb0

i = b0 for all banks.

3.2. Network dynamics

We now represent the dynamical evolution of our interbank network using a
random matching framework. The formation of a debt contractbetween any two
banks is a random draw from all possible contracts between banks in the network.
At all times, the state of the interbank network is fully specified by the adjacency
matrix A(t), whose elementsa(t)

i j are now cast as stochastic variables. Consequently,

the balance sheet random variables for liabilitiesℓ(t)i , and assetsb(t)
i , are governed

by continuous time Poisson processes5.
At time t and with rateγ > 0, each banki takes out a loan from bankj, se-

lected at random from the pool of other financial institutions. With the contractual
link between the banks established, the variablea(t)

i j is set to one. The parameterγ
can be viewed as a proxy for the balance sheet growth of financial intermediaries.

5A Poisson process is defined with rateα if for every infinitesimal interval [t, t+τ) an event occurs
independently and with probabilityατ. In our case, the probability that a new loan is issued from
banki to j in time interval [t, t + τ) is γτ.
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As Adrian and Shin (2010) emphasize, banks typically expandtheir balance sheets
rapidly when macroeconomic conditions are benign. On the liability side they take
on more short-term debt, while on the asset side they search for potential borrow-
ers to lend to in an effort to deploy surplus capital6. Our choice in modeling the
creation of loans and addition of links by stochastic processes subsumes behavioral
considerations. We do not explicitly model the reasons behind why a bank seeks a
short-term loans, but rather consider them to be driven by exogenous factors. This
allows us to concentrate on the systemic rollover risk.

Each existing loan matures at rateλ > 0 and is amicably settled by counter-
parties. This results in the termination of the link betweenbanks, i.e.,a(t)

i, j is set to
zero. Whenλ is small, debtors in the interbank market are typically investing their
loans in long-term projects.

At random Poisson timestν, which occur with rateν > 0, the creditors of bank
i receive an adverse information abouti’s future losses. This information, which
may reach creditors either by way of official public disclosures or rumors, has the
effect of forcing creditors to question whether they should continue lending to bank
i or withdraw their loans. The decision rule is given by the foreclosure game where
the amount of assets and liabilities

b(tν)
i =

∑

j

a(tν)
i, j , and ℓ

(tν)
i =

∑

j

a(tν)
j,i , (4)

on banki’s balance sheet, are made common knowledge to the creditors. There is
collective foreclosure by all creditors on banki if

cℓ (tν)
i > b(tν)

i + b0 . (5)

As a consequence, banki is said to default and is replaced by a new bank with no
links, i.e. entriesai, j anda j,i are set to zero, for allj = 1, . . . ,N. This implies that
financial institutions,j, who previous borrowed fromi will each lose one liability.
Likewise, the banks,k, who lent toi will each lose one asset7. If, instead, Eq.
(5) is not satisfied, then all ofi’s counterparties will rollover their loans, and the
foreclosure game will have no effect.

These dynamics are conveniently represented in terms of theliabilities, ℓ(t)i and

assets,b(t)
i of each bank. Indeed, a bank’s financial state at timet is specified in

terms of its position (ℓ (t)
i , b

(t)
i ) in the balance sheet plane. Figure 2 depicts the three

6Indeed, during the subprime crisis, balance sheets expanded so quickly and the urge to employ
surplus capital was so great that lenders extended credit toextremely poor quality borrowers.

7Such assets and liabilities may be settled on longer time horizons, which we disregard for the
sake of simplicity.
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processes, (i) link addition at rateγ per bank, (ii) link decay at rateλ and (iii) the
arrival of adverse signals at rateν per bank, in the (ℓ, b) plane.

In specifying the stochastic processes we have further assumed that the ratesγ,
λ andν are the same for all financial institutions. This simplifies our analysis and
allows us to focus on the balance sheet of a typical financial institution.

4. Results

We now turn to the properties of the stationary state of theseprocesses. For
simplicity and without loss of generality, we setγ = 1 in what follows, by an
appropriate scaling of the unit of timeτ. We first establish that a stationary state
exists.

By definition, the evolution of the interbank network, whichis governed by
a series of Poisson processes, may be succinctly described by a Markov process8

where:

Proposition 1. For any finite population size N, the interbank network Markov
process is ergodic and possesses a unique invariant measure(stationary state).

The proof for proposition 1 is provided in Appendix B. Furthermore, in Ap-
pendix D we establish limiting case results for the stationary state in terms of the
network density and endogenous rate of bank failure. We firstprove that forc = 0
andb0 > 0, the credit network is a random graph, with network density1/λ in the
large N limit. Second, in the limitsN → ∞, λ → 0 and for allc < 1, a dense
network without any collective foreclosures is always a solution to the stationary
state.

The picture that emerges is as follows. For smallc and λ, a “good” state,
which is default free and has a dense network can be attained.However, forc = 1
and irrespective of how smallλ is made, the process is plagued by a “bad” state
where defaults are persistent. In what follows, we probe thenature of this transition
between good and bad extremes by resorting to a series of approximate schemes
and numerical simulations.

4.1. Master equation

The processes for the evolution of the interbank network canbe described by
a master equation (see Gardiner (2009)) for the probabilitydistribution function
Pt(A) that at timet we observe the interbank networkA(t) = A. This distribution

8The probability for a bank to have balance sheet position (ℓ
(t+τ)
i ,b(t+τ)

i ) depends on the bank’s
position at timet, i.e., (ℓ(t)i ,b

(t)
i ).
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function includes the joint probability of balance sheet positions (ℓ(t)i , b
(t)
i ) for all

banks.
A simpler equation can be written for the marginal distribution functionPt(ℓ, b)

of the fraction of banks withℓ(t)i = ℓ liabilities andb(t)
i = b assets9. The master

equation in this case takes the following form:

∂tPt(ℓ, b) = µ δℓ,0 δb,0 + γ Pt(ℓ − 1, b) + γ Pt(ℓ, b− 1)

+ (λ + µb) (ℓ + 1)Pt(ℓ + 1, b) + (λ + µl) (b+ 1)Pt(ℓ, b+ 1)

−
[

νΘ
(

cℓ − b− b0
)

+ 2γ + (λ + µb) ℓ + (λ + µℓ) b
]

Pt(ℓ, b) , (6)

where∂t is the partial derivative with respect to time andΘ(. . .) refers to the Heav-
iside function10.

The ratesµ, µl andµb are endogenous default rates, which are self-consistently
determined against the stationary distribution11 of (ℓ, b) as

µ = ν
∑

ℓ,b

Θ
(

cℓ − b− b0
)

P(ℓ, b) ,

µℓ =
ν

〈ℓ〉

∑

ℓ,b

Θ
(

cℓ − b− b0
)

ℓP(ℓ, b) ,

µb =
ν

〈b〉

∑

ℓ,b

Θ
(

cℓ − b− b0
)

b P(ℓ, b) .

(7)

Here,〈b〉 and〈ℓ〉 are the mean assets and liabilities, respectively. The angled brack-
ets refers to the average overP(ℓ, b), which in fact yields〈b〉 = 〈ℓ〉.

We can understand the master equation via simple geometric considerations
using Fig. 2. Let us focus on an arbitrary point (ℓ, b) in the interior of the lattice.
The probability that a bank has this balance sheet position at time t is given by the
probability that the bank was on a neighboring sites at timet− τ, whereτ ≪ 1, and
made an incrementalhop to (ℓ, b). If the bank was previously to the left or bottom
of (ℓ, b) then the hop would have been achieved by the bank gaining a new asset or
liability, both of occur at rateγ.

9This approach corresponds to amean fieldapproximation which assumes that the joint proba-
bility of the position of two banksi and j can be factorizedPt(ℓi ,bi ; ℓ j ,bj ) � Pt(ℓi , bi)Pt(ℓ j ,bj ). This
approach would be exact were it not for the foreclosure game process, which couples the balance
sheets of different banks. Nevertheless, the fact that loans are formed through a random matching
process provides justification for this approach.

10Specifically,Θ(x) = 1 if and only if x ≥ 0 and otherwiseΘ(x) = 0.
11Independent of time-t sub-script.
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The rate at which a hop occurs from either above or the right issimply the rate
at which either an asset or liability are lost, respectively. In the latter case, this rate
may be decomposed into two aspects: (i) the natural dissipation of a link, i.e.,λ
and (ii) the probability that the bank was a creditor to another bank who defaulted
from collective foreclosure with rateν. The rate at which such incidents occur is
µb. A similar argument may be used to construct the rate at whichassets are lost.
Whenever a bank defaults it is stripped of all its assets and replaced by a new bank,
who starts at (ℓ, b) = (0, 0). The first term in Equation (6) reflects this action.

We may probe the collective properties of the stationary state either via direct
numerical simulation of the processes or by solving Eq. (6) numerically.

4.2. Network density

In Fig. 3 we plot results from both numerical simulation and the solution to
the master equation for the average connectivityρ, once the system has reached
a stationary state, as a function of the cost of miscoordination, c, for different
values of debt maturityλ. We note the following features12. Firstly, for smallc,
there is a dense network andρ = 1/λ. Although adverse signals about a bank
permeate through the network, the costs of coordination failure are not sufficiently
high to dissuade creditors from rolling over their loans. Secondly, for largec,
the costs of miscoordination are high. Creditors are more jittery and sensitive to
the asset-liability ratios of debtors. If this ratio decreases – with a lowering of
liquid assets, for example – this has a knock-on effect for other institutions, who
with worse asset-liability ratios are foreclosed upon themselves. This domino of
foreclosures results in a sparse financial network outcome where credit relations
between institutions are limited.

For smallλ, i.e., when debt is long-lived and in an intermediate range of c,
we note the coexistence of both dense and sparse network solutions13. Finally for
largerλ, one morphs continuously from a dense network to a sparse one, asc is
increased.

The hysteresis observed for intermediatec in Fig. 3 has a subtle interpretation.
Far from the tipping point, a small incremental change in theopportunity costc

12The agreement between numerical simulations and the solution to the master equation is remark-
ably good, which substantiates our use of the mean field approximation.

13Coexistence of two different stationary states, which are attained depending on initial conditions,
seemingly contradicts Proposition 1, which asserts that the stationary state is unique for all finite
N. However, this is only an apparent contradiction, as transitions between the two states occur on
time-scales that are exponentially large inN. Even for a moderately large value ofN the required
transition time is well beyond the reach of numerical simulations. Furthermore, the Master equation
corresponds to an approach where the limitN → ∞ is taken before the limitt → ∞. See Ehrhardt
and Marsili (2006) for other systems where such ergodicity breaking is observed.
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(for given ratioν/λ between the rates of news arrival and loan maturity) to roll
over loans does not impact the decisions of banks to rolloverloans to debtors.
With a smallerc, creditors are more relaxed and less sensitive to changes inthe
asset-liability ratios for all other financial institutions. In particular, each creditor
will argue that all other creditors will also follow the sameswitching strategy and
since everyone has a low opportunity cost – common knowledgeof the equilibrium
– no one will foreclose. As a result we continue to observe thedense network
outcome. Once the opportunity cost increases beyond the tipping point, a sparse
network solution emerges via the domino of foreclosures. A bank’s tolerance to
adverse news and changes in assets-liabilities ratio is much reduced. Moreover,
by the same incremental change argument, as one decreasesc, the sparse network
outcome is persistent. Each bank knows that all others follow the same switching
strategy and have high opportunity costs. Thus, there is greater reluctance and
an inertia against rolling over loans. The opportunity costmust decrease to well
before the tipping point to regain the dense network solution.

4.3. Endogenous rate of bank failure

A qualitative understanding of our results is readily available via a simple ap-
proximation of the Poisson processes. The key variable is the endogenous rate of
bank failure,µ, due by collective foreclosures. Thus,µ depends on the rateν at
which adverse information propagates through the network and the maturityλ of
debt contracts. We show that for intermediate values ofc andλ, the endogenous
rate of link decayµ has two solutions; one where bank failures are rare (µ ≃ 0) and
the other where failures due to collective foreclosure is frequent (µ > 0).

To derive an expression forµ, we focus on the twin stochastic processes (ℓ(t), b(t))
for the liability and asset positions of a typical bank. Thisprocess starts from the
origin (ℓ(0), b(0)) = (0, 0) of Fig. 2 and drifts toward the top right-hand corner.

From any given point on the grid, jumps to the right and up occur at rateγ = 1,
whereas jumps to the left or below take place at rateλ + µ. In the absence of the
foreclosure game being played (ν = 0), both processes converge to a stationary
state, whereℓ(t) andb(t) are Poisson variables with mean 1/(λ+µ). However, when
ν is “turned on”, the bank fails whenb(t) + b0 < cℓ(t), and restarts at the origin.

The endogenous rate of failureµ is given by the solution to the self-consistent
equation

µ =
ν

2
erfc(Z) , (8)
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where erfc(·) is the complimentary error function14 and

Z =
c− 1+ b0(λ + µ)
√

2(1+ c2)(λ + µ)
. (9)

The derivation of this result is provided in Appendix C. A graphical solution
to Eq. (8) is provided in the inset of Fig. 4, where we have either one or three fixed
points. Fig. 4 plots boundaries for regions in thec vs. λ plane where these different
situations arise. In the dense (D) and sparse (S) phases, oneobtains the stable fixed
pointsµ ≃ 0 andµ > 0, respectively.

Whenµ ≃ 0 the failure of banks is very rare. Creditors are more likelyto
rollover loans when they play the foreclosure game. Their actions feed and influ-
ence the rollover actions of other financial institutions when they play the foreclo-
sure game. This setting is conducive to a dense interbank market with rare instances
of collective foreclosure. Forµ > 0, which we observe for larger values ofc, the
situation is more dire. While playing the foreclosure game,creditors perceive their
debtor’s assets-liabilities ratio is too low, which leads to the debtor’s default. The
ensuing restructuring of balance sheets lowers the assets-liabilities ratios of other
banks, leading to a wave of other foreclosures and defaults,resulting in a sparse
network at the stationary state.

In the co-existence (CO) phase, however, the two stable solutions are separated
by a third, unstable fixed point. If we impose initial conditions that placed the
system to the left of the unstable solution, we would obtain the dense credit network
solution withµ ≃ 0. Similarly, starting just to the right of the unstable point would
yield the sparse network solutionµ > 015.

While precise numerical values of the transition points arenot accurately re-
produced within this simple approximation, the qualitative features are, however,
clear. Increasing the level of liquid assetsb0, or decreasing the costc, the curve
in the inset of Fig. 4 moves to the right, thus favoring the dense network (µ ≃ 0).
Likewise, decreasingν flattens the function, suggesting that the coexistence of so-
lutions is possible only for large values ofν. This is indeed confirmed by numerical
simulations. Finally, notice that the dependence onλ only enters in the combina-
tion λ+µ. Hence lowering debt maturity (increasingλ) is equivalent to shifting the

14The error function is erf(z) = 2√
π

∫ z

0
e−t2dt and the complimentary error function is simply

ercf(z) = 1− erf(z).
15Inspection of the argumentZ of the erfc function provides further insight. For small values of

both c andλ, only one solution with smallµ ∼ e−(1−c)/(2λ) is possible, asZ is of order 1/
√
λ. For

small λ andc ≃ 1, instead, the term 1− c is negligible with respect to the termb0(λ + µ). The
argument of the erfc function isZ ≃ b0

√
λ + µ/2 and Eq. (8), again, admits one unique solution. In

the intermediate range, both solutions are possible, together with a third unstable one.
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whole curve to the left which again results in the disappearance of the coexistence
region, as shown in Fig. 4 and in the simulations.

5. Some policy implications of the model

Our model and results help clarify both the public policy response at the time
of the global financial crisis and the subsequent debate overreforms to the financial
system. We consider each in turn.

5.1. Policies introduced during the crisis

The breakdown of short-term funding markets elicited a large-scale expansion
of central bank balance sheets as major central banks such asthe Bank of England,
the European Central Bank, and the Federal Reserve stepped up the provision of
liquidity insurance to the banking system. This attempt to shore up breaks in the
private sector credit chain has been considerable. As Haldane (2009) notes, central
bank balance sheets in the major economies are at historicalhighs, having doubled
in size since the onset of crisis.

Central bank provision of liquidity insurance has, in most instances, taken the
form of operations both on- and off-balance sheet. Central banks in the major
economies initially responded to the crisis with on-balance sheet liquidity insur-
ance measures, using open market operations involving extended definitions of
collateral to provide the banks with the liquidity servicesthey needed. The range
of acceptable collateral was gradually widened from AAA rated securities to cov-
ered bonds and residential mortgage-backed securities. These open market opera-
tions began towards the end of 2007, expanded substantiallyduring the autumn of
2008, and (in the case of the UK) peaked in early 2009. Off-balance sheet liquid-
ity insurance facilities that allowed banks to swap relatively high quality assets for
government bonds were also initiated in 2008. In the UK, for example, the Bank
of England introduced a Special Liquidity Scheme (SLS) in April 2008 (see Cross
et.al (2010)). The scheme remains in operation and is scheduled to terminate in
2012, almost five years after the start of the problems in the interbank market.

Our analytical framework offers clues to why such attempts to normalize fund-
ing market conditions may have been so protracted. The provision of public sector
liquidity insurance has the effect of lowering the costs of miscoordination,c, in the
model. With common knowledge of these opportunity costs, each bank knows that
others also face lower opportunity costs and so are inclinedto roll over loans. As
Figure 3 suggests, however, following a crisis or “tipping point”, these opportunity
costs have to decline substantially for normal funding to resume. In the language
of our network model, hysteresis effects dictate the ease with which the network
moves from the sparse to the dense solution. Moreover, the extent of the hysteresis
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effect depends on debt maturity. For moderately short term debt(λ = 0.01), the
model implies that resumption of normal market conditions requires a change in
the miscoordination cost of 0.05. By contrast, for longer term debt (λ = 0.005),
the persistence is pronounced and the change inc needed to restore a dense fi-
nancial network is substantially higher (0.13). And in the case of very short-term
debt (λ = 0.02), the network continuously morphs from the sparse to the dense
network, suggesting that normal operations in funding markets might resume rel-
atively quickly and involve relatively small reductions inthe cost of miscoordina-
tion.

The flavor of these findings is borne out by Figure 1. Although we cannot
properly calibrate eitherλ or c to real world data, Figure 1 illustrates how the
length of time needed for compensation premia to return to their pre-crisis levels
(i.e. to the level prior to Sept 2007) is increasing with loanmaturity. The chart
shows the cost of borrowing on 1, 3 and 6 month interbank loans, which we can
loosely compare with the three levels of lambda depicted in Figure 3. Following
the collapse of Lehman Brothers in September 2008, one monthinterbank loans
returned to near-normal levels relatively quickly, i.e., by the start of 2009. The
costs of borrowing in the 3 and 6 month interbank markets, however, remained
above pre-crisis levels for much longer, and were still significantly higher than 1
month rates in May 2009. The total time needed for compensation premia to return
to their pre-crisis level in each of the 1, 3, and 6 month markets appears to be
around 21, 25 and 28 months respectively.

5.2. The debate on financial sector reform

At the heart of the systemic collapses modeled in our paper isa network ex-
ternality: banks do not internalize the consequences of their foreclosure decisions
on others in the network. The scale of the externality depends both on network
structure as well as the composition of financial intermediary balance sheets. Our
results allow consideration of policy measures along a range of dimensions, namely
tougher liquidity regulation, greater transparency, systemic surcharges on liquidity
(and capital), and structural changes to the network through the creation of central
counterparties.

1. Tougher liquidity requirements: Our model reinforces the case for strong
liquidity requirements advanced by Morris and Shin (2008).At the system-
wide level, our results and simulations suggest that increasing liquid assets
(b0) for all agents (for a given debt maturity,λ), results in dense credit net-
works withρ = 1/λ for large values ofc. At the individual level, increasing
b0

i clearly motivates creditorj to rollover loans to agenti. The more sub-
stantial the liquid asset holdings of the borrowing bank, the more able it is
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to meet withdrawals. Moreover, stronger liquidity requirements for creditor
banks lower the costs of miscoordination, since they would be less vulner-
able to runs themselves. Liquid creditor banks tend to be less jittery and,
hence, less trigger-happy.

The current policy debate (see Caruana (2009); Tucker (2009)) on promot-
ing systemic financial stability emphasizes the importanceof liquidity cush-
ions in averting future crises. The Squam Lake Working Groupon Financial
Regulation (2009) also advocates setting liquidity requirements to be propor-
tional to short-term debt. In our model, this amounts to setting b0

i = βi +α ℓi,
whereα is some pre-defined ratio. From Eq. 3, this is equivalent to reducing
the costs of miscoordinationc to c− α, and replacingb0

i by βi − α. Clearly,
the benefits of ex post regulations of this kind need to be set against thee ex
ante cost to banks of such regulation. That said, international regulators are
moving ahead in this direction, seeking to define liquid assets as narrowly as
possible in the spirit of the analysis developed here.

2. Transparency: Our model shows non-trivial effects from transparency pol-
icy as reflected by the public signal parameter,ν, which has the effect of
modulating the transition between dense and sparse states from sharp and
abrupt to smooth and continuous. In particular, hysteresisis present only
for large ν, when the transition between states is sharp. Our model sug-
gests that during a crisis, when the costs of miscoordination are likely to be
high, interbank markets frozen and central banks have introduced measures
to restore normal market activity, the recovery may be improved by reducing
disclosure requirements, which is modeled as a reduction inν.

This action would allow problem banks (i.e. those in the shaded region of
Figure 2) time to escape the danger zone by reorganizing their balance sheets
with the addition of new (perhaps-state owned) assets and the retirement
of some liabilities. Second, it has the twin effect of alleviating hysteresis,
which reduces the level of effort that the central banks would otherwise have
to employ, and also smoothing out the transition back to the dense inter-
bank network. More generally, there seems to be a case for more careful
analysis of adaptive disclosure requirements in the broader discussion on
macro-prudential regulation16.

3. Systemic surcharges: As an alternative to blanket leverage ratios and liq-

16It is important to note, however, that our model neglects other important informational con-
siderations such as moral hazard. Allowing for such issues may well change assessments of how
transparency and disclosure policy affects systemic risk.
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uidity requirements, one option (see Gai et.al (2011)), is to levy liquidity
charges or impose exposure limits on institutions in line with their con-
tribution to overall systemic risk. The imposition of such aPigovian tax
regime has clear parallels with the work of Albert et al. (2000) on attacks on
internet-router networks. In principle, our model can be extended to allow
for differential link formation,γ, or preferential linakage where agents in
one sub-group prefer to interact with others in the same sub-group. Agent
heterogeneity of this kind holds the promise of new insightsinto the design
of financial stability.

4. Central counterparties: A further regulatory initiative has been the drive to
centrally clear over-the-counter financial products through central counter-
parties. In terms of the model, a central counterparty simplifies the network
of bilateral exposures, with the central counterparties ashubs with unim-
peachable balance sheets and banks holding assets and liabilities against
these hubs. This setup arguably lowers strategic uncertainties between banks
and replaces it with more measurable structural uncertainties against the cen-
tral counterparties. A full investigation of structural changes to the network
such as this is beyond the scope of the analysis in our paper, but it seems
plausible to suppose that such policy measures should simplify the interac-
tion between network structure and funding maturity, reducing systemic risk
in the process.

6. Conclusion

We have attempted to clarify how network topology interactswith the funding
structure of financial institutions to determine system-wide crises. The endogenous
rate of system-wide bank failure depends on the arrival of bad news about a finan-
cial institution as well as on the maturity structure of interbank debt contracts. We
are able to characterize the conditions under which fundingmarkets “freeze” and
highlight how the re-establishment of normal credit conditions in these markets can
take a prolonged time as a result of common knowledge of the equilibrium. The
model helps shed light on the breakdown of the interbank markets during the finan-
cial crisis and provides an analytical lens with which to view both the extraordinary
policy measures taken by central banks during the crisis andthe policy debate on
post-crisis financial sector reform. Our contribution is also technical – we are able
to show how global game techniques can be scaled up to the system level.

It is worth stressing that the model presented here is simpleand is intended as
a first step in understanding financial interactions in a network context. In particu-
lar, we do not allow for any macroeconomic variability and the key parameters of
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the model are, in reality, likely to be endogenous. The history of crises suggests
that financial institutions are unlikely to be passive and sit idle whilst a sequence
of defaults unfolds. For example, in a crisis, a counter-party may strategically dis-
close information or form links in ways that improves their chances of a public
sector bailout, or positions them to capture market share atthe expense of rivals in
distress. Incorporating a richer set of economic interactions into a network setting
such as ours is an important step for future research.

A. Proof of theorem 1

Assume all counterparties are subject to switching strategies, i.e.,j = 1 . . . , ℓi
will rollover its’ loan, if c j ≤ c⋆, or foreclose, otherwise. Suppose creditorh has
ch = c⋆. The creditor is indifferent between rolling over and foreclosing the loan.
Evaluating the expected payoff for h, we getφ = c⋆, where

φ = P ( ℓ′i ≥ bi + b0
i − 1 | ch = c⋆ ) (10)

is the probability that at leastbi + b0
i − 1 other creditors have cost less thanc⋆ –

and hence roll over their loans toi. To evaluateφ we use the Laplacian beliefs
held by h that ℓ′i is an uniformly distributed random variable over the integers
0, 1, 2, . . . ℓi − 1. This consequently implies thatφ = (bi + b0

i )/ℓi and hence yields
the switching threshold result of Eq. (3).

B. Proof of proposition 1

We need to show that any statêA can be reached from any stateÂ′ by a se-
quence of elementary processes of link decay and addition. One such path is the
one where all links inÂ′ first decay, and then all links in the stateÂ are created.
This process occurs with positive probability for allÂ and Â′, hence the Markov
chain is ergodic, and it possesses a unique invariant measure.

C. Derivation for the endogenous rate of link decay

We can formally express the endogenous rate of bank failure as

µ = νP( b(t) − cℓ(t) ≤ −b0 ) . (11)

We can approximatez= b(t) − cℓ(t) by a Normal distributed random variable with
mean (1− c)/(λ + µ) and variance (1+ c2)/(λ + µ). This yields

µ = ν

√
λ + µ

√

2π(c2 + 1)

∫ ∞

b0
exp















−1
2

(

z− 1− c
λ + µ

)2
λ + µ

1+ c2















dz =
ν

2
erfc(Z) , (12)

whereZ is defined in Eq. (9).
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D. Limiting case results for the stationary state

Our quantities of interest in the stationary state are the endogenous rate of bank
failure

µ = ν

∞
∑

ℓ=0

∑

b<cℓ−b0

P(ℓ, b) , (13)

and on the density (average degree) of the interbank network

ρ =

∞
∑

ℓ=0

∞
∑

b=0

ℓP(ℓ, b) , (14)

whereP(ℓ, b) is the fraction of banks withℓi = ℓ andbi = b, in the stationary state.
Whenν = 0 each loan is independently present or absent from all others. The

same applies to the case wherec = 0 with b0 > 0.

Proposition 2. For c = 0 and b0 > 0 the rate of default isµ = 0 and the credit
network is described by a random graph where

P(A) =
∏

i, j

[λ(N − 1)]1−ai j

1+ λ(N − 1)
, (15)

i.e., each loan between two banks is present, independentlyof all other loans, with
probability 1/[1 + λ(N − 1)].

Proof. With c = 0 andb0 > 0, defaults never occur becausebi+b0−cℓi > 0. Hence
the process reduces to that withν = 0. In this process, each loan (ai j = 1) is present
independent from all others and is described by a simple process for its generation
and maturity, with ratesw(ai j : 0 → 1) = 1/(N − 1) andw(ai j : 1 → 0) = λ,
respectively. The stationary state of this process is evidently the one stated in the
proposition.

With bi assets andℓi liabilities for banki, the Bernoulli distribution withN − 1
trials and probability of success 1/[1+λ(N−1)] is well approximated by a Poisson
distribution with average 1/λ, for largeN.

Proposition 3. In the limit of infinite population size (N→ ∞) and λ → 0, for
c < 1, the process admits a solution withµ = 0.

Proof. Let us assume that all banks apart fromi have a default rate equal to zero.
We must show thatµ = 0 also holds for banki. In the limit λ→ 0 the dynamics of
banki’s balance sheet in the (ℓ, b) plane is that of an unbiased random walk around
the 45◦ line, since only steps away from the origin are possible. Consider a banki
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aftern steps from the origin and letℓn be the number of liabilities andbn = n− ℓn
be the number of assets. Define the eventAn = {bn + b0 − cℓn < 0} that banki is
ripe for collective foreclosure by its’ creditors.

P({An}) =
∑

ℓ>(n+b0)/(1+c)

(

n
ℓ

)

2−n , (16)

and
∞
∑

n=1

P({An}) < +∞. (17)

According to the Borel-Cantelli lemma, the probability that eventsAn occur an
infinite number of times (for an infinite number of indicesn) is zero.

Therefore, the number of times when banki can fail, asymptotically, is at most
finite17. Since the rate of failure, in the stationary state, is the number of defaults
divided by the interval of time, and the number of defaults isfinite as the interval
of time diverges, then the rate of default of banki is zero. This shows that, in the
absence of defaults of other banks, a bank has a vanishing rate of default as long as
c < 1. Hence in the limitsn→ ∞, λ → 0 a default free (µ = 0) state is a solution
of the Master equation.

In this proof the order of limits is important. Takingλ→ 0 with finite N yields
the complete graph and the process discussed above cannot beconsidered a simple
random walk whenℓ ∼ N. Second, whenc = 1 the result does not hold. Indeed,
whenc = 1 the asymptotic behavior of the model is again related to theproperties
of unbiased random walks. Withc = 1, however, the random walk spends a finite
fraction of its time in the unstable regionb+ b0 < cℓ, which means that even in the
limit N→ ∞ andλ→ 0 all banks will surely default.

17Notice that when banki defaults, it starts again fromn = 0.
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Figure 1: 1 month, 3 month and 6 month US LIBOR-OIS Rates, in basis points, during the financial
crisis of 2007-09. The circles on the time-axis highlight events, which on reading from left to right
are: (i) August 9, 2007 – BNP Paribas suspends calculation ofasset values of three money market
funds exposed to US sub-prime mortgages; (ii) November 20, 2007 – Freddie Mac announces losses
for the third quarter of 2007; (iii) January 24, 2008 – Société Générale reveals trading losses resulting
from fraudulent activities by a single trader; (iv) March 13, 2008 – Bear Stearns files for bankruptcy,
and (v) September 15, 2008 – Lehman Brothers files for bankruptcy.
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Figure 2: Schematic diagram of elementary processes in the liabilities-assets, (ℓ, b), plane during the
models’ network dynamics. The shaded area correspond to where Eq. (5) is satisfied and foreclosures
take place. With rateγ, a credit relationshipi → j is established. Banki gains an assets (bi →
bi + 1), while j increments the number of liabilities it holds (ℓ j → ℓ j + 1). With rateλ, however this
link matures and expires, causing a rearrangement of balance sheets. Finally, with rateν, debtork
reveals its’ balance sheet position, (ℓk,bk) to the creditors. Ifk is found to be in the shaded region,
foreclosures take place andk defaults, thereby transporting it back to the origin, i.e.,(ℓk,bk)→ (0,0).
Bank m, who had borrowed fromk, loses one liability (ℓm → ℓm − 1), while Bankh who lent tok
loses an asset (bh → bh − 1).
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Figure 3: Average densityρ in the network as a function of costc for different values ofλ. The
symbols are produced from direct simulations while the lines are from solving the corresponding
master equation, Eq. (6) numerically. In producing the curves we tookν = b0 = 2.0 andN = 2000.
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Figure 4: Phase diagram in thec vs. λ plane, where the boundaries distinguishes the set of parameters
that result in either a dense (D) or sparse (S) network. In producing the curves we tookν = b0 = 2.0.
We also note that for smallλ, there is a third phase of co-existence (CO) between the dense and sparse
states. In the Insert we plot erfc(Z) as a function ofµ, for λ = 0.01, whereZ is given by Eq. (9). The
different curves correspond to differentc values. We note the existence of either one or three fixed
points.
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