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Abstract. We justify the application to extensive games of the concept
of ‘fully permissible sets’, which corresponds to choice sets when there is
common certain belief of the event that each player prefer one strategy
to another if and only if the former weakly dominates the latter on the
set of all opponent strategies or on the union of the choice sets that
are deemed possible for the opponent. The extensive games considered
illustrate how our concept yields support to forward induction, without
necessarily promoting backward induction. JEL Classification Number:
C72.

1. Introduction

What happens if players reason deductively in a strategic situation? A
classic answer is provided by Bernheim [11] and Pearce [23]. In their model-
ing of strategic form games, common belief or knowledge of rational choice
implies that precisely the strategies surviving iterated strong dominance
may be used (provided that players are allowed to hold correlated conjec-
tures concerning the choices of their opponents). Such strategies are called
(strategic form) rationalizable.

However, since strategic form games suppress information about the se-
quential structure of a strategic situation, this result is often of limited use.
Consider an example: Two persons, 1 and 2, are sitting in front of a button
which if pushed sets off a nearby bomb. One after the other, they decide
whether or not to push the button. Person 1 moves first, and 2 gets to move
only if 1 does not push the button. With obvious motivation for the payoffs,
this situation can be modeled by the strategic form game of Fig. 1.

Strategic form rationalizability permits anything to happen. If 1 believes
with probability 1 that 2 will choose push, then PUSH is a utility maxi-
mizing choice for 1. Player 1 is justified in this belief in the sense that if 2
believes with probability 1 that 1 will PUSH, then to push is indeed a utility
maximizing choice for 2. However, this is at best sensible only if information
about the sequential structure of the situation is not considered. Clearly, if
1 does not PUSH, 2 should not push either. 1 should figure this out, and
hence never PUSH in the first place!

Consideration of this kind led Bernheim [11] and Pearce [23] to propose
rationalizability concepts also for extensive games in which the sequential
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Figure 1. G1

structure of strategic situations is made explicit. However, these concepts
turn out to be difficult to justify using epistemic models; see, however, Batti-
galli & Siniscalchi [8] for an epistemic characterization of Pearce’s concept of
‘extensive form rationalizability’ (EFR). We have in Asheim & Dufwenberg
[2] (AD) proposed a model for deductive reasoning which can be applied
to many strategic situations. In the present paper we argue that it is ap-
propriate for analyzing extensive games and we apply the model to several
such games. Before going into details, we now provide two more motivating
examples.

In Γ2 of Fig. 2, player 1 chooses D at his last node if he acts in accor-
dance with his preferences. However, it is less clear what happens at the
preceding node where 2 moves. Some models that formalize common knowl-
edge or belief of rationality imply behavior which is in line with backward
induction. A notable example is the model by Aumann [4], in which com-
mon knowledge of rationality implies that the backward induction solution
is played in any generic extensive game with perfect information. In the case
of Γ2, Aumann’s analysis supports the intuition that 2 chooses f , “figuring
out” that 1 chooses D at the last node. One may, however, question how
compelling this is: If in Γ2 player 2 is asked to move, she knows that 1 is
not playing according to backward induction. Indeed, she must understand
that 1 is not choosing a strategy that is maximal given his preferences. Why
should 2 believe that 1’s behavior will follow backward induction at sub-
sequent nodes? Objections of this kind lead Ben-Porath [9] to propose an
alternative model which captures a very different intuition: Each player has
an initial belief about the behavior of others. If this belief is contradicted
by the play (a ”surprise” occurs) he may subsequently entertain any belief
consistent with the path of play. In Γ2, Ben-Porath’s model allows player 2
to make any choice.

Ben-Porath’s [9] model is in general more permissive than Aumann’s [4]
model. We believe it is a very important contribution to the literature. If one
finds the aforementioned critique of models that are “backward induction
supportive” convincing, then Ben-Porath’s analysis is a natural next step.
However, in this paper we argue that Ben-Porath’s approach is too permis-
sive. This is because he does not impose certain reasonable constraints on
how players reason about the likelihood of opponent choices. The argument
can be illustrated by Γ3 of Fig. 3. What preference should 2 have over
her strategies in this game? By extrapolating Ben-Porath’s assumption to
games with imperfect information (Ben-Porath [9] considers only games with
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perfect information) one could argue as follows:1 If 2 initially believes with
probability one that 1 will choose L, then being asked to play is a surprise
to 2. Hence, 2 may entertain any belief consistent with the path of play,
and hence, 2 may prefer r to �.

We find this conclusion implausible since L andM are the maximal strate-
gies for 1 independently of his belief concerning 2’s choice. Realizing that
{L,R} is 1’s choice set (i.e. 1’s set of maximal strategies), it would seem
that 2 should deem each of L and M much more likely than the remain-
ing non-maximal strategy R. Consequently, conditional on 2 being asked to
play (i.e. conditional on 1 having played M or R), she should deem M much
more likely than R. This would guarantee that 2 prefers � to r. What we
have here is an argument that 2 should deem any opponent strategy that is a
rational choice much more likely than any strategy not having this property.

In AD we show that similar concerns may arise in the context of strategic
form games. We handle the issue by requiring that a player should ...

1. ... deem any opponent strategy that is a rational choice infinitely more
likely (in the sense of Blume, Brandenburger & Dekel [15], Def. 5.1)
than any opponent strategy not having this property. This is equivalent
to saying that a player should prefer one strategy to another if the
former weakly dominates the latter on the set of rational choices for
the opponent. Such admissibility of a player’s preferences — which
we in AD refer to as ‘full belief of opponent rationality’ — is a key

1The reader may wonder whether we need to go to a game with imperfect information
to illustrate that Ben-Porath’s [9] approach is too permissive. In Sect. 4 we show that
the same point can be made concerning a game (Γ4) with perfect information. However,
it is a slightly more complicated to analyze Γ4 than to analyze Γ3, so we prefer to use Γ3

here.
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ingredient in the analyses of weak dominance by Samuelson [28] and
Börgers & Samuelson [16], and is essentially satisfied by procedures,
like EFR (cf. Pearce [23] and Battigalli [6, 7]) and ‘iterated elimination
of (all) weakly dominated strategies’ (IEWDS), that promote forward
induction.

2. ... prefer one strategy to another if the former weakly dominates the
latter. Such admissibility of a player’s preferences — which can be
referred to as ‘caution’ since it means that all opponent strategies are
taken into account — has been defended by e.g. Luce & Raiffa ([21],
Ch. 13) and is implicit in any procedure that starts out by eliminat-
ing all weakly dominated strategies. In an extensive game, ‘caution’
ensures that each player takes into account the possibility of reaching
any information set.

Formally, a player’s preferences over his own strategies, which depend
both on his payoff function and on his beliefs about the strategy choice
of his opponent, leads to a choice set (i.e. a set of maximal strategies).
A player’s preferences are said to be fully admissibly consistent with the
preferences of his opponent if one strategy is preferred to another if and
only if the former weakly dominates the latter

• on the union of the choice sets that are deemed possible for the oppo-
nent (i.e. ‘full belief of opponent rationality’), or

• on the set of all opponent strategies (i.e. ‘caution’).

A subset of strategies is a fully permissible set if and only if it can be a choice
set when there is common certain belief of full admissible consistency, where
an event is ‘certainly believed’ if the complement is deemed impossible (or
more precisely: is Savage-null). Hence, the analysis yields a solution concept
that determines a collection of strategy subsets – a family of choice sets –
for each player.

The formal definition in AD of the concept of fully permissible sets is
given in terms of an elimination procedure — iterative elimination of choice
set under full admissible consistency (IECFA) — that iteratively eliminates
strategy subsets that cannot be choice sets under full admissible consistency.
Subsequently in AD we provide an epistemic characterization as indicated
in the previous paragraph. In this paper we will apply the elimination
procedure only (which is introduced in Sect. 2), although we will at some
places interpret results in a way consistent with the underlying epistemic
foundation.

We now propose that some interesting implications of deductive reason-
ing in any given extensive game can be derived by applying the elimination
procedure of AD to the pure strategy reduced strategic form (see Mailath,
Samuelson & Swinkels [22]) of that extensive game. We present two formal
results that serve to justify this application: First, we address the problem of
time consistency which is pertinent when applying strategic form analysis to
extensive games with an explicit sequential structure. In our case a special
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problem is that AD’s common certain belief of full admissible consistency
need not ensure that preferences are complete. To provide a convincing ar-
gument that the analysis of AD can be used to analyze deductive reasoning
in extensive games, one has to show that any strategy that is maximal at
the outset is still maximal when the preferences have been updated upon
reaching any information set that the choice of this strategy does not pre-
clude. Drawing on results due to Mailath et al. [22], we prove that this is so.
Second, we show that to apply the framework of AD it is sufficient to con-
sider the pure strategy reduced strategic form. Taken together, these results
justify investigating the consequences of the concept of fully permissible sets
in any extensive games via that game’s pure strategy reduced strategic form.

The paper is organized as follows. Section 2 introduces the elimination
procedure that determines the fully permissible sets (IECFA) and summa-
rizes some results of AD. Section 3 contains formal results that justify our
claim that IECFA is applicable to extensive games. In Sect. 4 we analyze
several extensive games via this approach. We first return to the examples
of the introduction, then consider a game which allows us to compare our
results to those of Ben-Porath [9], and finally analyze some games that re-
late to issues of backward and forward induction. The conclusion of AD —
that our approach yields support to forward induction — is reinforced, and
we attempt to shed light on the “backward induction paradox” discussed by
many authors. Section 5 concludes.

2. Concepts

Below we make a self-contained presentation of the concept of fully per-
missible sets through a definition based on the IECFA procedure (cf. Def.
1). Readers that are interested in the underlying epistemic foundation must,
however, consult AD. As the purpose here is to apply this concept to exten-
sive games, we start by introducing such games. We refer to standard texts
for the general formalism of extensive games and state only those basic and
derived notions that will be needed.

2.1. Extensive Games. A finite extensive game Γ (without nature) in-
cludes a set of players N ∈ {1, 2} (we assume 2 players for convenience),
a set of terminal nodes Z, and, for each player i, a vNM utility function
υi : Z → R that assigns payoff to any outcome. For any player i, there is
a finite collection of information sets Hi, with a finite set of actions Ai(h)
being associated with each h ∈ Hi. A pure strategy for player i is a function
si that to any h ∈ Hi assigns an action in Ai(h). Let Si denote player i’s
finite set of pure strategies, and let S = S1 × S2. Write pi, ri and si (∈ Si)
for pure strategies and xi and yi (∈ ∆(Si)) for mixed strategies. Define
ui : S → R by ui(s) = υi(z), where z is the terminal node reached when
s = (s1, s2) is used, and refer to G = (Si, ui)i∈N as the strategic form of the
extensive game Γ. Since ui is a vNM utility function, we may extend ui to
mixed strategies: ui(xi, sj) =

∑
si∈Si

xi(si)ui(si, sj). For any h ∈ ⋃
i∈N Hi,
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let Sh denote the set of strategy vectors for which h is reached. As Γ is a
2-player game with perfect recall, Sh is rectangular: Sh = Sh

1 × Sh
2 .

2.2. Fully Permissible Sets. Say that xi weakly dominates yi on Qj (⊆
Sj) if, ∀sj ∈ Qj , ui(xi, sj) ≥ ui(yi, sj), with strict inequality for some sj ∈
Qj . Say that player i’s preferences over his own strategies are admissible
on Qj (
= ∅) if xi is preferred to yi whenever xi weakly dominates yi on Qj .
Player i’s choice set is the set of pure strategies that are maximal w.r.t. i’s
preferences over his own strategies: si (∈ Si) is in i’s choice set if and only
if there is no xi (∈ ∆(Si)) such that xi is preferred to si. For the class of
preferences considered in the present paper, i’s choice set is non-empty and
supports any maximal mixed strategy (cf. subsect. 3.5 of AD).

Let the set Qj be interpreted as the set of strategies that player i deems
to be the set of rational choices for his opponent. Assume that player i’s
preferences over his own strategies are characterized by the property of being
admissible on both Qj and Sj : xi is preferred to yi if and only if xi weakly
dominates yi on Qj or Sj . Player i’s choice set, Ci(Qj), is then equal to
Si\Di(Qj), where, for any (∅ 
=) Qj ⊆ Sj ,

Di(Qj) := {si ∈ Si|∃xi ∈ ∆(Si) s.t. xi weakly dom. si on Qj or Sj} .
Let Σ = Σ1 × Σ2, where Σi := 2Si\{∅} denotes the collection of non-empty
subsets of Si. Write πi, ρi, and σi (∈ Σi) for subsets of pure strategies. For
any (∅ 
=) Ξ = Ξ1 × Ξ2 ⊆ Σ, write α(Ξ) := α1(Ξ2)× α2(Ξ1), where

αi(Ξj) := {πi ∈ Σi|∃(∅ 
=)Ψj ⊆ Ξj s.t. πi = Ci(∪σj∈Ψjσj)} .
Hence, αi(Ξj) is the collection of strategy subsets that can be choice sets for
player i if i’s preferences are characterized by the property of being admis-
sible both on the union of the strategy subsets in a non-empty subcollection
of Ξj and on the union of all opponent strategies.

We can now define the concept of a fully permissible set.

Definition 1. Consider the sequence defined by Ξ(0) = Σ and, ∀g ≥ 1,
Ξ(g) = α(Ξ(g − 1)). A non-empty strategy set πi is said to be a fully
permissible set for i if πi ∈

⋂∞
g=0 Ξi(g).

Let Π = Π1 × Π2 denote the collection of vectors of fully permissible sets.
Since the game is finite, Ξ(g) converges to Π in a finite number of iterations.
IECFA is the procedure that in round g eliminates sets in Ξ(g − 1)\Ξ(g) as
possible choice sets. A choice set of player i survives elimination round g if
it is a choice set w.r.t. preferences that are characterized by the property
of being admissible both on the union of some (or all) of opponent choice
sets that have survived the procedure up till round g − 1 and on the set
of all opponent strategies. A fully permissible set is a choice set which will
survive in this way for any g. It follows from the analysis of AD that strategy
subsets that this algorithm has not eliminated by round g can be interpreted
as choice sets that are compatible with g − 1 order of mutual certain belief
of full admissible consistency.
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The algorithm of Def. 1 – IECFA – is an elimination procedure, and in
this regard it is reminiscent of procedures that iteratively eliminates domi-
nated strategies. However, IECFA does not eliminate strategies. Rather, it
eliminates sets of strategies that cannot be choice sets under full admissible
consistency. It is therefore that IECFA starts with each player’s collection
of all non-empty strategy subsets, and then iteratively eliminates subsets in
this collection. It is important that the appropriate interpretation of IECFA
in terms of surviving choice sets be borne in mind.

We reproduce from AD the following proposition, which characterizes the
strategy subsets that survive IECFA and thus are fully permissible.

Proposition 1. (i) ∀i ∈ N , Πi 
= ∅. (ii) Π = α(Π). (iii) ∀i ∈ N , πi ∈ Πi

if and only if there exists Ξ = Ξ1 × Ξ2 with πi ∈ Ξi such that Ξ ⊆ α(Ξ).

Prop. 1(i) establishes existence, but not uniqueness, of each player’s fully
permissible set(s). Games with multiple strict Nash equilibria illustrate the
possibility of such multiplicity; by Prop. 1(iii), any strict Nash equilibrium
corresponds to a vector of fully permissible sets. Other (quite different)
examples of games with multiple fully permissible sets are provided in Sect.
4 by Γ5 and Γ7 as well as a 3-period prisoners’ dilemma game. Prop. 1(ii)
means that Π is a fixed point in terms of a collection of vectors of strategy
sets. By Prop. 1(iii) it is the largest such fixed point.

3. Justifying Extensive Form Application

The concept of fully permissible sets, presented in Sect. 2 of the present
paper and epistemically characterized in AD, is designed to analyze the
implications of deductive reasoning in strategic form games. In this paper,
we propose that this concept can be fruitfully applied for analyzing any
extensive game through its strategic form. In fact, we propose that it is
legitimate to confine attention to the game’s pure strategy reduced strategic
form (cf. Def. 2), which is computationally more convenient. In this section
we prove two results which, taken together, justify our approach.

3.1. Dynamic Consistency. Proposition 2 addresses the dynamic consis-
tency problem inherent in applying AD’s strategic form theory to an ex-
tensive games with an explicit sequential structure. Consider any strategy
that is maximal given preferences that are charcterized by the property of
being admissible on both Qj — the set of strategies that player i deems
to be the set of rational choices for his opponent — and Sj — the set of
all opponent strategies. Hence, the strategy is maximal at the outset of a
corresponding extensive game. We prove that this strategy is still maximal
when the preferences have been updated upon reaching any information set
that the choice of this strategy does not preclude.

Assume that player i’s preferences over his own strategies are given by:
xi is preferred to yi if and only if xi weakly dominates yi on Qj or Sj . Let,
for any h ∈ Hi, Qh

j := Qj ∩ Sh
j denote the set of strategies in Qj that are
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consistent with the information set h being reached. If xi, yi (∈ ∆(Sh
i )),

then i’s preferences conditional on the information set h ∈ Hi being reached
is given by: xi is preferred to yi if and only if xi weakly dominates yi on Qh

j
or Sh

j (where it follows from the definition that weak dominance on Qh
j is

not possible if Qh
j = ∅). Furthermore, i’s choice set conditional on h ∈ Hi,

Ch
i (Qj), is equal to Sh

i \Dh
i (Qj), where, for any (∅ 
=) Qj ⊆ Sj ,

Dh
i (Qj) := {si ∈ Sh

i |∃xi ∈ ∆(Sh
i ) s.t. xi weakly dom. si on Qh

j or Sh
j } .

By the following proposition, if si is maximal at the outset of an extensive
game, then it is also maximal at later information sets for i that si does not
preclude.

Proposition 2. Let (∅ 
=) Qj ⊆ Sj. If si ∈ Ci(Qj), then si ∈ Ch
i (Qj) for

any h ∈ Hi with Sh
i � si.

Proof. Suppose that si ∈ Sh
i \Ch

i (Qj) = Dh
i (Qj). Then there exists xi ∈

∆(Sh
i ) such that xi weakly dominates si on Qh

j or Sh
j . By Mailath, Samuel-

son & Swinkels ([22], Defs. 2 and 3 and the if-part of Theorem 1), Sh is a
strategic independence for i. Hence, xi can be chosen such that ui(xi, sj) =
ui(si, sj) for all sj ∈ Sj\Sh

j . This implies that xi weakly dominates si on Qj

or Sj , implying that si ∈ Di(Qj) = Si\Ci(Qj).

By the assumption of ‘caution’, each player i takes into account the possi-
bility of reaching any information set h ∈ Hi.

3.2. Reduced Strategic Form. It follows from Prop. 3 that it is in fact
sufficient to consider the pure strategy reduced strategic form when deriving
the fully permissible sets of the game. The following definition is needed.

Definition 2. Let ri, si ∈ Si. Then ri and si are equivalent if, for each
k ∈ N , uk(ri, sj) = uk(si, sj) for all sj ∈ Sj . The pure strategy reduced
strategic form (PRSF) of G is obtained by letting, for each i, each class of
equivalent pure strategies be represented by exactly one pure strategy.

Since the maximality of one of two equivalent strategies implies that the
other is maximal as well, the following observation holds: If ri and si are
equivalent and πi is a fully permissible set for i, then ri ∈ πi if and only if
si ∈ πi. To see this formally, note that if ri ∈ πi for some fully permissible
set πi, then, by Prop. 1(ii), there exists (∅ 
=)Ψj ⊆ Πj such that ri ∈ πi =
Ci(∪σj∈Ψjσj). Since ri and si are equivalent, si ∈ Ci(∪σj∈Ψjσj) = πi. This
observation explains why the following proposition can be established.

Proposition 3. Let G̃ = (S̃k, ũk)k∈N be a strategic form game where ri, si

∈ S̃i are two equivalent strategies for i. Consider G = (Sk, uk)k∈N , where
Si = S̃i\{ri} and Sj = S̃j for j 
= i, and where, for all k ∈ N , uk is the
restriction of ũk to S = S1 × S2. Let, for each k ∈ N , Πk (Π̃k) denote the
collection of fully permissible sets for k in G (G̃). Then Πi is obtained from
Π̃i by removing ri from any π̃i ∈ Π̃i with si ∈ π̃i, while, for j 
= i, Πj = Π̃j.

Proof. By Prop 1(iii) it suffices to show that
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1. If Ξ̃ ⊆ α(Ξ̃) for G̃, then Ξ ⊆ α(Ξ) for G, where Ξi is obtained from Ξ̃i

by removing ri from any π̃i ∈ Ξ̃i with si ∈ π̃i, while, for j 
= i, Ξj = Ξ̃j .
2. If Ξ ⊆ α(Ξ) for G, then Ξ̃ ⊆ α(Ξ̃) for G̃, where Ξ̃i is obtained from Ξi

by adding ri to any πi ∈ Ξi with si ∈ πi, while, for j 
= i, Ξ̃j = Ξj .

Part 1. Assume Ξ̃ ⊆ α(Ξ̃). By the observation preceding Prop. 3, if π̃i ∈ Π̃i,
then ri ∈ π̃i if and only if si ∈ π̃i. Pick any k ∈ N and any π̃k ∈ Π̃k. Let �
denote k’s opponent. By the definition of αk(·), there exists (∅ 
=)Ψ̃
 ⊆ Π̃


such that π̃k = Ck(∪σ̃�∈Ψ̃�
σ̃
). Construct Ψi by removing ri from any σ̃i ∈ Ψ̃i

with si ∈ σ̃i and replace S̃i by Si, while, for j 
= i, Ψj = Ψ̃j and Sj = S̃j .
Then it follows from the definition of Ck(·) that Ck(∪σ�∈Ψ�

σ
) = π̃k\{rk} if
k = i and Ck(∪σ�∈Ψ�

σ
) = π̃k if k 
= i. Since, ∀k ∈ N , (∅ 
=)Ψk ⊆ Ξk, we
have that Ξ ⊆ α(Ξ). Part 2 is shown similarly.

Proposition 3 means that the PRSF is sufficient for analyzing common
certain belief of full admissible consistency, which is the epistemic foundation
for the concept of fully permissible sets. Consequently, in the strategic form
of an extensive game, it is unnecessary to specify actions at information
sets that a strategy precludes from being reached. Hence, instead of fully
specified strategies, it is sufficient to consider (what Rubinstein [27] calls)
plans of action. For a generic extensive game, the set of plans of action is
identical to the strategy set in the PRSF.

4. Applications

In this section we apply the concept of fully permissible sets to several
extensive games. We first return to the examples of the introduction, and
then consider a game which allows us to compare our results to those of
Ben-Porath [9]. Furthermore, we analyze some games that relate to issues
of backward and forward induction, before finally presenting an analysis of
a 3-period prisoners’ dilemma game.

Other support for forward induction through the concept of EFR and the
procedure of IEWDS precludes outcomes in conflict with backward induction
(cf. e.g. Battigalli [7]). In constrast, the following examples show how our
concept promotes forward induction (in a game like Γ6 of Fig. 9), while
not insisting on the backward induction outcome in games (like Γ5 of Fig.
8 and the 3-period prisoners’ dilemma) where earlier constributions, like
Basu [5], Reny [25] and others, have argued on theoretical grounds that this
is particularly problematic. Still, it should be noticed that the backward
induction outcome is obtained in Γ4 of Fig. 7, and that our concept has
considerable bite in the 3-period prisoners’ dilemma game.

Motivated by Props. 2 and 3, we analyze each extensive game via its
PRSF (cf. Def. 2), given in conjunction to the extensive game itself. In
each example, each plan of action that appears in the underlying extensive
game corresponds to a distinct strategy in the PRSF.
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Figure 4. Γ1 and its PRSF.
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Figure 5. Γ2 and its PRSF.

4.1. The Examples of the Introduction. The extensive game Γ1 of Fig.
4 is a model of the strategic situation that we used to motivate G1. Applying
the algorithm of Def. 1 – IECFA – to the PRSF of Γ1 yields:

Ξ(0) = Σ1 × Σ2

Π = Ξ(1) = {{D}} × {{d}}
({D}, {d}) is the unique vector of fully permissible sets in Γ1.

We now move to Γ2 which we analyze via its PRSF (cf. Fig. 5). Our
algorithm IECFA applied to the PRSF of Γ2 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{D}} × Σ2

Π = Ξ(2) = {{D}} × {{d, f}}
We interpret this result as follows: Irrespective of what strategies that 1
deems as rational choices for 2, D is the only strategy that is maximal for
1. Player 2 considers each of the strategies FD and FF infinitely less likely
than D. However, conditional on 2’s node being reached, i.e. conditional on
1 not choosing D, 2 does not have any assessment of likelihood concerning
which non-maximal strategy FF or FD that 1 has chosen. Hence each of d
and f is maximal for 2.

Turn now to the pure reduced strategic form of Γ3, which is illustrated in
Fig. 6. Applying IECFA to the PRSF of Γ3 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{L,M}} × Σ2

Π = Ξ(2) = {{L,M}} × {{�}}
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Interpretation: Irrespective of what strategies that 1 deems as rational
choices for 2, L and M are the maximal strategies for 1. Player 2 deems
each of L and M infinitely more likely than R. Conditional on her informa-
tion set being reached, 2 considers it infinitely more likely that 1 is using M
rather than R. Then only � can be a maximal strategy for 2.

4.2. Comparison to Ben-Porath [9]. Ben-Porath [9] models “initial com-
mon certainty of rationality” (initial CCR) in extensive games with perfect
information. He proves that in generic games (with no payoff ties at ter-
minal nodes for any player) the outcomes consistent with that assumption
coincide with those that survive the Dekel-Fudenberg [17] procedure (where
one round of elimination of all weakly dominated strategies is followed by
iterated elimination of strongly dominated strategies). The concept of fully
permissible sets generally refines the Dekel-Fudenberg procedure (see AD,
Prop. 2). Game Γ4 of Fig. 7 shows that the refinement may be strict even
for generic extensive games with perfect information.

Γ4, which was introduced by Reny ([24], Fig. 1) and has appeared in
many contributions, is a generic game. The set of profiles surviving the
Dekel-Fudenberg procedure is {D,FF}×{d, f}, and hence these profiles are
consistent with initial CCR. We refer to Ben-Porath [9] for formal details,
and here give only the rough intuition for why the strategies D and d are
possible: D is 1’s unique best strategy if he believes with probability one
that 2 plays d. Player 1 is justified in this belief in the sense that d is 2’s
best strategy if she initially believes with probability one that 1 will choose
D, and if called upon to play revises this belief so as to believe with high
enough probability that 1 is using FD. Since only initial beliefs must be
supported by strategies consistent with rationality, such belief revision is
acceptable.

This is at odds with the implications of common certain belief of full
admissible consistency. Applying IECFA to the PRSF of Γ4 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{D}, {FF}, {D,FF}} × Σ2

Ξ(2) = {{D}, {FF}, {D,FF}} × {{f}, {d, f}}
Ξ(3) = {{FF}, {D,FF}} × {{f}, {d, f}}
Ξ(4) = {{FF}, {D,FF}} × {{f}}

Π = Ξ(5) = {{FF}} × {{f}}
Interpretation: Ξ(1): FD cannot be a maximal strategy for 1 since it is a
dominated strategy. Ξ(2): Player 2 certainly believes that only {D}, {FF}
and {D,FF} are candidates for 1’s choice set. This excludes {d} as 2’s
choice set, since {d} is 2’s choice set only if 2 deems {FD} or {D,FD}
possible. Ξ(3): 1 certainly believes that only {f} and {f, d} are candidates
for 2’s choice set. This excludes {D} as 1’s choice set, since {D} is 1’s choice
set only if 1 deems {d} possible. Ξ(4): Player 2 certainly believes that only
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Figure 7. Γ4 and its PRSF.

{FF} and {D,FF} are candidates for 1’s choice set. This implies that 2’s
choice set is {f}. Ξ(5): 1 certainly believes that 2’s choice set is {f}, and
hence {FF} is 1’s choice set. No further elimination of choice sets is possible,
so {FF} and {f} are the respective players’ unique fully permissible sets.

4.3. Backward Induction. Does deductive reasoning in extensive games
imply backward induction? During the last couple of decades, many authors
have debated various aspects of this issue.2 The background is the following
paradoxical aspect of backward induction: Why should a player believe that
an opponent’s future play will satisfy backward induction if the opponent’s
previous play is incompatible with backward induction? We now discuss
what our approach has to say.

Reny [25] studies the “Take-it-Or-Leave-it” game with k stages (TOL(k))
(a version of Rosenthal’s [26] centipede game), where at �th stage of the
game, the total pot is � dollars. If � is odd (even), player 1 (2) may take �
dollars and end the game, or leave it, in which case the pot increases with
one dollar. Should the game continue until the kth stage and the player
whose turn it is decides to leave the k dollars, it is given to the other player.
We analyze TOL(3) in detail.

Applying our algorithm IECFA to the PRSF of Γ5 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{D}, {FD}, {D,FD}} × Σ2

Ξ(2) = {{D}, {FD}, {D,FD}} × {{d}, {d, f}}
Π = Ξ(3) = {{D}, {D,FD}} × {{d}, {d, f}}

2These papers include Aumann [4], Basu [5], Ben-Porath [9], Bicchieri [12], Binmore
[13, 14], Gul [18], and Reny [25].



DEDUCTIVE REASONING 13

1 2 1 0
F f F 3

D d D
1 0 3
0 2 0

d f

D

FD
FF

1, 0 1, 0
0, 2 3, 0
0, 2 0, 3

Figure 8. Γ5 (= TOL(3)) and its PRSF.

Interpretation: Ξ(1): FF cannot be a maximal strategy for 1 since it is a
dominated strategy. Ξ(2): Player 2 certainly believes that only {D}, {FD}
and {D,FD} are candidates for 1’s choice set. This excludes {f} as 2’s
choice set since {f} is 2’s choice set only if 2 deems {FF} or {FD,FF}
possible. Ξ(3): 1 certainly believes that only {d} and {d, f} are candidates
for 2’s choice set, implying that {FD} cannot be 1’s choice set. No further
elimination of choice sets is possible and the collection of vectors of fully
permissible sets is as specified.

Note that backward induction is not implied. To illustrate why, we focus
on player 2 and explain why {d, f} may be a choice set for her. Player 2
certainly believes that 1’s choice set is {D} or {D,FD}. This leaves room
for two basic cases. First, suppose 2 deems {D,FD} possible. Then {d}
must be her choice set, since she must consider it infinitely more likely that
1 uses FD than that he uses FF. Second, and more interestingly, suppose
2 does not deem {D,FD} possible. Then conditional on 2’s node being
reached 2 certainly believes that 1 is not choosing a maximal strategy. As
player 2 is assumed not to assess the relative likelihood of strategies that are
not maximal, {d, f} is her choice set in this case. Note that even in the case
when 2 deems {D} to be the only possible choice set for 1, she still considers
it possible that 1 may choose one of his non-maximal strategies FD and FF
(cf. the property of ‘caution’), although each of these strategies is in this
case deemed infinitely less likely than the unique maximal strategy D.

We now compare our results to the very different findings of Aumann [4].
In his analysis of common knowledge of rational choice in perfect information
games it is crucial to specify full strategies (rather than plans of actions). In
Aumann’s model, common knowledge of rational choice implies in TOL(3)
that all strategies for 1 but DD (where he takes the 1 dollar at his first
node and takes the 3 dollars at his last node) are impossible. Hence, it is
impossible for 1 to play FD or FF and thereby ask 2 to play. However, in
the counterfactual event that 2 is asked to play, she optimizes as if player
1 at his last node follows his only possible strategy DD, implying that it is
impossible for 2 to choose f (see Aumann’s Sects. 4b, 5b, and 5c). Thus,
in Aumann’s analysis, if there is common knowledge of rational choice, then
each player chooses the backwards induction strategy. By contrast, in our
analysis player 2 being asked to play is seen to be incompatible with 1 playing
DD or DF. For the determination of 2’s preference over her strategies it is
the relative likelihood of FD versus FF that is important to her. As seen
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Figure 9. Γ6 (= BoSwOO) and its PRSF.

above, this assessment depends on whether she deems {D,FD} as a possible
candidate for 1’s choice set.

4.4. Forward Induction. In AD we analyze the “Battle-of-the-Sexes-with-
an-Outside-Option” (BoSwOO) game (introduced by Kreps & Wilson [20]
who credit Elon Kohlberg) and the “Burning money” game (van Damme
([29], Fig. 5), Ben-Porath & Dekel ([10], Fig. 1.2)) in the strategic form
and show how the concept of fully permissible sets yields forward induction
outcomes. We refer the reader to AD for a detailed discussion. Here we
briefly consider an extensive form version of the BoSwOO game (cf. Fig.
9), and then analyze a modification due to Dekel & Fudenberg [17].

Applying IECFA to the PRSF of Γ6 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{X}, {B}, {X,B}} × Σ2

Ξ(2) = {{X}, {B}, {X,B}} × {{b}, {b, s}}
Ξ(3) = {{B}, {X,B}} × {{b}, {b, s}}
Ξ(4) = {{B}, {X,B}} × {{b}}

Π = Ξ(5) = {{B}} × {{b}}
The profile (B, b) corresponds to the usual forward induction outcome.
Props. 2 and 3 together is our justification for claiming that common certain
belief of full admissible consistency captures forward induction in the same
way in any extensive game underlying the PRSF of Γ6.3

Turn now to a game introduced by Dekel & Fudenberg ([17], Fig 7.1),
which is discussed also by Hammond [19], and which is reproduced here
as Γ7 of Fig. 10. It is a modification of Γ6 which introduces an “extra

3Analogous remarks apply to the Burning money game, but with a twist. The player
who cannot burn money will have two strategies in her unique fully permissible set; at
the information set reached if money is burnt a maximal strategy may prescribe any
action. By contrast IEWDS permits only one specific action. This has been taken as
troublesome as it may seem to suggest that burning is viewed as a “signal of a rational
player’s intentions”, despite burning in the end being an action a rational player would
never use. Our solution of the Burning money game is robust to this critique. See AD for
more discussion of and details about the Burning money game.
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Figure 10. Γ7 and its PRSF.

outside option” for player 2. In this game there may seem to be a tension
between forward and backward induction: For player 2 not to choose x may
seem to suggest that 2 “signals” that she seeks a payoff of at least 3

2 , in
contrast to the payoff of 1 that she gets when the subgame structured like
Γ6 is considered in isolation (as seen in the analysis of Γ6). However, this
intuition is not quite supported by the concept of fully permissible sets.
Applying our algorithm IECFA to the PRSF of Γ7 yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{X}, {B}, {X,B}} × {{x}, {s}, {x, b}, {x, s}, {b, s}, {x, b, s}}
Ξ(2) = {{X}, {B}, {X,B}} × {{x}, {x, b}, {b, s}}
Ξ(3) = {{B}, {X,B}} × {{x}, {x, b}, {b, s}}

Π = Ξ(4) = {{B}, {X,B}} × {{x}, {x, b}}
The only possibility for X being a maximal strategy for player 1 is that he
deems {x} as the only possible candidate for 2’s choice set, in which case
1’s choice set is {X,B}. Else {B} is 1’s choice set. Furthermore, 2 can have
a choice set different from {x} only if she deems {X,B} as a possible can-
didate for 1’s choice set. Intuitively this means that if 2’s choice set differs
from {x} (i.e. equals {x, b}), then she deems it possible that 1 considers it
impossible that b is a maximal strategy for 2. Since it is only under such cir-
cumstances that b is a maximal element for 2, perhaps this strategy is better
thought of in terms of “strategic manipulation” than in terms of “forward
induction”. Note that the concept of fully permissible sets has more bite
than the Dekel-Fudenberg procedure; in addition to the strategies appearing
in fully permissible sets also s survives the Dekel-Fudenberg procedure.

4.5. Prisoners’ Dilemma. As a final application, consider a 3-period pris-
oners’ dilemma game with each player’s set of actions being {cooperate, de-
fect} in each stage. The payoffs of the stage game are given as follows,
using Aumann’s [3] description: Each player decides whether he will receive
1 (defect) or the other will receive 3 (cooperate). There is no discounting.
Hence, the action defect is strongly dominant in the stage game, but still,
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Figure 11. Reduced form of the 3-period PD game.

each player is willing to cooperate in one stage if this induces the other player
to cooperate instead of defect in the next stage. It follows from Prop. 3 that
we need only consider (what Rubinstein [27] calls) plans of action.

There are 6 plans of actions for each player that survive the Dekel-
Fudenberg procedure. In any of these, a player always defects in the 3rd
stage, and does not always cooperate in the 2nd stage. The 6 plans of ac-
tions of each player i are denoted sNT

i , sNV
i , sNE

i , sRT
i , sRV

i and sRE
i , where

N denotes that i is nice in the sense of cooperating in the 1st stage, where
R denotes that i is rude in the sense of defecting in the 1st stage, where T
denotes that i plays tit-for-tat in the sense of cooperating in the 2nd stage
if and only j 
= i has cooperated in the 1st stage, where V denotes that
i plays inverse tit-for-tat in the sense of defecting in the 2nd stage if and
only if j 
= i has cooperated in the 1st stage, and where E denotes that i is
exploitive in the sense of defecting in the 2nd stage independently of what
j 
= i has played in the 1st stage. The strategic form after elimination of all
other plans of actions is given in Fig. 11. Note that none of these plans of
actions are weakly dominated in the full strategic form.

Prop. 2 of AD implies that any fully permissible set is a subset of the set of
strategies surviving the Dekel-Fudenberg procedure. Hence, only subsets of
{sNT

i , sNV
i , sNE

i , sRT
i , sRV

i , sRE
i } can be i’s choice set under common certain

belief of full admissible consistency. Furthermore, under common certain
belief of full admissible consistency, we have for each player i that

• any choice set that contains sNT
i must also contain sNE

i , since sNT
i is

a maximal strategy only if sNE
i is a maximal strategy,

• any choice set that contains sNV
i must also contain sNE

i , since sNV
i is

a maximal strategy only if sNE
i is a maximal strategy,

• any choice set that contains sRT
i must also contain sRE

i , since sRT
i is a

maximal strategy only if sRE
i is a maximal strategy,

• any choice set that contains sRV
i must also contain sRE

i , since sRV
i is

a maximal strategy only if sRE
i is a maximal strategy,

Given that the choice set of the opponent satisfies these conditions, this
implies that
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• if sNE
i is included in i’s choice set, only the following sets are candi-

dates for i’s choice set: {sNT
i , sNE

i , sRT
i , sRE

i }, {sNV
i , sNE

i , sRV
i , sRE

i },
or {sNE

i , sRE
i }. The reason is that sNE

i is a maximal strategy only if i
considers it possible that j’s choice set contains sNT

j (and hence, sNE
j )

or sRT
j (and hence, sRE

j ).
• if sRE

i , but not sNE
i , is included in i’s choice set, only the following sets

are candidates for i’s choice set: {sRT
i , sRE

i }, {sRV
i , sRE

i }, or {sRE
i }.

The reason is that sRE
i is a maximal strategy only if i considers it

possible that j’s choice set contains sNV
j , sNE

j , sRV
j , or sRE

j .
This in turn implies that

• i’s choice set does not contain sNV
i or sRV

i since any candidate for j’s
choice set contains sRE

j , implying that sNE
i is preferred to sNV

i and
sRE
i is preferred to sRV

i .
Hence, the only candidates for i’s choice set under common certain be-

lief of full admissible consistency are {sNT
i , sNE

i , sRT
i , sRE

i }, {sNE
i , sRE

i },
{sRT

i , sRE
i }, and {sRE

i }. Moreover, it follows from Prop. 1(iii) that all
these sets are indeed fully permissible since

• {sNT
i , sNE

i , sRT
i , sRE

i } is i’s choice set if he deems {sRT
j , sRE

j }, but not
{sNE

j , sRE
j } and {sNT

j , sNE
j , sRT

j , sRE
j }, as possible candidates for j’s

choice set,
• {sNE

i , sRE
i } is i’s choice set if he deems {sNT

j , sNE
j , sRT

j , sRE
j } as a pos-

sible candidate for j’s choice set,
• {sRT

i , sRE
i } is i’s choice set if he deems {sRE

j } as the only possible
candidate for j’s choice set,

• {sRE
i } is i’s choice set if he deems {sNE

j , sRE
j }, but not {sRT

j , sRE
j } and

{sNT
j , sNE

j , sRT
j , sRE

j }, as possible candidates for j’s choice set.
While play in accordance with strategies surviving the Dekel-Fudenberg pro-
cedure does not provide any prediction other than both players defecting in
the 3rd stage, the concept of fully permissible sets has more bite. In partic-
ular, a player cooperates in the 2nd stage only if the opponent has cooperated
in the 1st stage. This implies that only the following paths can be realized
if players choose strategies in fully permissible sets:

((cooperate, cooperate), (cooperate, cooperate), (defect, defect))

((cooperate, cooperate), (cooperate, defect), (defect, defect)) and v.v.

((cooperate, defect), (defect, cooperate), (defect, defect)) and v.v.

((cooperate, cooperate), (defect, defect), (defect, defect))

((cooperate, defect), (defect, defect), (defect, defect)) and v.v.

((defect, defect), (defect, defect), (defect, defect)).

That the path ((cooperate, defect), (cooperate, defect), (defect, defect)) or v.v.
cannot be realized if players choose strategies in fully permissible sets can
be interpreted as an indication that the present analysis seems to produce
some element of reciprocity in the 3-period prisoners’ dilemma game.
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5. Concluding Remark

In this paper we apply to extensive games AD’s concept of fully permis-
sible sets, and explore its implications in several examples. AD characterize
this concept as choice sets under common certain belief of full admissible
consistency. Full admissible consistency entails that one strategy is preferred
to another if and only the former weakly dominates the latter on the union
of the choice sets that are deemed possible for the opponent (this property
is called ‘full belief of opponent rationality’), or on the set of all opponent
strategies (this corresponds to ‘caution’). Hence, full admissible consistency
is associated with certain properties of preferences. In closing the paper we
would like to emphasize that the full belief of opponent rationality relates
to the strategy choices of the opponents in the whole game. It does not
relate to choices among the remaining available strategies at each and every
information set.

To illustrate this point, look back at Γ2. Conditional on 2’s node being
reached it is clear that 1 cannot be choosing a strategy that is maximal
given his preferences. Conditional on 2’s node being reached, our modeling
then imposes no constraint on 2’s assessment of likelihood concerning which
non-maximal strategy FF or FD that 1 has chosen. Note here how crucially
the analysis presumes that 2 assesses the likelihood of different strategies as
chosen by player 1 in the whole game.

It is possible to imagine a distinct modeling approach which relates to
choices among the remaining available strategies at different information
sets. In Γ2 this would amount to the following: Conditional on 2’s node
being reached she realizes that 1 cannot be choosing a strategy which is
maximal given his preferences. However, 2 considers it infinitely more likely
that 1 at his last node chooses a strategy that is maximal among his re-
maining available strategies given his conditional preferences at that node.
In the introduction we argued (with Ben-Porath [9]) that it is not intuitively
clear that this is reasonable, a view which permeates the working hypothe-
ses on which the current work in grounded. Yet, the alternative approach
is logically conceivable, and research on this basis may be illuminating and
worthwhile. However, we leave for other contributions to go in this alterna-
tive direction.4
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