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Abstract 

This paper takes on the issue of ‘Prices vs. Quantities’, see Weitzman (1974), applied to 

environmental regulations under uncertainty. It is shown that, from an efficiency point of view, it 
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mechanisms. This may be so even when the latter alternatives are cost effective while the former 
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steeper marginal abatement cost function relative to the marginal abatement benefit function 

implies that a larger part of the economy should be taxed. 
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1. Introduction 

In this paper I deal with the regulation of externalities under uncertainty, concentrating on 

emissions of harmful substances in air or water. In particular, I show that it is generally 

preferable from an efficiency point of view to adopt a policy under which some emitters of a 

particular pollutant are subject to an emissions tax and the remaining emitters are subject to 

cap-and-trade, even though this policy can be shown not to be cost effective. This is of 

particular interest, as such policies are used in practice, e.g., in connection with the upcoming 

European Trading Scheme which includes only 46% of the CO2 emissions while the rest will 

have to be confronted by another policy instrument.1 

It is well known that, when marginal abatement costs (MAC) and marginal abatement benefits 

(MAB) are known with certainty, an optimal emissions tax is equivalent to an optimal cap-

and-trade system, both of which achieve an efficient policy outcome2. However, as first 

formally analyzed by Weitzman (1974) this conclusion is not generally relevant since in most 

cases at least the MAC function is uncertain at the point in time when the tax or the cap is set. 

Given linear MAC and MAB functions, an emissions tax is then preferred to a cap-and-trade 

system when the MAC function is steeper than the MAB function. Similarly, when the MAB 

function is steeper than the MAC function, cap-and-trade is preferred to an emissions tax3. 

However, in both cases some distortions remain on the market. That is, given that only one of 

the two systems should be used, the Weitzman analysis provides a second best solution. 

Many authors have tried to reduce the remaining distortion on the market by combining a 

quantity instrument with a price instrument. The seminal paper in this branch of the literature 

is Roberts and Spence (1976), from which the hybrid regulation mechanism known as a 

‘safety valve’ originates. Other studies include Weitzman (1978) who introduces a penalty 

                                                 

1 This policy may be justified entirely by other reasons than those highlighted in the present paper, but it 

nevertheless illustrates a real example of the kind of policies discussed herein. 

2 For this to be true from a ‘double dividend’ perspective the permits under cap-and-trade have to be auctioned, 

see, e.g., Bohm (2002). For the purpose of this paper this is not crucial.  

3 When the functions are non-linear these conclusions are not always correct, see Malcolmson (1978) and 

Watson and Ridker (1984) 
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function that operates if an emitter deviates from a pre-set emissions target and Yohe (1981) 

who studies the use of so called ‘sliding control’, i.e., a scheme in which the emissions tax 

varies with the emitters’ emissions level, drawing on work by Ireland (1977) and Laffont 

(1977), among others. A recent paper by Kaplow and Shavell (2002) argues in favor of the 

use of non-linear tax schemes. The outcomes under these and similar mechanisms are often 

preferred to those under a standard emissions tax or pure cap-and-trade. However, it seems 

that such mechanisms are rarely used in practice, perhaps because they are perceived as being 

too complex.  

The driving force behind the results derived in the present paper is that a market regulated 

through an emissions tax responds differently to a given realization of the MAC than one 

regulated through cap-and-trade. For argument’s sake, assume for now that only the MAC is 

uncertain. If the MAC emerges as higher (lower) than expected, the optimal emissions level 

under cap-and-trade is below (above) the efficient one, where the MAB equates the realized 

MAC. The opposite is true under an optimal tax regime: if the MAC is realized as high (low) 

the market will emit more (less) than the efficient volume. Consequently, when only a subset 

of all emitters is subject to cap-and-trade while the other emitters are taxed the aggregate 

emissions volume will be closer to the efficient volume regardless of whether the MAC is high 

or low, assuming that the realization applies to both groups. This is obviously appealing but it 

has a drawback. When all emitters trade and when all emitters are subject to a tax, marginal 

costs are equated ex post and, hence, both solutions are cost effective. Here, if the MAC is 

realized as higher than the expected MAC the price in the trading sector is higher than the tax 

in the taxed sector and vice versa. That is, marginal costs will not be equated and the solution 

is not cost effective. Thus, the following model deals with two sources of efficiency loss. 

First, the emissions volume may differ from the efficient level. This will be referred to as the 

‘volume error’. Second, abatement efforts may be allocated between agents in an ineffective 

way. This will be referred to as the ‘allocation error’. 

The rest of the paper is organized as follows. Section 2 outlines the formal model. Section 3 

contains the main analysis, presented both in a setting in which all emitters are identical and 

in a setting in which they differ in respect to the slope of their individual MAC functions. 

Section 4 concludes. 
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2. The model 

Throughout the paper I assume that the market is competitive, that transaction costs and 

income effects are negligible and that all agents are in compliance. For simplicity let the MAC 

and MAB functions be linear in emissions. The MAB is given by 

δ++= totgefMAB          (1) 

where f and g are non-negative parameters, etot denotes total emissions and δ is a continuous 

stochastic variable that is symmetrically distributed around zero. Let there be N emitters and 

let each emitter have a MAC given by 

ε+
Θ�
�

�
�
�

� +−+
−= ii e

N
i

L
KMAC

2
1

1
       (2) 

where K and L are parameters, ei is emitter i’s emissions volume and ε is a continuous 

stochastic variable that is symmetrically distributed around zero. Note that ε has an economy-

wide realization common to all emitters. Furthermore, I assume that ε and δ are independent. 

Θ is a parameter that relates each emitter’s index (i) to the slope of its MAC function. If Θ 

equals zero all emitters have identical MAC functions with a slope of -L. If Θ is positive, 

emitters with a low index (low i) will have steeper MAC functions than those with a high 

index. In order for all individual MAC functions to decrease in emissions we must have that 

-2 / N ≤ Θ ≤ 2 / N. Furthermore, let K > f and let g and L be strictly positive. 

Aggregating over all emitters yields an aggregated MAC 

ε+−= tottot e
N

L
KMAC         (3) 

Note that MACtot is independent of Θ by design. This simplifies the analysis since a change in 

the distribution of agents’ individual MAC functions does not influence the aggregate MAC. 

The efficient emission volume, e*
tot, is the one that equates the aggregated MAC with the MAB 

( )
gNL

fKN
etot +

−+−= δε*         (4) 
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2.1 Efficiency loss due to the volume error under a single sector regime 

When the entire market is subject to a cap-and-trade regime, the optimal cap, Q, is such that 

the expected MAB equals the expected MACtot, which amounts to (4) with ε and δ equal to 

zero. Integrating MACtot – MAB from Q to the efficient emissions level and taking 

expectations yields the expected remaining distortion on the emissions market, E{ DWLCnT}, 

under the optimal cap-and-trade regime4 

{ } ( ) ( )gNL

N

gNL

N
DWLE CnT +

+
+

=
22

22 τσ
      (5) 

where σ2 is the variance of the stochastic variable ε and τ2 is the variance of δ. The optimal 

tax, T, is given by the price at which the expected MAB equals the expected MACtot 

( )
gNL

fKL
KT

+
−−=          (6) 

An exercise similar to the one in the cap-and-trade case yields the expected remaining 

distortion on the emissions market when the entire economy is subject to an emissions tax, T, 

as 

{ } ( ) ( )gNL

N

gNL

N

L

gN
DWLE Tax +

+
+

�
�

�
�
�

�=
22

222 τσ
      (7) 

Note that when g = L / N, i.e., aggregated MAC has the same slope as the MAB, E{ DWLCnT}=  

E{ DWLTax} while E{ DWLCnT}>  E{ DWLTax} when g < L / N and E{ DWLCnT}<  E{ DWLTax} 

when g > L / N, which correspond to the results derived in Weitzman (1974). 

2.2 Efficiency loss due to volume error under a dual sector regime 

Rather than treating the entire economy as one sector, the emitters may be divided into two 

different sectors such that emitters i = 1 to n belong to sector 1 and emitters i = n + 1 to N 

belong to sector 2. Aggregating over sector 1 yields the following MAC function 

                                                 

4 I do not report intermediary steps in these calculations, as they are well known from earlier literature, e.g., 

Weitzman (1974). 
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( )( ) ε+
Θ−−

−= 11 2

2
SS e

nNn

L
KMAC        (8) 

where eS1 denotes total emissions from emitters in sector 1. Similarly for sector 2 

( )( ) ε+
Θ−−

−= 22 2

2
SS e

nnN

L
KMAC        (9) 

where eS2 denotes total emissions from sector 2. 

In this ‘dual sector case’ sector 1 is subject to the emissions tax T given by (6) and sector 2 is 

regulated by cap-and-trade, such that the expected total emissions volume amounts to the 

expected efficient outcome, Q. The emissions volume from sector 1 as a function of the tax is 

given by  

( ) ( )( )
L

nNTKn
eS 2

2
1

Θ−−+−= ε
       (10) 

Substituting (6) into (10) yields 

( ) ( )( )

L

nN
gNL
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n
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−

=
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       (11) 

For sector 2, the emissions volume as a function of the price, p, is 

( )( )( )
L

npKnN
eS 2

2
2

Θ++−−= ε
       (12) 

From (6) we know that if both sectors are subject to the tax T the expected total emissions 

level, i.e., E{ eS1 +  eS2}, amounts to the expected efficient one. Hence, a simple way of 

calculating the necessary cap for sector 2, QS2, is to substitute p in (12) for T and set ε to zero, 

which yields 

( ) ( ) ( )

L

n
gNL

fKL
nN

QS 2

2

2
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+
−−
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 7 

The total emissions volume from both sectors is reached by adding (11) to (13) 

( ) ( ) ( )( )
( )gNLL

nNgNLnfKLN
Qee S

T
SSS +

Θ−−++−=+=+ 2

22
2121

ε
   (14) 

In expectation terms, (14) equals (4), i.e., the expected total emissions volume in the dual 

sector case coincides with the expected efficient volume. The efficiency loss due to the 

volume error accruing from adopting a dual sector setting may be calculated by the integral 

( )�
+ −21

*

SS

tot

e

e tottot deMACMAB         (15) 

Substituting for the relevant expressions — (4), (14), (1) and (3) — solving the integral and 

taking expectations yields an expression for the expected efficiency loss due to the volume 

error, E{ DWLVE}, as 

{ } ( )( ) ( )( )( )
( )gNL

N

gNLNL

nNgnNnnNL
DWLE VE +

+
+

−Θ−+Θ+−=
2)(8

22 2

2

22 τσ
  (16) 

As an illustration, let all emitters be identical, i.e., set Θ = 0, and let the slope of the MAB 

equal the slope of the aggregated MAC, i.e., set g = L / N, then (16) simplifies to 

( )
L

N

LN

nN

N

L
gDWLE VE 44

2
};0|{

222 τσ +−===Θ      (17) 

which may be compared to the dead weight loss under the corresponding single sector setting, 

reached by substituting g in (5) or (7) by L / N 

L

N

L

N

N

L
gDWLE

N

L
gDWLE CnTTax 44

}|{}|{
22 τσ +====     (18) 

We can see that (17) is less than (18) for all n larger than zero and less than N; in other words, 

the expected efficiency loss due to volume error is, in this particular setting, strictly less under 

a dual sector regime than when the entire economy is regulated by a single common 

regulation mechanism. This is in line with the general intuition that if the entire market is 

subject to an emissions tax, total emissions will exceed (fall short of) the efficient emission 

level as a response to a realization of ε larger (less) than zero whereas under a cap-and-trade 

regime the opposite applies and, consequently, splitting the economy into a taxed sector and a 
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trading sector will yield an expected total emission volume closer or equal to the efficient one. 

But, as mentioned, this approach has the disadvantage of not being cost effective, which is the 

issue we now turn to. 

2.3 Efficiency loss due to the allocation error under a dual sector regime 

In the following I calculate the total costs of reaching the emissions volume under a dual 

sector regime first in a hypothetical cost minimizing setting5 and then in the actual dual sector 

setting. The difference in total cost between these two scenarios constitutes the efficiency loss 

following from the allocation error. I calculate the total abatement cost by integrating the 

MAC from the actual emission level to the business as usual (BAU) emission level. Since we 

are interested in the difference between two total costs measures, any fixed costs may be 

safely ignored. 

I find the BAU-emission level by setting marginal costs to zero and solving for etot in (3), 

which yields 

( )
L

KN
eBAU

tot

ε+=          (19) 

In the hypothetical cost effective case the total costs of reaching eS1+S2 is given by 

�
+

BAU
tot

SS

e

e tottotdeMAC
21

         (20) 

Substituting (14), (19) and (3) into (20) and solving the integral yields an expression for the 

lowest total cost at which the emission volume eS1+S2 is reached, given the realization of ε 

( ) ( )( )( )( )
( )2

2

min
8

22

gNLLN

ngNLnNgKNfLN
TC

+
Θ++−++= ε

    (21) 

It must be noted that (21) is only a basis for comparison as it assumes that the tax or cap may 

be set after the realization of ε. This is to be compared with the actual dual sector outcome in 

which the taxed sector 1 emits eS1 and the trading sector 2 emits QS2 units. Let us start by 

                                                 

5 This might be viewed as using an emissions tax, assuming it is possible to set the tax after the realization of ε. 
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deriving the total costs in sector 1 of reducing emissions from BAU
Se 1  (sector 1’s business as 

usual emission level) to TSe 1 . Inserting a tax equal to zero in (10) yields BAU
Se 1  as 

( ) ( )( )
L

nNKn
eBAU

S 2
2

1

Θ−−+= ε
       (22) 

The total cost for sector 1 may be calculated by 

11

1

1
S

e

e S deMAC
BAU
S

T
S
�          (23) 

Making the appropriate substitutions, using (11), (22) and (8), yields 

( ) ( )( )
( )2

2

1
4

2

gNLL

nNgKNfLn
TCS +

Θ−−+=        (24) 

For sector 2 the business as usual emission level is given by (12) under a price of zero 

( )( )( )
L

nKnN
eBAU

S 2
2

2

Θ++−= ε
       (25) 

The total cost for sector 2 of decreasing emissions from BAU
Se 2  to the cap, QS2, is given by 

22

2

2
S

e

Q S deMAC
BAU
S

S
�          (26) 

Substituting for (13), (25) and (9) and solving the integral yields 

( ) ( ) ( )( ) ( )
( )2

2

2
4

2

gNLL

nfLKgNnN
TCS +

Θ++++−= εε
     (27) 

Adding TCS1 and TCS2 yields the total cost in the economy following from the dual sector 

policy. This amounts to 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )2

22

21
4

22

gNLL

nNgKNfLnnfLKgNnN
TC SS +

Θ−−++Θ++++−=+
εε

 (28) 

Thus, we have the total cost following the benchmark cost minimizing solution, from (21), 

and the actual total costs following the dual sector policy, from (28). The efficiency loss due 
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to an allocation error, denoted DWLAE, accruing from the fact that the dual sector policy is not 

cost effective is the difference between the actual cost and the benchmark cost, i.e., 

TCS1+S2 - TCmin. In expectation terms this amounts to 

{ } ( )( ) ( )( )
LN

nNnnNn
DWLE AE 8

22 2σΘ−−Θ+−=      (29) 

which, as the previous discussion suggests, is zero when n = 0 (all emitters are subject to cap-

and-trade) and when n = N (all emitters are subject to an emissions tax).  

Thus far we have derived an expression for the expected efficiency loss due to the volume 

error under a dual sector policy, given by equation (16), and an expression for the expected 

efficiency loss due to the allocation error, given by (29). Getting the total expected efficiency 

loss following a dual sector policy, denoted DWLS1+S2, is simply a matter of summing these 

two, which yields 

{ } ( )( ) ( )( )

( )( ) ( )( )( )
( )gNL

N

gNL

nNgNnnNnL

nNnnNLn
NL

DWLE SS

+
+��
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+
Θ−−−Θ+−

��
�

�
+Θ−−Θ+−=+

2
22

22
8

22

2

2

21

τ

σ

  (30) 

In the following analysis (30) will be compared with the expected efficiency loss from letting 

the entire market be subject to cap-and-trade, given by (5), and an emissions tax, given by (7). 

Even at this early stage it is clear that any difference in expected efficiency loss between a 

single and a dual sector regime will follow from uncertainty about the MAC not about the 

MAB, since the last term of (30)—containing the variance of δ —is identical to the one in (5) 

and (7), respectively. 

3. The analysis 

In the previous section we derived an expression for the expected total efficiency loss from 

the dual sector policy. We now turn to analyzing the optimal solution to the problem of 

choosing n.  

The number of emitters to be included in the taxed sector 1, n, is a policy variable, which is to 

be set so that the expected efficiency loss, given by (30), is minimized. Obviously, this 

optimization is carried out under the constraint that n must be non-negative and not larger 
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than N. For the sake of simplicity, we minimize (30) with respect to n ignoring the constraint 

and afterwards check whether or not it is fulfilled. 

In the following N needs to be large enough so that n may be approximated to a continuous 

variable. Given this, we may differentiate (30) with respect to n to get 

{ } ( )( ) ( )( )( )
2

2
21

4
222

L

nNgnLnN

n

DWLE SS σ−Θ−+−Θ−=
∂

∂ +     (31) 

3.1 Homogeneous emitters 

Let us first concentrate on the case where all emitters are identical, i.e., where the individual 

MAC functions all have the same slope. This is modeled by setting Θ to zero, in which case 

(31) simplifies to 

{ } ( )
2

2
21

2
20|

L

Lgn

n

DWLE SS σ−=
∂

=Θ∂ +       (32) 

By setting (32) equal to zero and solving for n, we find the optimal number of emitters to 

include in sector 1, i.e., the n that minimizes (30)6  

g

L
n

2
* =           (33) 

Equation (33) states that the optimal number of emitters in sector 1 depends on the relative 

slope of the MAC function and the MAB function in a way such that the steeper the MAC, in 

relative terms, the higher the n*. Here is an analogy to the original Weitzman (1974) results 

discussed earlier. There, the regulator is indifferent between a (single sector) tax regime and a 

(single sector) cap-and-trade regime if and only if the aggregated MAC function has the same 

slope as the MAB function, i.e., if g = L / N. Substituting this into (33) yields the 

corresponding solution if we allow for a dual sector solution, namely that 

2
* N

n
N

L
g

=
=

          (34) 

                                                 

6Since { }
0

0|
2

2

2
21

2

≥=
∂

=Θ∂ +

L

g

n

DWLE SS σ , the solution constitutes a minimum. 
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That is, exactly half of the emitters should be in the taxed sector 1 and the other half in the 

trading sector 2. If g is slightly higher than L / N, Weitzman (1974) states that cap-and-trade is 

preferable to an emissions tax. However, in the dual sector case there should still, in optimum, 

be some emitters subject to a tax but the number will be less than half of N. Similarly, if g is 

slightly less than L / N more than half, but generally not all, of the emitters should optimally 

belong to the taxed sector 1. 

We should note that, as we assume L and g to be strictly positive, n* will never be negative 

but it may turn out to be larger than N. In such cases the corner solution of n* = N applies, 

since the number of emitters in the taxed sector cannot exceed the total number of emitters on 

the market. From (33) we can see that the corner solution is valid for g ≤ L / (2 N), i.e., for 

relatively flat MAB functions. 

Figure 1 illustrates the optimal proportion of emitters in the taxed sector 1, n* / N. On the 

horizontal axis is z, which is a measure of the MAB’s slope defined by g = z L / N, i.e., a 

higher value of z implies a steeper (relative) slope of the MAB. At z equal to 1, the MAB has 

the same slope as the aggregated MAC. The horizontal section of the graph captures the 

formerly mentioned corner solution. Outside this section the optimal proportion of emitters to 

be included in the taxed sector 1 is convex and decreasing in the relative slope of the MAB 

function. 

 

 

 

 

 

 

 

 

Figure 1, Optimal proportion of emitters to be included in sector 1, n* / N, as a function of z, where high 

values of z imply a steeper relative slope of the MAB. 

Given an optimal n, figure 2 decomposes the total expected efficiency loss, E{ DWLS1+S2}, 

following from the optimal dual sector solution into one part due to a volume error, 

E{ DWLVE}, and one part due to an allocation error, E{ DWLAE}, assuming τ2=0. Starting at z 
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close to zero, i.e., a nearly horizontal MAB function, it is seen that total expected efficiency 

loss is small. At z = 0 an emissions tax will result in the efficient outcome and both 

E{ DWLVE} and E{ DWLAE} will be zero7. As z increases E{ DWLVE} increases, but E{ DWLAE} 

remains at zero due to the aforementioned corner solution. For even higher values of z, 

E{ DWLAE} increases and reaches a maximum at z = 1 while E{ DWLVE} decreases to reach a 

minimum at z = 1. The interaction between the two is such that the total expected efficiency 

loss, E{ DWLS1+S2}, has a maximum at z = 1. It should be noted that only at the special case of 

z = 1 will, the efficiency loss due to the volume error be zero. For all other values of z, larger 

than 0.5, the optimal solution contains distortions both due to allocation error and volume 

error. 

 

 

 

 

 

 

 

Figure 2, E{DWLS1+S1}  as a function of z decomposed into E{DWLVE} and E{DWLAE}. The graph is 

normalized so that max(E{DWLS1+S1})=1 and assumes τ2=0. 

It is interesting to determine how much better a dual sector regime is compared to the single 

sector case. Still using Θ = 0 and looking at the case where g = L / N the resulting efficiency 

loss, from (30), amounts to 
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7 Mathematically, this is not captured by the dual sector model as it would yield a division by zero, but since we 

know that at z = 0 all emitters will in optimum be taxed, we may use equation (7) instead. 
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in the dual sector case using the optimal n*.  The corresponding efficiency loss under a single 

sector regime, from (5) or (7), amounts to 

L

N

L

N

44

22 τσ +           (36) 

The second term in (35) and (36) follows from the uncertainty surrounding the MAB and is 

equal for the two cases. The first term follows from the uncertain MAC and is strictly less in 

the dual sector case. If there is no uncertainty about the MAB the expected efficiency loss 

from the dual sector regime is, in this particular setting, only half that from a single sector 

solution. 

A more general picture is given by figure 3. On the vertical axis is the difference between 

expected efficiency loss from a single sector case and a dual sector case weighted by the 

expected efficiency loss from the dual sector case8. On the horizontal axis is z. For z < 1, a tax 

is preferred to cap-and-trade under a single sector regime and the opposite for z > 1. This 

explains the kink on the curve since at this point the reference regulation mechanism changes 

from taxes to cap-and-trade.  

 

 

 

 

 

 

 

 

Figure 3, the difference between expected efficiency losses under the single and dual sector cases 

weighted against the efficiency loss under the single sector case as a function of z, assuming τ2=0. 

As we have seen earlier, for z < 0.5 the optimal solution entails having every emitter in the 

taxed sector 1. Thus, in this region the optimal policy in the dual sector case coincides with 
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the single sector tax case and consequently the two will generate identical efficiency losses. 

Above this region, steeper MAB functions will result in increased efficiency gains in 

switching from the optimal single sector policy to a dual sector policy. The maximum gain 

possible is at the point where z = 1, where it amounts to 0.5, which implies that the expected 

efficiency loss from a single sector regime is twice as high as from a dual sector regime9; see 

(35) and (36). For z > 1, the efficiency gain from a switch to a dual sector regime decreases in 

the relative slope of the MAB, but it is still positive. As a whole, the dual sector solution 

performs best, relative to the single sector solution, when the slope of the MAB is close to that 

of the aggregated MAC. In cases where these differ greatly the difference in expected 

efficiency loss between the two systems is smaller. 

3.2 Heterogeneous emitters 

We have shown that generally (subject to the discussion about low values of z) a dual sector 

regime is strictly preferable to a single sector. Furthermore, we did this under the assumption 

that all emitters are identical, so the result is not a consequence of differences among emitters. 

Let us now briefly address what happens when this is not the case, i.e., when Θ ≠ 0. As 

mentioned, when Θ > 0, emitters with a low index have a steeper MAC than those with a high 

index. When Θ < 0, the opposite applies. As the MAC function is designed we may reverse 

the order of the emitters—emitter 1 becomes emitter N, 2 becomes N-1 and so on—without 

any other changes occurring simply by changing sign of Θ. This means it is possible to 

compare a situation in which those emitters with relatively steep MAC functions belong to the 

taxed sector 1 with a situation in which they belong to sector 2. 

Consider the following three policies: 1) let those emitters who have the steepest MAC 

functions belong to the taxed sector 1; 2) let emitters with steep MAC functions belong to the 

trading sector 2; and 3) sort the emitters so that the aggregated MAC functions in the two 

sectors have the same slope. I will now show that, given the use of optimal n—which differs 

among the policies—the three policies are equivalent in terms of expected efficiency loss. To 

                                                 

9 The figure assumes τ2 = 0. A τ2 > 0 adds the term 
( )zL

n

+12

2τ  to both E{DWLsingle sector} and E{DWLS1+S2}. 
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see this, start by deriving an expression for the optimal n. Setting (31) equal to zero and 

solving yields the following minimizing root10 

( )
Θ

−Θ+Θ+−Θ
=Θ g

ggNgLggN
n

2

242 2
*       (37) 

Note that (37) is not defined for Θ = 0, which is why in the previous discussion we had to 

substitute for this before we solved for the first order condition. Substituting g for z L / N and 

differentiating (37) with respect to Θ yields 

( ) ( )( )
( )( )22

2*

24

2421

−Θ+ΘΘ

−Θ+Θ+−−Θ=
Θ∂

∂ Θ

NzNz

NzNzzzNn
     (38) 

which is positive, i.e., *
Θn  increases in Θ, as long as z > ½. Under valid values of Θ, i.e., 

-2/N ≤ Θ ≤ 2/N, the derivative is zero at z = ½ and negative or lacks a real solution for z < ½. 

In the previous section we showed that at z = ½ and Θ = 0 all emitters will optimally belong 

to the taxed sector 1. Since (38) is zero at z = ½ this is also the case for all valid values of Θ. 

Furthermore, since 

( )( )2

*

24 −Θ+Θ
−=

∂
∂ Θ

NzNzz

N

z

n
       (39) 

is negative for all valid Θ, a z < ½ cannot imply less emitters optimally in sector 1. That is if 

z ≤ ½ all emitters are to be taxed regardless of Θ, so the interesting situations occur when 

z > ½. We now restrict our attention to these cases. 

Consider an economy with emitters that, if sorted by decreasing MAC slope, may be described 

by a strictly positive Θ. We can calculate the optimal number of emitters in the taxed sector 

under policy 1, *
1n , directly using (37). As the order of the emitters is reversed when the sign 

of Θ is changed, we can calculate the optimal number of taxed emitters under policy 2, *2n , 

                                                 

10 To distinguish between the optimal n under homogenous emitters (n*) we denote the optimal n under 

heterogeneous emitters by *
Θn .  
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using (37) with Θ substituted for -Θ. Finally, the optimal number of taxed emitters under 

policy 3, *
3n , follows from (33) since this policy corresponds to the case where Θ = 0. From 

(38) it then follows, if z > ½, that *
2

*
3

*
1 nnn >> . This is in line with the general intuition 

discussed earlier in the paper. An emitter, subject to an emissions tax, with a relatively flat 

MAC function will respond more to deviations of the MAC from its expected realization than 

one with a relatively steep MAC function. It thus seems intuitive that the optimal number of 

emitters in the taxed sector is larger under policy 1, where the taxed sector contains emitters 

with relatively steep MAC functions, than under policy 2, where it contains emitters with 

relatively flat MAC functions and that policy 3 has an intermediate outcome. 

Finally, let us examine the expected efficiency loss. Inserting *
Θn  from (37) into the 

expression for the total expected efficiency loss, given by (30), and simplifying yields 

( )
( ) ( )gNL

N

gNLg

LgN
nDWLE SS +

+
+
−=Θ+ 28

3
}|{

22
*

21

τσ
     (40) 

Importantly, (40) does not depend on Θ. That is, given the relative slopes and the use of the 

optimal n, the choice of policy 1, 2 or 3 has no impact on the expected total efficiency loss. 

This is perhaps not an intuitive result but there is an explanation, which can be seen by 

inserting *
Θn  from (37) into the expressions for total emissions from each sector respectively, 

given by (10) and (13). This yields 

( ) ( )
( )gNLg

gNLfKL
en

S +
++−=Θ

2

*

1

ε
        (41) 

where 
*

1
Θn

Se  denotes sector 1’s emissions given tax T and optimal n, and 

( )( )
( )gNLg

LgNfK
Qn

S +
−−=Θ

2

2*

2         (42) 

where 
*

2
Θn

SQ  denotes the cap for sector 2 given an optimal n. What is important to note in (41) 

and (42) is that neither contains Θ, i.e., the emission volume from each sector respectively 

will, under the optimal n, not differ for different values of Θ. Consequently, neither will the 

total expected efficiency loss. 
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4. Conclusions 

In this paper I have shown that it is, from an efficiency point of view, generally preferable to 

divide the regulated economy into two sectors, subjecting one sector to cap-and-trade and the 

other to an emissions tax, rather than adopting the cost effective approach of subjecting the 

entire economy to either cap-and-trade or an emissions tax. The reason is that the resulting 

efficiency gains from decreasing distortions on the emissions market outweigh the efficiency 

loss owing to the dual sector approach not being cost effective. This has been shown to be the 

case both when the economy consists of identical emitters and when the emitters differ in 

their slopes of their marginal abatement cost functions. 
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