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1. INTRODUCTION

There seems to be widespread belief that the outcome of iterated elimination of strictly

dominated strategies (IESDS) does not depend on the order of elimination. Nevertheless, this

assertion has not been formally proved. We show that, in fact, order may matter. One of the

examples is taken from Stegeman (1990). We also prove that for games with compact strategy

spaces and continuous payoff functions order does not matter. This result covers the cases of

finite games and their mixed extensions. Examples show that the result is tight.

The work most closely related to ours is that of Gilboa, Kalai & Zemel (1990) (GKZ), and in a

separate section we connect to their contribution. GKZ consider a variety of elimination

procedures and provide sufficient conditions for order independence. Among the procedures

considered by GKZ is a form of IESDS, and they prove that for finite games this procedure is

order invariant. GKZ, however, impose a bound on the rate of elimination, that is, they

establish invariance for only a subset of possible elimination sequences. It follows from our

aforementioned result that this bound is irrelevant for finite games. We generalize this finding.

GKZ consider IESDS only for a finite number of eliminations rounds, but in games with

infinite strategy spaces it is natural to allow an infinite sequence of elimination rounds, and

GKZ's definition is easily generalized to allow this. Given this modification, we prove that

GKZ's bound on the rate of elimination is irrelevant for all games with compact strategy

spaces and continuous payoff functions.

We show that order may matter for IESDS in Section 2, prove that order does not matter in

games with compact strategy spaces and continuous payoff functions in Section 3, discuss the

contribution of GKZ in Section 4, and offer concluding remarks in Section 5.
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2. WHEN ORDER MATTERS

Our first example is the simplest game we can think of for which order matters for IESDS.

The example shows that order can matter if strategy sets are not closed.

Example 1. Consider a one-player game with strategy set  G1=(0,1) and payoff function u1:G1

→R defined by ui(x)=x for all x∈G1. In this game every strategy is strictly dominated. For any

x∈G1, eliminate in round one all strategies in the set G1\{x}, and only x survives IESDS.

Our next example shows that closing all strategy sets is not enough to ensure order

independence. This example shows that using IESDS "to simplify" a two-player game may

not be innocuous even if the game possesses a Nash equilibrium. IESDS generates not only

ambiguous residual games but also ambiguous sets of Nash equilibria.

Example 2. Consider a two-player game with strategy sets G1=G2=[0,1], and payoff functions

ui:Gi×Gj→R with i,j=1,2 and i≠j, defined by

ui(x,y) = x if x<1

ui(1,y) = 0 if y<1

ui(1,1) = 1

The strategy profile (1,1) is the game's unique Nash equilibrium, and every strategy except 1 is

strictly dominated. Eliminating Gi\{1,x} for some x<1, for i=1,2, leaves the following 2×2

game, which cannot be further reduced:

  1   x

1, 1 0, x

x, xx, 0

  1

  x
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Suppose one applies an equilibrium selection theory which favours ”risk dominance” in the 2×2

game. Then the profile (x,x) is selected iff x is large enough.

The game in Example 2 has discontinuous payoffs. Our final example, taken from Stegeman

(1990), shows that even with continuous payoff functions and closed strategy sets order

matters. Again, what set of Nash equilibria obtains in the reduced game created by IESDS

depends on the order of elimination.

Example 3. Consider a two-player game in which player 1 chooses x∈R+, 2 chooses y∈R+,

and each player receives the common payoff u(x,y)=(max{x,1-x-y})/(1+x). The payoff

function is continuous and has range [0,1]. If y>0 then player 1's optimal action is undefined,

and it follows directly that the unique Nash equilibrium of the game is (x,y)=(0,0). One way to

perform IESDS is as follows: eliminate every x>0 as it is strictly dominated by some x′>x.

Given that x=0, every y>0 is then strictly dominated by y=0. IESDS thus eliminates all except

Nash play. Another way to perform IESDS is: eliminate every x>0 except x=1, leaving the

strategy sets {0,1} for player 1 and R+ for player 2. No more eliminations are possible and the

residual game now has many Nash equilibria: (x,y)=(0,0) and (x,y)=(1,y) for all y≥½.

3. WHEN ORDER DOES NOT MATTER

In this section we prove that order does not matter for IESDS in games with compact strategy

spaces and continuous payoff functions. Preliminary definitions follow.

Games, subgames, and strict dominance.  A game is a triple G=(I,(Gi)i∈I,(ui)i∈I), where

I={1,2,...n} is the set of players, Gi⊆Rm (Gi≠∅) is player i’s strategy set for some integer m≥1,

and ui:ΠiGi→R is the payoff to player i.  We call the game G compact and continuous if Gi is

compact and ui is continuous ∀i∈I. For convenience, assume that the players' strategy sets are

disjoint.  A subgame of G is a game H=(I,(Hi)i∈I,(ui′)i∈I), where Hi⊆Gi and ui′ is the restriction
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of ui to Πi Hi, ∀i∈I.  For any subgame H, let H-i≡Πj≠iHj.  Let S(G) denote the set of all

subgames of G.  Given a subgame H of G, and x,y∈Gi: yfH x if ui(y,s-i)>ui(x,s-i) ∀s-i∈H-i.

(The reordering of the arguments of ui simplifies notation, where no confusion is possible.)

The relation (fH ) embodies the notion of strict dominance given rivals’ options in game H.

Reduction.  Consider subgames H,H′∈S(G), such that Hi′⊆Hi ∀i∈I.  H→H′ if, for each

x∈Hi\Hi′, ∃y∈Hi such that yfH x. We use the symbol →* as follows: H→*H′ if there exists a

(finite or infinite) sequence of subgames, At∈S(G), t=0,1,2..., such that A0=H, At→At+1 for all

t, and Hi′=∩tHi
t ∀i.  H is a maximal (→)-reduction of G if G→*H and H→H′ only for H′=H.

The following Lemma is the key result behind both of our theorems.

Lemma.  If G→*H for some compact and continuous game G, and yfH x for some x,y∈Gi and

i∈I, then ∃z*∈Hi such that z /fH z*fH x ∀z∈Hi.

Proof.  Given H as described, let At∈S(G), t=0,1,2..., be the implied sequence of subgames.

Let Z≡{z∈Giui(z,s-i)≥ui(y,s-i) ∀s-i∈H-i}.  Clearly y∈Z, and the continuity of ui and

compactness of Gi imply that Z is compact.  Define f:Z→R by f(z)=ui(z,s*) for some fixed

and arbitrary s*∈H-i.  The continuity of ui, implies that f is continuous, which with Z compact

implies that f reaches a maximum f* at some z*∈Z.  z*∈Z and yfH x imply z*fH x.  If zfH z*

for some z∈Gi, then ui(z,s-i)>ui(z*,s-i) ∀s-i∈H-i, implying z∈Z and f(z)>f(z*)=f*, a

contradiction.  Therefore, z /fH z* ∀z∈Gi (and hence ∀z∈Hi), implying z /f
At z* ∀z∈Gi, ∀t

(because H-i⊆A-i
t), implying z*∈Ai

t, ∀t, implying z*∈Hi. ž

Theorem 1.  If G is compact and continuous, then any maximal (→)-reduction of G is unique.

Proof.  Let H and H′ be maximal (→)-reductions of G.  Given G→*H′, let At∈S(G),

t=0,1,2..., be the implied finite or infinite sequence of subgames.  Suppose that Hi /⊆Hi′ for

some i.  Then Hi /⊆Ai
t ∀t>T, for some T such that Ai

T+1 is well-defined.  Let T take the largest
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value such that Hi⊆AT ∀i.  Choose i∈I and x∈Hi\Ai
T+1.  Then x∈Ai

T\Ai
T+1, implying from

AT→AT+1 that ∃y∈Ai
T such that yf

AT x, which with Hi⊆Ai
T ∀i implies yfH x.  The Lemma

implies ∃z*∈Hi such that z*fH x, contradicting that H is a maximal reduction.  Therefore,

Hi⊆Hi′ ∀i.  Similarly, Hi′⊆Hi ∀i, implying H=H′. ž

Theorem 1 says that IESDS is an order independent procedure for compact and continuous

games. Note that this result covers finite games and their mixed extensions. The three

examples of Section 2 show that Theorem 1 is tight with respect to closedness and

boundedness of the players' strategy sets, as well as with respect to continuity of the payoff

functions.

4. GKZ REDUCTIONS

In this section we connect to the work of GKZ. They define a notion of reduction which

bounds the rate of elimination, unlike the textbook (→)-reduction we have considered so far.

We shall use the symbol ⇒ for GKZ's reduction. Intuitively, the difference between a (⇒)-

reduction and a (→)-reduction is that the former, but not the latter, requires that for any

strictly dominated strategy x which is eliminated there exists a strategy y which strictly

dominates x and which is not eliminated.

GKZ Reduction.  Consider subgames H,H′∈S(G), such that Hi′⊆Hi ∀i∈I.  H⇒H′ if, for each

x∈Hi\Hi′, ∃y∈Hi′ such that yfH x.  We use the symbol ⇒* as follows: H⇒*H′ if there exists a

(finite or infinite) sequence of subgames, At∈S(G), t=0,1,2..., such that A0=H, At⇒At+1 for all

t, and Hi′=∩tAi
t ∀i.  H is a maximal (⇒)-reduction of G if G⇒*H and H⇒H′ only for H′=H.

H⇒H′ and H⇒*H′ imply, respectively, H→H′ and H→*H′. The present definition of a

maximal (⇒)-reduction is more general than that used by GKZ in that infinite sequences of

subgames are allowed. GKZ consider only finite sequences. We now prove that, although
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(⇒)-reductions are more restrictive than (→)-reductions, the two produce identical maximal

reductions, and hence identical results for IESDS, in compact and continuous games.

Theorem 2.  If G is compact and continuous, then G→*H if and only if G⇒*H.

Proof.  G⇒*H immediately implies G→*H.  Going the other way, suppose G→*H, and let

At∈S(G), t=0,1,2..., be the implied sequence of subgames.  It is sufficient to show that A′⇒A″

for any two consecutive elements of this sequence.  Consider such A′ and A″.  If A′=A″, then

A′⇒A″ trivially.  If not, then choose i∈I and x∈Ai′\Ai″.  A′→A″ implies ∃y∈Ai′ such that

yfA′x.  The Lemma implies that ∃z*∈Ai′ such that z / ′fA z*f ′A x ∀z∈Ai′, and A′→A″ then

implies z*∈Ai″.  Hence, x∈Ai′\Ai″, any i∈I, implies ∃z*∈Ai″ such that z*f ′A x.  Therefore,

A′⇒A″.   ž

Hence, if there is an advantage to GKZ reductions, it must be based on games outside the

compact and continuous class. We close this section with a few comments about such games

and about GKZ reductions. In Example 1, the problematic (→)-reduction would not be

permitted as a (⇒)-reduction, but IESDS based on (⇒)-reductions does not escape the

problem of order dependence. To see this, consider the following infinite sequence of  (⇒)-

reduced strategy sets: (0, 1), [x, 1), {x}∪[1-(1-x)/2, 1), {x}∪[1-(1-x)/3, 1), {x}∪[1-(1-x)/4,

1), .... For any choice of x∈(0,1), the intersection {x} is the strategy set corresponding to a

maximal (⇒)-reduction. Order matters. In similar fashion one may readily show that, for

IESDS based on (⇒)-reductions, order matters also in the games of Examples 2 and 3.

If one returns to GKZ's original definition, which requires maximal (⇒)-reductions to end in a

finite number of steps, then it is not possible to get ambiguous maximal (⇒)-reductions of the

games in the Examples 1-3, simply because these games have no maximal (⇒)-reduction in

finite steps. The restriction to finite steps seems unnatural, however, because in some games

infinite reduction sequences lead to maximal reductions that could not be obtained via a finite

number of eliminations. The following well-known example illustrates the point. It requires
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an infinite sequence of reductions to find the unique maximal (→)-reduction (which by

Theorem 2 is also the unique maximal (⇒)-reduction).

Example 4. (Cournot competition) I={1,2}, G1=G2=[0,1], ui:Gi×Gj→R with i,j=1,2 and i≠j

defined by ui(x,y) = x(1-x-y). The following is a infinite sequence of (→)-reduced strategy

sets starting with this game: [0, 1], [0, 1/2], [1/4, 1/2], [1/4, 3/8], [5/16, 3/8], .... Taking the

intersection we get for each player {1/3} as the strategy set associated with the maximal (→)-

reduction. The strategy profile (1/3, 1/3) is the game's unique Nash equilibrium. It is easy to

show that while there are many alternative sequences of (→)-reductions, they all require an

infinite number of elimination rounds.

Summarizing, complete reduction of some games (including compact and continuous games)

requires an infinite sequence of deletions, but the GKZ bound on the rate of deletions does not

solve the problem of order dependence if infinite sequences of deletions are permitted. Hence,

we cannot find a compelling case for abandoning the standard IESDS definition in favor of

one based on GKZ reductions.

5. CONCLUDING REMARKS

Many textbooks do not recommend iterated elimination of weakly dominated strategies

(IEWDS) as a solution concept, and one important reason is that there are games where order

matters for that procedure. Our examples show that the same criticism applies to IESDS. For

IEWDS, the finding that order matters has prompted researchers to investigate for what class

of games order independence holds, partly on the presumption that it is relatively innocuous to

apply IEWDS in those games (see, for example, Marx & Swinkels, 1997). Adopting this view,

our result of Section 3 provides consolation: Order does not matter for IESDS in compact and

continuous games, so IESDS is a sensible procedure for this large class of games.
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It is unclear what is the proper definition and role of iterated strict dominance in games that

are not compact and continuous. Our Example 1 shows that there are games for which the

concept is intrinsically unsound. The identification of general classes of non-

compact/continuous games for which IESDS is an attractive procedure remains an open

problem. For compact and continuous games, while we have answered the question of

uniqueness, the existence of a maximal reduction remains an open question.
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