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Abstract

We study the pattern of contagion in volatility along the term structure of oil
forwards. We use measures of codependence of returns from quantile regressions to
discriminate between integration of the markets for different maturities in the cases of
low and high volatility of the returns. Our results provide evidence of decoupling: for
most of the maturities we consider, the probability of contagion falls during periods
of high volatility.
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1 Introduction

A large body of literature studies the patterns of ‘contagion’ or spillovers of between
different asset classes (see e.g. Forbes and Rigobon, 2002). This idea of contagions is
founded on the observation that periods of large volatility in different assets tend to occur
at the same time, or with a small time lag. The available papers typically concentrate on
bond and stock markets. To knowledge, no contribution provides evidence on the presence
of volatility spillovers across commodity markets.

In this paper, we focus on the maturity structure of oil forwards. We use a measure
of contagion proposed by Cappiello, Gerard and Manganelli (2005). In particular, we
investigate whether the probability of observing closer comovements between different
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maturities increases in bad times – i.e. in periods of large volatility – with respect to
periods of stable forward prices.

The framework of Cappiello, Gerard and Manganelli (2005) is based on the compu-
tation of the probability of a variable falling below a threshold conditional on the same
pattern for the other variable. Thresholds are obtained through quantile estimation. In
this statistical model, a high conditional probability of comovement implies a strong code-
pendence between the variables. A convenient way to visualize the relationship between
quantiles and probabilities of comovement is provided by the so-called ‘comovement box’.
We use this box to provide insights on the changes of codependence in periods of low and
high volatility for the returns of oil forwards, thus shedding light on whether contagion
exists across maturities. The results show that the probability of contagion falls during
periods of high volatility. In other words, the maturities decouple from one another in
times of market turbulence.

This paper is organized in the following way. Section 2 explains the details of the
comovement box and discusses the formal tests of codependence. The results are presented
in section 3. Section 4 proposes some concluding remarks.

2 The comovement box

Standard tests for comovements rely on the estimation of correlations between asset re-
turns. These tests are however typically significant both to the presence of heteroskedas-
ticity, and to departures from normality in the empirical distributions of two returns. The
comovement box of Cappiello, Gerard and Manganelli (2005) relies on semiparametric
methods to provide a robust method for analyzing comovements.

Let {ri,t}T
t=1 and {rj,t}T

t=1 denote the time series of returns on two different maturities
of crude oil futures. Define by qri

θ,i the θ−quantile of the conditional distribution of ri,t

at time t. Ft(ri, rj) denotes the conditional cumulative joint distribution of the two asset
returns. Finally,

F−
t (ri|rj) := prob (ri,t ≤ ri|rj,t ≤ rj) (1)

F+
t (ri|rj) := prob (ri,t ≥ ri|rj,t ≥ rj) (2)

The conditional probability

pt(θ) :=

{
F−

t (qri
θ,t|q

rj

θ,t) if θ ≤ 0.5
F+

t (qri
θ,t|q

rj

θ,t) if θ > 0.5.
(3)
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can be used to represent the characteristics of Ft(ri, rj). In fact, pt(θ) measures the
probability that the returns at maturity i are below its θ−quantile, conditional on the
same event occurring at maturity j.

The information about pt(θ) is summarized in the so-called ‘comovement box’. This is
a square with unit size where pt(θ) is plotted against θ. Since the shape of pt(θ) depends on
the joint distribution of the two time series, it can be derived only by numerical simulation.
Cappiello, Gerard and Manganelli (2005) point out that numerical simulations are not
needed in three cases. When the futures returns at two maturities are independent, pt(θ)
is piecewise linear with a slope equal to one for θ ∈ (0, 0.5), and slope equal to minus one
for θ ∈ (0.5, 1). With perfect positive correlation between ri,t and rj,t, pt(θ) is a flat line in
correspondence of the value one. In this case, the futures markets for the two maturities
shrink to one market. In the case of negative perfect correlation instead, pt(θ) is equal to
zero.

The framework of Cappiello, Gerard and Manganelli (2005) can also be used to test
whether the dependence between two markets has changed over time. Given a cutoff
date of a specific event, we can can estimate the conditional probability of comovements
in two different periods, and plot the estimated probabilities in a graph. Differences in
the intensity of comovements can then be detected. This idea can be formalized in a
simple way. Denote by pA(θ) := A−1

∑
t<τ pt(θ) and pB(θ) := B−1

∑
t<τ pt(θ) the average

conditional probabilities before and after a certain event occurs at a threshold τ , with A

and B the number of corresponding observations. Let ∆(θ, θ) denote the area between
pA(θ) and pB(θ). A measure of contagion or spillovers between the two markets can be
introduced by noting that contagion increases if

∆(θ, θ) =
∫ θ

θ

[
pB(θ)− pA(θ)

]
dθ > 0. (4)

We stress that, unlike the standard measures of correlation, ∆(θ, θ) allows to study changes
in codependence over specific quantiles of the distribution.

Several steps are followed to construct the comovement box and test for differences
in conditional probabilities. First, we estimate univariate time-varying quantiles using
the Conditional Autoregressive Value at Risk (CAViaR) model proposed by Engle and
Manganelli (2004). For each series and each quantile, we create an indicator variable that
takes the value one if the return is lower than this quantile, and zero otherwise. Then we
regress the θ−quantile indicator variable on market j on the θ−quantile indicator on mar-
ket i. The estimated regression coefficients provide a measure of conditional probabilities
of comovements, and of their changes across regimes.
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Cappiello, Gerard and Manganelli (2005) show that the average conditional probability
p(θ) can be estimated from the regression

I
ri,rj

t (β̂θ) = α1
θ + α2

θD
T
t + εt, (5)

where hats denote estimated values, and

I
ri,rj

t (β̂θ) := I
(
ri,t ≤ qri

t (β̂θ,ri)
)
· I

(
rj,t ≤ q

rj

t (β̂θ,rj )
)

(6)

for each θ−quantile, and Dτ
t is a dummy variable for the test period t > τ . The OLS

estimators of the regression 5 are asymptotically-consistent estimators of the average con-
ditional probability in the two periods:

α̂1
θ

p→ E [pt(θ)|period A] ≡ pA(θ)
α̂1

θ + α̂2
θ

p→ E [pt(θ)|period B] ≡ pB(θ)
(7)

where hats denote estimates. This results also suggests a way of testing for market inte-
gration:

∆̂(θ, θ) = (#θ)−1
∑

θ∈[θ,θ]
[
p̂B(θ)− p̂A(θ)

]

= (#θ)−1
∑

θ∈[θ,θ] α̂
2
θ,

(8)

where #θ denotes the number of terms in the summation.

3 Results

This paper considers the forward prices of oil contracts with maturity of one, three, six and
twelve months. We obtain the series from Platts. The dataset contains 4331 observations
and spans from January 2 1990 to April 27 2007. We compute daily log-returns from the
forward prices.

As suggested earlier, the first step of the empirical analysis consists in discriminating
between observations at low and high volatility. In order to do this, we compute exponen-
tially weighted moving averages (EWMAs)1. Then we identify as high volatility the 10%
observations with the highest volatility estimated from the EWMA, i.e. with a standard
deviation above its 90th unconditional quantile.2 Figure 1 plots the the volatility regimes

1We set the decay coefficient to 0.97.

2We also report the results for periods of high volatility identified with unconditional volatility in 5% of
the observations. Further sensitivity analysis on the period of high volatility shows that no major changes
emerge.
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from the 10% criterion.
The time-varying quantiles of the returns are estimated using the CAViaR model of

Engle and Manganelli (2004). The quantiles of the returns rt are assumed to follow the
autoregressive model

qt(βθ) = βθ,0 +
q∑

i=1

βθ,iqt−i +
p∑

i=1

l (βθ,j , rt−j ,Ωt) , (9)

where Ωt denotes the information set at time t. The autoregressive terms of the quantiles
are meant to capture the clustering of volatility that is typical of financial variables. In-
cluding a predetermined information set allows instead to consider the interaction between
the quantiles and the conditions of the market. Following Cappiello, Gerard and Man-
ganelli (2005), we estimate the time-varying quantiles using the following specification of
the CAViaR:

qt(βθ) = βθ,0 + βθ,1dt + βθ,2rt−1 + βθ,3qt−1(βθ)− βθ,2βθ,3rt−2 + βθ,4|rr−1|. (10)

The dummy variable dt ensures that the periods of high and low volatility have the same
proportion of quantile exceedances.

In order to investigate the specification of the CAViaR model, we compute the DQ
test of Engle and Manganelli (2004). This null of the DQ tests the hypothesis of no
autocorrelation in the exceedances of the quantiles. Figure 2 reports the p-values for
99 conditional quantiles, together with the p-values for unconditional quantiles. The
specification with unconditional quantiles is rejected over the entire domain.

Figure 3 plots the estimates of the conditional probabilities of comovements in periods
with low and high volatility identified identified through the 10% criterion, whereas figure
4 displays the results for the 5% criterion. The comovement boxes depict the entire
distribution of the returns. There are confidence bands of plus/minus twice the standard
errors around the estimates of the probability for the high-volatility regime. When high
volatility is defined as standard deviation in excess of the 99% unconditional quantile, the
confidence bands become larger as the number of exceedances falls.

Two observations emerge. First, it is important to distinguish between comovements
long the upper and lower tails of the bivariate distributions. In fact, one curve is never
above or below the other over the entire domain. Whether the probability of comovements
during periods of low volatility is higher or lower than the probability during the high-
volatility regime depends on the spot of the distribution we consider. This stresses the
value added of the quantile-based methodology considered here. Second, independently on
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how the regimes are identified, for most of the maturities, periods of low volatility generate
higher probabilities of comovements than periods of high volatility. In other words, when
volatility is low, there is robust evidence of contagion across maturities. Instead, in periods
of volatility, the comovement boxes suggest that a form of decoupling takes place. The
only exception concerns the relation between the forwards at the sixth and the twelfth
position, for which the measure of codependence surges in periods of high volatility.

Table 1 reports the results of the test for contagion for specific parts of the distribution
outlined in section 2. Most of the test statistics are significant, with the exception of
those on the joint distribution between the first and the first position, and the sixth and
the twelfth position. For all the other maturities, the negative sign indicates a drop in
comovements during periods of high volatility.

4 Conclusion

We use the comovement-box methodology of Cappiello, Gerard and Manganelli (2005)
to study the codependence between maturities of oil forwards. We find strong evidence
against the hypothesis of contagion. During periods of high volatility return comovements
are lower than in periods of low volatility. This is consistent with what Cappiello, Gerard
and Manganelli (2005) document with reference to other asset classes.

The results discussed here deserve scrutiny from a variety of additional dimensions.
For instance, it would be interesting to consider how the role of sources of market volatility
related only indirectly to oil products can play out. The first candidate would be exchange
rate variability, in particular for the U.S. Dollar. We could also relate the pattern of
fluctuations in volatility to the evolution of supply and demand factors for oil as a source
of macroeconomic risk. Finally, the most compelling question has to do with the reason
for oil forward maturities exhibit a low degree of contagion.
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Table 1: Test of difference in tail co-incidences between periods of high and low volatility

Lower tail: θ ≤ 0.5 Higher tail: θ ≥ 0.5
δ̂(0, 0.5) δ̂(0.5, 1)

Stat. s.e. Stat. s.e.

10% in EWMA
First-third position −1.2467 2.5189 −1.9033 2.6948
First-sixth position −7.4171 2.3475 −5.8103 2.5474
First-twelfth position −7.5053 2.2309 −6.7975 2.4291
Third-sixth position −9.6929 2.5607 −7.2847 2.8277
Third-twelfth position −9.7091 2.3576 −6.9353 2.7672
Sixth-twelfth position 1.9382 2.7541 3.9507 3.3173

5% in EWMA
First-third position 3.2589 4.4634 −0.3050 4.1027
First-sixth position −9.4300 3.4945 −9.9313 3.5604
First-twelfth position −7.7397 3.4155 −11.6710 3.2084
Third-sixth position −11.6103 3.8093 −10.9344 4.0820
Third-twelfth position −10.0148 3.5568 −11.4071 3.7845
Sixth-twelfth position 4.4123 4.5273 1.4492 5.0315
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