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1 Introduction

The theory of price level determination advocated by Leeper (1991), Sims (1994),

Woodford (1996) and Cochrane (1998) has brought to the attention of macroe-

conomists the role of interactions between fiscal and monetary policy. In a nutshell,

the idea is that the price level is determined by the degree of solvency of the govern-

ment. If the expected primary surplus is not sufficient to comply with the intertem-

poral budget constraint of the government, then part of the public debt should be

inflated away if it is default-free.

Although the fiscal theory of price level determination has generated a substan-

tial debate on the capability of fiscal and monetary policy to affect the price level,

study has considered its potential implications for asset prices. This considera-

tions holds both for the finance and macroeconomics literature. For instance, the

continuous-time model of the term structure of interest proposed by Buraschi (2005)

includes lump-sum taxes, but disregards the implications of the government’s budget

constraint. Dai and Philippon (2005) estimates a no-arbitrage ane term structure

model with fiscal variables on U.S. data. They find significant responses of the term

structure of interest rates to the deficit-GDP ratio. The macroeconomic restric-

tions they impose to identify the structural responses are fairly different from those

implied by the fiscal theory of the price level (see Sala, 2004).

The available finance models the term structure of interest rates consider an

explicit role for only two crucial factors, output growth and monetary policy, which

is typically expressed as a diffusion process for the growth of money supply. In this

paper, we consider a general-equilibrium model with money where the ow budget

constraint of the government plays an active role. This provides a link between

monetary and fiscal policy because lump-sum taxes are adjusted as a function of

real debt. We solve the structural model, and derive the law of motion for the

nominal and real interest rates. We also study how the term structure responds to

the fiscal parameters.
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This paper is organized as follows. The first two sections introduce the reader

to the framework employed to develop the analysis, together with a brief discus-

sion on the fiscal and monetary policy rules adopted. Section 4 and 5, respectively,

discuss the optimization process form the representative investor’s side and the char-

acterization of the equilibrium. Section 6 outlines the continuous time limit of the

equilibrium relationships in discrete time presented in the previous sections. In sec-

tion 7, we consider a specialized economy with a more realistic set of assumptions

for the model. In section 8 we present the solution for the real spot rate. This is

extended in section 9 for the pricing of the entire real term structure. The nominal

and real term structure for zero coupon bonds is derived in section 9. Since the

solution does not admit a closed form, we use numerical simulations in section 10

to generate some qualitative results on the shape of the term structure. Section 11

reports some concluding remarks.

2 The model economy

We study an economy populated by a representative agent that maximizes over the

composition of her portfolio along the lines of the traditional literature on consump-

tion and asset pricing. We model the economy at discrete time intervals of length ∆t.

The representative agent chooses its portfolio holdings by maximizing the following

utility function
∞∑

t=0

e−βtE0

{
u

(
Ct,

Mt

Pt

)}
∆t (1)

where β is the discount factor. In equation (1), Ct indicates the level of consumption

over the interval [t, t + ∆t], Mt is the nominal money stock providing utility to the

representative agent over the interval of length [t−∆, t], and Pt is the price of the

consumption good. Real money balances Mt/Pt enter the utility function of the

household. The utility function is twice continuously differentiable and concave in
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both consumption and real balances

uc > 0, um > 0, ucc < 0, umm < 0, ucm < 0, uccumm − (ucm)2 > 0 (2)

where the subscript to u indicates the partial derivative. In what follows, we make

the following functional assumption on the utility function

u

(
Ct,

Mt

Pt

)
= φ log Ct + (1− φ) log

(
Mt

Pt

)
(3)

This type of utility function is used in Stulz (1986). In equation ( 3), the preference

parameter φ must be chosen so that the nominal and real spot rates determined

under the assumption of absence of arbitrage opportunities are also equilibrium

values (see Corollary 1 in the Appendix).

As a working hypothesis to derive the first order conditions, we consider a model

of pure endowment economy where output growth evolves as

∆Yt

Yt
=

Yt+∆t − Yt

Yt
= µY,t∆t + σY,tΩY,t

√
∆t. (4)

The terms µY,t and σY,t are, respectively, the conditional expected value and the

standard deviation of output per unit of time and {ΩY,tt = 0, ∆t, . . .} is a standard

normal process.1

3 Fiscal and monetary policy

The main point of this paper is to examine the impact of the interaction between

monetary and fiscal policy on the the term structure of interest rates. We think

of ‘interactions’ in the sense captured by the “fiscal theory of the price level” of

Leeper (1991), Sims (1994), Woodford (1996), and recently extended by Cochrane

(1998, 1999). This approach states that a tight fiscal policy is a strictly necessary

complement to ensure price stability.
1A more realistic law of motion for output is introduced in section 7.
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We define the money supply aggregate (in nominal terms) as

M s
t = Ht + Ft. (5)

In equation (5) we observe that the total money supply is determined by two com-

ponents. Ht is the so called ‘high powered money’ (or monetary base). Ft represents

the amount of money needed by the government to budget its balance. Basically,

Ft is an additional financing source for the government apart from taxes and debt2.

We assume that Ht and Ft follow the processes described by

∆Ht

Ht
=

Ht+∆t −Ht

Ht
= µH,t∆t (6)

∆Ft

Ft
=

Ft+∆t − Ft

Ft
= µF,t∆t + σF,tΩF,t

√
∆t (7)

where µH,t and µF,t are, respectively, the mean of the stochastic process of the mon-

etary base and of the financing to public debt. In (6), the stochastic process for

Ht does not have a standard error term, implying that the monetary base possesses

only a deterministic component. The process leading Ft, instead, has a standard de-

viation term σF,t, where {ΩF,tt = 0, ∆t, . . .} are standard normal random variables.

From (5), (6) and (7), we can write the stochastic process for the total money

supply M s

∆M s
t

M s
t

=
M s

t+∆t −M s
t

M s
t

= µM,t∆t + σM,tΩM,t

√
∆t (8)

µM,t = µH,t + µF,t (9)

σM,tΩM,t = σF,tΩF,t. (10)

At a first glance, these expressions stress that the central bank is assumed to target

money growth.

The subsequent building block of the model assigns a proper macroeconomic

role to the government. The innovation introduced in this paper with respect to the
2Ft can be thought of as the demand for money balances expressed by the government.
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existing literature consists in the key role for the government budget constraint

∆Dt+∆t + ∆Ft+∆t = ∆it+∆tDt −∆Tt+∆t (11)

where Dt indicates the stock of public debt, and ∆it+∆t is the stochastic process

of the nominal spot interest rate, whose endogeous law of motion will be computed

later. Moreover, ∆Tt+∆t is the stochastic process for taxes. We assume that the

government does not face any form of public spending. Recall that ∆Dt+∆t =

Dt+∆t −Dt, ∆Ft+∆t = Ft+∆t −Ft. Basically, the government can use taxes, money

and debt to finance its budget.

Following the fiscal theory of price level, we assume that the government sets

taxes according to the simple rule rule

∆Tt+∆t = φ1Dt∆t + φ1DtσT,tΩT,t

√
∆t (12)

According to (12), the government sets as a function of the outstanding amount of

public debt. This means that if the stock of debt issued rises, taxes must change

accordingly with a marginal elasticity equal to φ1. A bound on φ1 can be established

by following Sims (1994) by setting φ1 at a value less than or equal to the discount

factor β. To close the model, the process for the nominal spot interest rate follows

∆it+∆t = µi∆t + σi,tΩi,t

√
∆t, (13)

for values of the mean and the standard deviations to be determined later. By

plugging (13) and (12) into (11), we can recover the flow budget constraint of the

public sector

∆Dt+∆t + ∆Ft+∆t = (µi − φ1) Dt∆t + Dtσi,tΩi,t

√
∆t− φ1DtσT,tΩT,t

√
∆t. (14)

In order to obtain a semi-closed form solution, we assume that the quantity of
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newly-issued public debt follows a deterministic process with mean µD

∆Dt

Dt
=

Dt+∆t −Dt

Dt
= µD,t∆t. (15)

Thus, the flow budget constraint becomes

µD,t∆t + µF,t∆t + σF,tΩF,t

√
∆t = (µi − φ1) Dt∆t

+ Dtσi,tΩi,t

√
∆t +−φ1DtσT,tΩT,t

√
∆t. (16)

To get intuition of how these relation work, concentrate on their deterministic

part. Assume that the government aims to maintain a constant ratio of nominal

bond to governmental money, i.e., ψ = D/F . Therefore, by applying Ito’s Lemma

to the definition of ψ, we can write the relationship between the mean of the public

debt and money

µD = µF − σ2
F . (17)

From the equality between the deterministic and the stochastic terms of Ft,

ψµD + µF = (µi − φ1) ψ (18)

σF = ψ (σi − φ1σT ) . (19)

Finally, using the definition of µD into (18), we get the semi-closed solution for the

mean of the stochastic process of the governmental money

µF =

(
µi − φ1 + σ2

F

)
ψ

1 + ψ
. (20)

Therefore, (19) and (20) represent the full equilibrium relationship in the economy.

By using (20), it is clear that the mean of the stochastic process leading money is

µM = µH +

(
µi − φ1 + σ2

F

)
ψ

1 + ψ
. (21)
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4 The optimal choice problem

The representative agent’s budget constraint is

Mt +
(
Pz,t + PC

t yt∆t
)
zt + PC

t a1,t + a2,t +
N∑

i=3

Pi,tai,t = PC
t Ct∆t + Mt+∆t

+ Pz,tzt+∆t + PC
t

a1,t+∆t

1 + rt∆t
+

a2,t+∆t

1 + it∆t
+

N∑

i=3

Pi,tai,t+∆t (22)

The investor can choose among one real and one nominal bond (both risk free), and

N − 2 equities. Each bond is issued at time t and has maturity at time t + ∆t. The

return on bond are it for the nominal bond, and rt for the real bond. Pi,t is the price

(inclusive of dividends) of asset i at time t. The representative agent demands Mt,

for cash, Ct for consumption and xt for equity holdings. a1,t, a2,t, . . . aN,t represent

the unit of financial asset held from (t−∆t) to t.3

The choice problem of the representative investor consists in the maximization

of the utility function (3) subject to the budget constraint (22). The first order

conditions for Ct, a1,t, a2,t, Mt and ai,t are, respectively,

uc (Ct,mt) = λtP
C
t (23)

Et

[
e−β∆tλt+∆tP

C
t+∆t (1 + rt∆t)

]
= λtP

C
t (24)

Et

[
e−β∆tλt+∆t (1 + it∆t)

]
= λt (25)

Et

[
e−β∆tλt+∆t + um (Ct+∆t, mt+∆t)

1
PC

t+∆t

]
= λt (26)

Et

[
e−β∆tλt+∆tPi,t+∆t

]
= λtPi,t (27)

3This setup above described is similar to that of Baksi and Chen (1996), who use this model to
study the impact of monetary policy and inflation on financial asset.
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5 Definition of equilibrium

We assume that the economy is populated by identical agents. In a representa-

tive agent economy, optimal consumption, money demand and portfolio holdings

must adjust in order that the following equilibrium conditions are verified in general

equilibrium

Ct = Yt (28)

Mt ≡ M s
t = Md

t (29)

zt = 1 (30)

ai,t = 0 ∀ i = 1, . . . N (31)

In a pure endowment economy, (28) states that the total amount of consumption

must equal the total output endowment. The equality between money demand and

supply is stated in equation (29), while equation (30) states that each agent’s demand

for equity shares must equal the supply. In the same way, each agent’s demand for

financial assets should equal supply which is zero, as showed in (31).

Using equations (28)-(31) and the first order conditions (23)-(27), we obtain

uc (Yt,mt) = e−β∆tEt [uc (Yt+∆t,mt+∆t) (1 + rt∆t)] (32)

uc (Yt,mt)
PC

t

= e−β∆tEt

[
uc (Yt+∆t,mt+∆t)

PC
t+∆t

(1 + it∆t)

]
(33)

uc (Yt, mt) = e−β∆tEt

[
uc (Yt+∆t,mt+∆t)

pi,t+∆t

pi,t

]
(34)

uc (Yt,mt) = e−β∆tEt

{
[uc (Yt+∆t, mt+∆t) + um (Yt+∆t,mt+∆t)]

PC
t

PC
t+∆t

}
(35)

where mt ≡ Mt

P C
t

is the real cash balances and pi,t ≡ P i
t

P C
t

is the real price (in terms of

the consumption goods) of asset i at time t.

Equations (32)-(35) are Euler conditions derived from the utility maximization
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problem of the representative investor. Equations (32) and (35) state that the repre-

sentative investor must be indifferent between investing an amount of money equal

to PC
t in a real risk-free bond and holding the same amount in cash. This arbi-

trage condition holds also for nominal bonds (see equations (33) and (35)). Finally,

equations (34) and (35) describe the relation of indifference between investing one

more amount of cash of size PC
t in asset i and holding the same amount in a pure

cash. Equations (32)-(35) establish the demand for real money, while (33) and (35)

yield the demand for money in nominal terms. Equation (35) states that, in equi-

librium, the agent is indifferent between holding PC
t amount of cash and consuming

one extra unit of the good, because both actions produce the same marginal utility.

The link between the price level and monetary policy is established by equation

(35). Monetary policy and the asset market are tied together through equations

(35) and (34), which establish the consistency between the money supply and as-

set markets. Finally, the interdependence between monetary policy and the goods

market is described by equations (32) and (35).

Equation (34) must to hold also for the equity Zt when we replace pi,t+∆t

pi,t
with

pz,t+∆t+Yt+∆t

pz,t
, where pz,t = Pz,t

P C
t

is the real price of the equity share. Additional suf-

ficient conditions for the existence of an interior optimum are the two transversality

conditions

lim
T−→∞

Et

{
e−β∆t uc (YT ,mT )

uc (Yt,mt)
pi,t

}
= 0 (36)

lim
T−→∞

Et

{
e−β∆t uc (YT ,mT )

uc (Yt,mt)
1

PC
t

}
= 0 (37)

The equality (36) rules out bubbles in the price level of any risky asset. Condition

(37), instead, prevents bubbles in the price level from taking place. The intuition

behind the two TVCs is if (36) is violated the agent is willing to sacrifice actual

consumption in favor of future consumption derived from proceeds from investment

in risky assets without bound. Under condition (37), the agent accepts a reduction in

consumption today in exchange for a larger amount of money in the future without

bound.
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To conclude the characterization of the equilibrium relations, we need to define

the stochastic process for real asset prices. We follow Baksi and Chen (1996), Merton

(1971) and Grossman and Grossmann and Shiller (1982) by assuming

∆pi,t

pi,t
= µe

i,t∆t + σe
i,tΩ

e
i,t

√
∆t (38)

where µe
i,t and σe

i,t are, respectively, the conditional expected value and the stan-

dard deviation of real return on asset i per unit of time. Finally, the process
{

Ωe
i,tt = 0, ∆t, . . .

}
is a standard normal.

6 The equilibrium in the continuous time limit

In this section we characterize the equilibrium for the continuous time limit. These

results are independent from the assumptions made on the role of fiscal and monetary

policies in the determination of the equilibrium. For this reason, the results from

this section are similar to Baksi and Chen (1996) Balduzzi (1998).

Proposition 1 The equilibrium risk premiums for any risky asset over the real spot

interest rate is

µe
i,t − rt = −Ctucc

uc
covt

(
dpi,t

pi,t
,
dYt

Yt

)
− mtucm

uc
covt

(
dpi,t

pi,t
,
dmt

mt

)
. (39)

Proof 1 Subtract equation (32) from (34), manipulating the resulting expression

and using the definition of the stochastic process for pi,t (38) , we get

e−β∆tEt

{
uc (Yt+∆t,mt+∆t)

uc (Yt,mt)

[(
µe

i,t − rt

)
∆t + σe

i,tΩ
e
i,t

√
∆t

]}
= 0. (40)

Thus, by taking a Taylor expansion of the equation (40) around steady state, we get

e−β∆tEt

{[(
µe

i,t − rt

)
∆t + σe

i,tΩ
e
i,t

√
∆t

]

×
[
1 +

ucc (Yt+∆t, mt+∆t) Yt

uc (Yt,mt)
∆Yt

Yt
+

ucm (Yt+∆t,mt+∆t) mt

uc (Yt,mt)
∆mt

mt

]}
1

∆t
= 0.
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By letting ∆t → 0 and applying Ito’s multiplication rule, we obtain (39). ¥

Proposition 2 The real price for the equity share is

Pz,t = Et

∫ ∞

t
e−β(s−t) uc (Ys, ms)

uc (Yt, mt)
Ysds (41)

Proof 2 Recalling that

Pz,t+∆t + Yt+∆t∆t

Pz,t
=

∆pi,t+∆t

pi,t
, (42)

use equation (34) to obtain

Pz,t = Et

{
e−β∆t uc (Yt+∆t, mt+∆t)

uc (Yt, mt)
(Yt+∆t∆t + Px,t+∆t)

}
. (43)

After iterating forward, the result is

Pz,t = Et

∞∑

j=1

e−β(j∆t) uc (Yt+j∆t,mt+j∆t)
uc (Yt,mt)

Yt+j∆t∆t. (44)

Thus, by taking the limit for ∆t → 0 in (44) we finally get the result under (41). ¥

Proposition 3 In the continuous time limit equilibrium, the commodity price level

is given at time t by

1
PC

t

= Et

∫ ∞

t
e−β(s−t) um(Ys,ms)

uc (Yt,mt)
1

PC
s

ds (45)

The expected inflation rate is

πt ≡ 1
dt

Et

{
dPC

t

PC
t

}
= (46)

= it − rt + vart

{
dPC

t

PC
t

}
− uccYt

uc
covt

(
dYt

Yt
,
dPC

t

PC
t

)
(47)

−ucmmt

uc
covt

(
dPC

t

PC
t

,
dmt

mt

)
(48)

12



Proof 3 Rewrite the first order condition (35) as follows

1
PC

t

= e−β∆tEt

{[
uc (Yt+∆t,mt+∆t)

uc (Yt,mt)
1

PC
t+∆t

+
um (Ct+∆t, mt+∆t)

uc (Yt,mt)

]
∆t

PC
t+∆t

}
(49)

then, iterate equation (49) to get

1
PC

t

= Et





∞∑

j=1

e−β(j∆t) um (Ct+j∆t,mt+j∆t)
uc (Yt,mt)

∆t

PC
t+j∆t



 (50)

Taking the limit of the equation (50) we get the result under (45).

To derive the inflation rate, divide the first order conditions (32) and (33)

Et

{
uc (Yt+∆t,mt+∆t)

uc (Yt,mt)
(1 + rt∆t)

}
= Et

[
uc (Yt+∆t,mt+∆t) (1 + it∆t)

PC
t

PC
t+∆t

]

(51)

After taking the Taylor approximation of (51) and re-arranging,

(it − rt)∆t =
[
1 +

uccYt

uc

(
∆Yt

Yt

)
+

ucm

uc
mt

(
∆mt

mt

)][
∆PC

t

PC
t

−
(

∆PC
t

PC
t

)2
]

+(52)

+o (∆t)3/2 (53)

Thus, by taking the limit of equation (53), for ∆t → 0 we have

it − rt =
1
dt

Et

{
dPC

t

PC
t

}
− vart

{
dPC

t

PC
t

}
+

uccYt

uc
covt

(
dYt

Yt
,
dPC

t

PC
t

)
+

+
ucmmt

uc
covt

(
dPC

t

PC
t

,
dmt

mt

)

Thus, by using πt = 1
dtEt

{
dP C

t

P C
t

}
, and rearranging we get the equation (48). ¥

7 A specialized economy

In what follows we lay out a specific model used to derive the stochastic processes

for the price level and the other variables. We assume that the stochastic process
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for output is

dYt = (µY + ηY xt) dt + σY
√

xtdWx,t. (54)

where the process for the technology factor xt is

dxt = a (b− xt) dt + σx
√

xtdWx,t, (55)

where (Wx,t)t is a unidimensional Q-Brownian motion, µY , ηY , σY , a, b, and σx are

fixed real numbers.

The monetary aggregates Ht and Ft follow the exogenous processes

d ln Ht = µ∗Hdt + d ln (qt) (56)

d lnFt = µF dt + d ln (qt) (57)

where qt is the detrended money supply process. Each type of money supply has

two components, a drift term and a stochastic part. In particular, µ∗H is assumed

to be constant and positive, while µF is determined by equation ( 20). From Baksi

and Chen (1996), qt evolves according to

dqt

qt
= kq (µq − qt) dt + σq

√
qtdWi,t, i = H, F (58)

where (Wi,t)t is a unidimensional Q-Brownian motion independent upon (Wx,t)t.

Therefore, by using the definition of money supply (5), we find that the stochastic

process leading money supply is

dMt

Mt
= µM,tdt + σq

√
qtdWM,t. (59)

(WM,t)t is a unidimensionalQ-Brownian motion independent from (Wx,t)t and (Wi,t)t,

and where

µM = µ∗M + 2kq (µq − qt) , (60)
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with µ∗M = µ∗H + µF , and dΩM,t = dΩH,t + dΩF,t.

The set of assumptions presented earlier allows us to compute the equilibrium

price level of the commodity and the inflation process.

Theorem 4 Given the utility function of the representative agent as described by

equation (3), then the equilibrium price level is

P c
t =

φ

1− φ

q2
t (β + µ∗M ) (β + µ∗M + 2kqµq)(
β + µ∗M

)
+

(
kq + 3σ2

q

)
qt2kqµq

Mt

Yt
(61)

The stochastic process of the CPI is

dP c
t

P c
t

= πtdt + σq
√

qt

[
1 +

(∆qΨ−∆Ψq)
∆Ψ

qt

]
dWM,t − σy

√
xtdWx,t (62)

where the inflation rate is

πt = µ∗M − µy +
(
σ2

y − ηy

)
xt +

(∆qΨ−∆Ψq)
∆Ψ

qt

(
kq (µq − qt) +

σ2
qqt

2

)
+(63)

+
[2 (∆qqΨ−∆Ψqq)−∆qΨ + ∆Ψq]σ2

qq
3/2
t

2Ψ2∆
(64)

∆ (q) =
φ

1− φ

[
q2
t (β + µ∗M ) (β + µ∗M + 2kqµq)

]
(65)

Ψ (q) = (β + µ∗M ) +
(
kq + 3σ2

q

)
qt2kqµq (66)

and ∆q = ∂∆(q)
∂q , Ψq = ∂Ψ(q)

∂q , and ∆qq = ∂∆(q)
∂q .

Proof 4 We start by showing how to get (61). From (59) we have that

1
Mt

= e−µ∗M q−2
t . (67)

Define G(q) = 1
q2
t
. Thus by using Ito’s Lemma, we get

d

[
e2kqµq

q2
t

]
=

2
qt

(
kq + 3σ2

q

)
e2kqµqtdt− 2σq

qt
√

qt
dWM,t. (68)
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The expected value is

Et

[
1
q2
s

]
= Et

[
1
q2
s

| qt

]
=

= Et

[
e−2kqµqs

{∫ s

t
d

[
e2kqµqz

q2
z

]
+

e2kqµqt

q2
t

}
| qt

]
=

=
e−2kqµq(s−t)

qt
+

(
kq + 3σ2

q

)

qtkqµq

(
1− e−2kqµq(s−t)

)
.

Finally, from the first order conditions of the problem of the representative agent,

we get
1

PC
t Yt

=
1− φ

φ

∫ ∞

t
Et

[
1
q2
s

]
e−β(s−t)−µ∗M ds (69)

After solving for the integral, we get equation (62).

To compute the inflation rate, it is enough to apply Ito’s lemma to (62) by setting

V (Mt, Yt, qt) = ∆(qt)
Ψ(qt)

Mt
Yt

so that

dP c
t = GMdMt + GY dYt + Gqdqt +

1
2

[
GY Y (dYt)

2 + Gqq (dqt)
2 + GMq (dMt) (dqt)

]
.

(70)

By taking into account (65), (66), and the definitions for Yt, qt and Mt, (54), (58)

and (59) respectively, we obtain equation (64). ¥

8 The real spot interest rate

In this section we derive the dynamics of the real spot interest rate implied by ex-

ogenous the dynamics of the technology process. Since this requires solving the

differential equation ( 55), xt is Markov and satisfies the necessary technical con-

ditions to apply the Representation Theorem of Feyman-Kac.4 We can now follow

the partial differential equation — PDE — approach to compute the real spot rate.

Theorem 5 If the technology process follows ( 55) , then the real spot rate rt is a
4The drift and volatility terms in ( 55) must be Lipschitz and bounded on <.
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function φ (t, xt) that represents the unique solution to the Kolmogorov PDE





1
2σ2

xxt
∂2φ(t,xt)

∂x2
t

+ a (b− xt)
∂φ(t,xt)

∂xt
+ ∂φ(t,xt)

∂t − xtφ (t, xt) = 0

φ (T, xt) = 2ab
γ+a

(71)

where the final condition is the long time spot rate determined in Cox, Ingersoll and

Ross (1985). This gives

rt = A (θ) eC(θ)xt (72)

where θ = T − t and

C (θ) =
σ2

x (2 + a)
(
1− eγθγ

)

2a [σ2
x − a + eγθ (a− σ2

x)− (1 + eγθ) γ]
(73)

A (θ) =
1

γ + a

{
2χabeν(θ)γζ

[
a + γ − σ2

x + eγθ
(
γ − a + σ2

x

)]−ζ
}

(74)

χ =
a2 − γ2 − 2σ2

x (a + b + ab) + σ4 (1 + b)
(a− σ2

x)2 − γ2
(75)

ν (θ) =
bθσ2

x (2 + a− γ)
2 (a + γ − σ2

x)
(76)

ζ =
bσ2

x

(
σ2

x − 2a− 2
)

(a− σ2)2 − γ2
(77)

γ =
√

a2 + 2σ2
x (78)

Proof 5 If φ (t, xt) = rt, like in equation ( 72), then the Kolmogorov PDE is





1
2σ2xtC

2 (θ) rt + a (b− xt)C (θ) rt + A
′
(θ) eC(θ)xt+

+C
′
(θ) xtrt − xtrt = 0

φ (T, xt) = 2ab
γ+a

(79)

where A
′
(θ) and C

′
(θ) represent the derivative with respect to time of functions A (θ)

and C (θ) equations ( 73) and (74). Given that the Kolmogorov PDE is verified for

all t and xt, we can divide it into two parts. One part is dependent and the other

one is independent from xt. The task boils down to solving the differential equation

17



— DE — system





1
2σ2

xC2 (θ)− aC (θ) + C
′
(θ)− 1 = 0

A
′
(θ) + abA (θ) C (θ) = 0

C (0) = 1

A (0) = 2ab
γ+a .

(80)

The first DE is a Riccati equation whose solution is ( 73). The second equation,

instead, is a regular first order DE with solution given by ( 74). ¥

Lemma 6 The dynamics of real spot interest rate is

drt = a∗ (θ) [b∗ (θ)− rt] dt + C (θ) rtσx
√

xtdWx,t (81)

where (Wx,t)t is a unidimensional Q−Brownian motion, and with

a∗ (θ) = −
[
a (b− xt) C (θ) + C

′
(θ) xt +

1
2
σ2

xxtC
2 (θ)

]

b∗ (θ) =
A
′
(θ) eC(θ)xt

a∗ (θ)
.

Proof 6 By applying Ito’s Lemma to ( 72), the dynamics of rt = φ (t, xt) is

drt = C (θ) rtdxt +
∂rt

∂t
dt +

1
2
σ2

xxtC
2 (θ) rtdt (82)

= rt

[
a (b− xt) C (θ) + C

′
(θ) xt +

1
2
σ2

xxtC
2 (θ)

]
dt + (83)

+A
′
(θ) eC(θ)xtdt + C (θ) rtσx

√
xtdWt,x (84)

Finally, we can write ( 83) as a mean reverting process in square root with time

dependent coefficients like in ( 81). ¥

9 The term structure of real interest rates

Here we show how to compute the price of zero coupon bonds as a function of time,

technology and the real spot rate. We follow again a PDE approach because both

xt and rt are Markov and satisfy the necessary technical conditions to apply the

18



Representation Theorem of Feyman-Kac. The solution has no closed form, and it is

necessary to use numerical methods to understand how it works.

Theorem 7 If technology and the real spot rate follow ( 55) and ( 83), respectively,

then the zero coupon bond B (t, T ) is a function ϑ (t, xt, rt) that represents the unique

solution to the Kolmogorov PDE





1
2σ2

xxt
∂2ϑ(t,xt,rt)

∂x2
t

+ a [b− xt]
∂ϑ(t,xt,rt)

∂xt
+ 1

2C2 (θ) C∗2 (θ) r2
t σ

2
xxt

∂2ϑ(t,xt,rt)
∂r2

t
+

+a∗ (θ) [b∗ (θ)− rt]
∂ϑ(t,xt,rt)

∂rt
+ rtC (θ) σ2

xxt
∂2ϑ(t,xt,rt)

∂rt∂xt
+ ∂ϑ(t,xt,rt)

∂t +

−rtϑ (t, xt, rt) = 0

ϑ (T, xt, rt) = 1

(85)

Proof 7 Let us assume ϑ (t, xt, rt) = B (t, T ) with

B (t, T ) = A∗ (θ) e−C∗(θ)rt . (86)

The Kolmogorov PDE becomes





−1
2σ2

xxtC
2 (θ) rtC

∗2 (θ) B (t, T )
[
1− C∗2 (θ) rt

]
+

−a [b− xt] C∗ (θ) B (t, T ) rtC (θ) + 1
2σ2

xxtC
2 (θ) r2

t C
∗2 (θ) B (t, T )+

−a∗ (θ) [b∗ (θ)− rt] C∗ (θ) B (t, T ) + σ2
xxtC

2 (θ) r2
t C

∗2 (θ) B (t, T )+

+A∗′ (θ) eC∗(θ)rt − C
∗′

(θ) rtB (t, T )− rtB (t, T ) = 0

ϑ (T, xt, rt) = 1.

(87)

Since the PDE ( 87) is verified for all t, xt and rt, we can divide it into two

equations, one dependent and one independent from xt and rt. Now the problem is

to solve the DE system





1
2σ∗2 (θ)C∗2 (θ)−Ψ(t)C∗ (θ)− C∗′ (θ)− 1 = 0

A∗′ (θ)− a∗ (θ) b∗ (θ) A∗ (θ) C∗ (θ) = 0

C∗ (0) = 0

A∗ (0) = 1
(88)
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where σ∗ (t) and Ψ(t) are

σ∗ (θ) = 2σxC (θ)
√

rtxt (89)

Ψ (θ) =
1
2
σ2

xxtC
2 (θ) + abC (θ)− aC (θ) xt − a∗ (θ) . (90)

The first DE is a Riccati equation, and the second is a first order DE. Both equations

have time-varying coefficient. We can then find the solution only by using numerical

methods. ¥

Lemma 8 The term structure of real interest rates is

R (t, T ) = −1
θ

[lnA∗ (θ)− rtC
∗ (θ)] . (91)

where A∗ (θ) and C∗ (θ) are the solutions of system ( 88).

Proof 8 The term structure of real interest rates can be derived from the relation

between the price of zero coupon bond and the continuous real interest rate

B (t, T ) = e−θR(t,T ). (92)

¥

10 The term structure of nominal interest rates

In this section we derive the equilibrium nominal spot interest rate, the analytical

expression for the nominal zero coupon bond, and for the nominal term structure of

interest rates.

Lemma 9 The nominal spot interest rate is

it = A (θ) eC(θ)xt

[(
φ

1− φ

)
q2
t (β + µ∗M ) (β + µ∗M + 2kqµq)(
β + µ∗M

)
+

(
kq + 3σ2

q

)
qt2kqµq

Mt

Yt

]
(93)

where A (θ), C (θ) are (73) and (74), respectively.

20



Proof 9 Multiply (72) by ( 61). ¥

Lemma 10 The nominal zero coupon bond is

N (t, T ) = B (t, T )

[(
φ

1− φ

)
q2
t (β + µ∗M ) (β + µ∗M + 2kqµq)(
β + µ∗M

)
+

(
kq + 3σ2

q

)
qt2kqµq

Mt

Yt

]
(94)

where B (t, T ) is the solution of ( 87) .

Proof 10 Multiply the solution of (85) by ( 61). ¥

Lemma 11 The nominal term structure of interest rate is

I (t, T ) = R (t, T )

[(
φ

1− φ

)
q2
t (β + µ∗M ) (β + µ∗M + 2kqµq)(
β + µ∗M

)
+

(
kq + 3σ2

q

)
qt2kqµq

Mt

Yt

]
(95)

where R (t, T ) is (91)

Proof 11 Multiply (91) by (61). ¥

From the expressions for (93), (94) and (95), we observe that the values of the

rates for the nominal term structure are higher than those for the real variables if

(61) is higher than one. This is linked to φ1, which determines µ∗M ), through the

condition

µ∗M < µ∗aM and µ∗M > µ∗bM (96)

where µ∗aM , µ∗bM are

µ∗a,b
M =

−Γ±
√

Γ2 + 4Mtφq2
t Λ

2Mtφq2
t

(97)

Γ = 2Mtφq2
t (β + kqµq)− Yt (1− φ) (98)

Λ = −Yt (1− φ) β − 2Ytkqµqqt

(
kq + 3σ2

q

)
(1− φ) (99)

+Mtφq2
t β (β + 2kqµq)
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Figure 1: The nominal and real spot curve
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Legend: The line (−.) is for µ∗M = 0.98, the dark line is for µ∗M = 0.55, the dashed (−−)
is for µ∗M = 0.01 and the crossed curve (++) is for µ∗M = 0.0001.

11 Simulation results

We now calibrate the model and run numerical simulations to get a better under-

standing of the relations involved. The intertemporal substitution coefficient β has

been set equal to 0.998. The values for the other parameters are from Balduzzi

(1998), who proposes a model with similar stochastic processes. In particular, we

have κq = 0.3, µq = 0.1, µY = 0.2, ηY = 0.4, σq = 0.1, φ = 0.5, µM = 0.2. For the

other parameters we have chosen values that are consistent from an economic point

of view, that is a = 0.45, b = 0.03, σx = 1.35. The solution of the model on the

stochastic processes for x, q, M and Y . We initialize these processes at x0 = 0.1,

q0 = 0.1, M0 = 0.1 and Y0 = 1.

Figure 1 plots the nominal and real spot rate curve for different values of µ∗M .
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Figure 2: The nominal and real term structure of zero coupon bonds
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Legend: The line (−.) is for µ∗M = 0.98, the dark line is for µ∗M = 0.55, the dashed (−−)
is for µ∗M = 0.01 and the crossed curve (++) is for µ∗M = 0.0001.

The curve of real rates lays below the nominal curve.5 The parameters governing

the real curve are kept constant. However, we impose the constraint in (96). Figure

1 shows that the higher the reaction of the tax rate to real debt, the lower µ∗M ,

and the lower the position of the nominal curve in the plan. This implies that the

average nominal rates are consistent with the notion of equilibrium outlined earlier.

For a very elastic tax rate (i.e. a very low µ∗M ), the curve of nominal spot rates does

not change as a function of fiscal parameters.

In order to simulate a closed form solution for the term structure of zero-coupon

bonds, we assume that the coefficients of the equations in (88) are constant. We
5The case where the nominal curve is above the real curve can be thought as the result of a very

tight fiscal policy that produces a deflationary equilibrium. Such deflationary equilibria are not to
be ruled out within the framework of the fiscal theory of price level determination. They can be
interpreted as arising from the contraction of aggregate demand because of a high of taxes to real
debt.
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are aware of the limitation of this choice. However, this is only meant to make the

discussion of the results more intuitive.

Figure 2 shows that the position of the term structure depends on the value

assumed for µ∗M and, consequently, on the value of the tax elasticity φ1. If the

tax elasticity falls and µ∗M rises, the curve of the nominal zero coupon bond shifts

downward except for very low values of µ∗M , when the curve loses sensitiveness to

this parameter. This is consistent with the results form the fiscal theory of the price

level. As the tax rate falls, also the price for newly issued debt drops because the

reduced backing of taxes generates inflationary risk in the future, thus causing a

reduction of the nominal value of debt today.

12 Concluding remarks

In this paper we study a simple intertemporal model for the determination of the

nominal and real term structure where the interaction between fiscal and monetary

plays a key role. In particular, we investigate the relation between the term structure

of interest rate and the fiscal theory of price level determination. In so doing, we

move beyond the standard finance models where monetary and technological factors

are the sole determinants of the term structure of interest rates.

A number of interesting avenues of future work can be considered. The model

presented in this paper should be taken to the data to study how inflation risk

premia are affected by fiscal determinants. An ongoing work considers the pricing

of interest-rate futures in our model. This is likely to shadow more light on the role

of monetary policy expectations when also fiscal policy matters.
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A Appendix

Proposition 12 In the continuous time limit equilibrium, the real interest rate has

the form

rt = β − Ytucc

uc

1
dt

Et

{
dYt

Yt

}
− 1

2
Y 2

t ucc

uc
vart

{
dYt

Yt

}
− mtucm

uc

1
dt

Et

{
dmt

mt

}
(100)

−1
2

m2
t ucmm

uc
vart

{
dmt

mt

}
− Ytmtuccm

uc
covt

{
dYt

Yt
,
dmt

mt

}
. (101)

Proof 12 A Taylor expansion around the equilibrium of first order condition (32)

yields

uc (Yt,mt) (1 + rt∆t) = Et {(1 + rt∆t) [uc (Yt,mt) + ucc (Yt,mt)∆Yt+

+ucm (Yt,mt)∆mt +
uccc (Yt,mt)

2
(∆Yt)

2

+
uccm (Yt,mt)

2
∆Yt∆mt +

ucmm (Yt,mt)
2

(∆mt)
2

]}
+ o (∆t)3/2 . (102)

After collecting terms and re-arranging

rt = β − 1
∆t

Et

{
uccYt

uc

(
∆Yt

Yt

)
+

ucm

uc
mt

(
∆mt

mt

)
+

ucccY
2
t

2uc

(
∆Yt

Yt

)2

+

+
uccmYtmt

2uc

(
∆Yt

Yt

) (
∆mt

mt

)
+

ucmmm2
t

2uc

(
∆mt

mt

)2
}

+ o (∆t)3/2 . (103)

Thus, take the limit of (103) and apply Ito’s multiplication rule, we get equation

(101), after having recalled that

1
dt

Et

{(
∆Yt

Yt

)2
}

= vart

(
∆Yt

Yt

)

1
dt

Et

{(
∆mt

mt

)2
}

= vart

(
∆mt

mt

)
.

¥

Corollary 13 The real spot interest rate determined in equation (72) is also an
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equilibrium rate, for utility function parameter values φ such that this equation and

(101) are equated. Consequently, this be also true for the nominal spot interest rate.
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