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ABSTRACT 
 
This paper studies the comovements between the daily returns of forwards on natural gas traded in 
the NYMEX with maturity of 1, 2 and 3 months. We identify a structural multivariate BEKK 
model using a recursive assumption whereby shocks to the volatility of the returns are transmitted 
from the short to the long section of the forward curve. We find strong evidence of spillover 
effects both in the conditional first and second moments. In the conditional mean, we show that 
the transmission mechanism operates from the longer to the shorter maturity. In terms of reduced-
form conditional second moments, the shortest the maturity, the higher the volatility of the return, 
and the more the returns become independent from the others and follow the dynamics of the 
underlying commodity. The evidence from the structural second moments indicates that the longer 
the maturity is, the higher is the uncertainty about the returns. We also show that the higher the 
structural variance of a return relative to that of another return, the stronger the correlation is 
between the two.  
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Introduction 

Commodity markets have lost their original purpose of trading and delivery of physical goods 

nowadays. In fact, they have become the arena for investors interested in futures and forward 

contracts for hedging and speculative purposes. Commodity markets carry relevant information 

also for central banks, whose interest lies in understanding the financial markets determinants of 

commodity prices.   

In this paper, we shed light on the comovements of prices along the forward curve for 

natural gas on the New York Mercantile Exchange. We consider forward prices with maturity of 

one month, two months and three months and study the spillover effects both in terms of 

conditional and volatility. We estimate a structural vector autoregressive model identified through 

heteroskedasticity. In our framework, the process for conditional volatility follows that the 

multivariate BEKK-GARCH of Engle and Kroner (1995). Our identification scheme assumes that 

the conditional second moments of the variables have a recursive structure. This implies that the 

second moments of the returns on the shortest maturity depend only on their own autoregressive 

and innovation terms, while those on the longest maturity are a function of all the autoregressive 

and innovation terms in the system. In pills, we formulate a structural BEKK-GARCH model 

whose parameters are identified from the reduced-form estimates.  

We find strong evidence of spillover effects for both the first and the second moments 

along the forward curve. With regard to the first moments, we find that a transmission mechanism 

operates from the longer to the short maturities. The results also show that the shorter the 

maturity, the higher the volatility of the return is, and the more the return becomes independent 

from the other returns and follows the dynamic of the underlying commodity. This consideration 

holds, however, for the reduced-form moments. For what concerns the structural moments, we 

find returns on the 3 months maturity display the highest volatility, which implies a large 

uncertainty on the returns. We find also that the higher the structural variance of a return relative to 

that of another return, the stronger the correlation is between the two.  

This paper is organized as follows. In the section section, we outline our structural 

GARCH model along with the identification technique. In the third section, we present the main 

results. A few final remarks are in section four. 

 

The structural GARCH model 

Let us assume that the evolution of the variables can be summarized by a structural VAR model 

( )
t t t

Ax L xψ η= + Φ +  
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where 
t

η  is the vector of structural shocks, and A is the structural parameter matrix 

 

Direct estimation of the matrix A through OLS would lead to asymptotically biased estimators, 

owing to the endogeneity of some of the variables. Therefore, the structural parameters should be 

derived from the reduced form of the model through an identification procedure, as usual when 

dealing with structural VARs. 

One of the solutions to the identification problem relies on the existence of 

heteroskedasticity. This idea has been originally introduced by Wright (1928) and recently 

developed by Rigobon (2003). The heteroskedasticity approach to identification amounts to using 

the information from time-varying volatility as a source of information on the relation between 

endogenous variables. This would allow us to identify the structural parameters of the model 

without need for additional assumptions.  

In Rigobon (2003) and Rigobon and Sachs (2003b, 2004), identification is obtained 

through regimes of volatility. In other words, these authors consider subsamples across which there 

are shifts in the volatility pattern. A natural extension of this methodological framework involves 

the modelling of heteroskedasticity through GARCH processes so that regimes changes are 

continuous. Assuming that the structural shocks have a zero mean, are independent but not i.i.d., 

Rigobon and Sachs (2003a) postulate that their variance follows the GARCH process 
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The matrices Γ  and Λ are square with dimension 3. Their elements are restricted to be positive. 

Since the shocks of the reduced form are a linear combination of the structural shocks, they also 

have a conditional variance that follows a GARCH process. In particular,  

( ) ( )
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In this model, the restrictions that yield identification are imposed on the covariance matrix of the 

reduced form. This, in turn, depends on the heteroskedasticity of the structural shocks.  

The formulation of Rigobon and Sachs (2003a), however, does not guarantee that the 

variance-covariance matrix is positive-definite, which is a problem typical of every vector – vech - 

GARCH. In order to cope with this problem, Spargoli and Zagaglia (2007) rely on the multivariate 

BEKK-GARCH of Engle-Kroner (1995) to analyse the comovements between oil futures prices on 

the NYMEX and ICE. They assume no restrictions on the structural-form innovations 
t

η , which 

are distributed according to  

( )0,
t t

N hη ∼ ,   
' ' ' '

1 1 1t t t t
h CC Gh G T Tη η− − −= + +  

where C is a triangular matrix whose elements are all positive, G and T are two parameters matrix 

such that  
11

G  and 
11

T  are constrained to be positive. The reduced form of the model turns out to 

be: 

' ' ' ' ' ' ' ' '

1 1 1t t t t
H BCC B BGAH AG B BTAv v AT B− − −= + + . 

All in all, the model amounts to an augmented BEKK-GARCH model, given that the reduced form 

depends also on the structural parameters in matrix A. Identification of the structural parameters is 

achieved like in Rigobon and Sachs (2003a) and Spargoli and Zagaglia (2007) through restrictions 
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on the conditional variance-covariance matrix of the reduced-form innovations, that follow the 

BEKK-GARCH model outlined earlier.  

In this paper, the forward curve of natural gas forwards is analysed again by imposing an 

identification technique on the structural GARCH model in the spirit of Rigobon (2002), which 

studies the contagion effects of the 1997 Mexican crisis on Argentina, Columbia, Venezuela and 

Brazil.  Differently from him, however, we rely on a BEKK instead of a vech model in order to have 

positive-definite covariance matrix by construction. In particular, we assume that the structural 

innovations are distributed according to 

( )0,
t t

N hη ∼ ,   
' ' ' '

1 1 1t t t t
h CC Gh G T Tη η− − −= + +  

with 
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These assumptions have two main implications. The first is that the structural innovations 

are correlated. Since we estimate our model on the returns of forwards on natural gas with different 

maturities, we can safely assume the existence of common factors driving the joint evolution of the 

returns. The second implication is that the conditional variances of the returns have a recursive 

structure. This means that the conditional variance of the variable placed first depends only on its 

own lags, whereas the conditional variance of the second variable depends on its lags and the lags 

of the first variable. Dealing with series of returns on forwards with different maturity, it seems 

reasonable to consider the return on the shortest maturity as the first variable. In doing so, we 

assume that the shocks to the volatility of the returns are transmitted from the short to the long 

section of the forward curve.2  

A few points of comparison with the current literature are worth emphasizing. Spargoli and 

Zagaglia (2006), like Rigobon and Sachs (2003a), find maximum likelihood estimates of the 

structural-form parameters directly using the reduced-form GARCH model as covariance matrix. 

In this paper, instead, identification is achieved from the estimation of the reduced-form 

parameters, which provide a set of equations in the structural parameters.  As usual for structural 

vector autoregressions, we impose restrictions on the structural parameters in order to achieve 

identification. In our model, however, those restrictions do not involve the matrix A, but the 

                                                 
2 The use of this recursive assumption is not new in the literature on structural GARCH. For instance, 
Cassola and Morana (2006) order term structure variables from short to long maturities to identify the 
comovements in volatility in the Euro area money market. 
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conditional variances of the structural innovations.  A similar technique is used in Rigobon (2002), 

which derives the structural parameters of the heteroskedasticity process (both an ARCH and a 

GARCH model in the vech form) from the reduced-form estimates assuming that the structural 

innovations are not correlated. 

For the purpose of estimation, we begin with the OLS estimate of the VAR model 

( )
t t t

x c F L x v= + +  

where 1
c A ψ−= , 1

( ) ( )F L A L
−= Φ  and 

1

t t
v A η−=  are the reduced-form innovations, whose 

variance-covariance matrix is a combination of the variance-covariance matrix of the structural-

form innovations, that is 

1 1
'

t t t t
H A h A H Bh B

− −= → =  

' ' ' ' ' ' '

1 1 1t t t t
H BCC B BGh G B BT T Bη η− − −= + + . 

In this formulation the variance-covariance matrix of the reduced-form innovations is a function of 

the structural innovations, which the econometrician does not know. However, we can use the 

equality 
t t

Avη =  to show that 

' ' '

t t t t
Av v Aη η =   

'

t t
h AH A=  

and to represent 
t

H  in terms of the reduced-form innovations as 

' ' ' ' ' ' ' ' '

1 1 1t t t t
H BCC B BGAH AG B BTAv v AT B− − −= + + . 

It should be noted that the autoregressive and the innovation matrix are 3 by 3 matrix and the 

constant matrix is the product of a lower triangular matrix and its transpose. The recursive 

restrictions reduce the parameters of the structural BEKK model to 18 which, together with the 

parameters of matrix A, yields a total of 24 parameters for the full structural model. 

After estimating the model, we compute impulse-response functions. In structural 

GARCH models, these functions show the impact that a shock produces on the conditional second 

moments of the variables in the system. However, differently from the impulse response functions 

for a standard VAR, the impulse responses of a structural GARCH depend both on the magnitude 

of the shock and on the period during which the shock itself takes place. This is due to the fact that 

the residuals enter the model in quadratic form. Hence, differently from the case of linear models, 

the magnitude of the effects of a shock is not proportional to the size of the shock itself. This 

allows us to compute a distribution of impulse responses following each shock. To that end, we use 

the concept of Volatility Impulse Response Functions – VIRF – proposed by Hafner e Herwartz 

(2006). The impulse-response function for a vech-GARCH model can be written as  
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( ) [ ] [ ]0 0 1 1( ) | , ( ) |
t t t

V E vech H I E vech H Iξ ξ − −= −  

The response at time t of the variances and covariances following a shock η  in t=0 - denoted as 

( )0t
V η  - is equal to the difference, conditioned on the information set at time -1 (

1
I− ) and on the 

shock 
0

η , of the variance (or covariance) at t from its expected value conditional on the 

information set of period -1.3  

 
Results 

We estimated the model using daily data from the 19th of January 1994 to the 27th of April 2007, 

which have been downloaded from Bloomberg. We calculate the returns in percentage points from 

the two series and we obtained a total of 3307 observations. The time series are plotted in figure 1.  

In order to obtain reduced-form residuals, we estimated a VAR model which includes also 

a constant and a set of dummy variables to account for outlier observations. Outliers are found 

through E-views as observations that lie outside the intervals given by the third quartile plus 3 times 

the interquartile range, and the first quartile less 3 times the interquartile range. We detect 16 

outliers for which a dummy variables are included in the VAR. Then, a set of Wald exclusion tests 

are carried out in order to identify the best-fitting model, which turns out to be a VAR with 2 lags 

and 14 out of 16 dummy variables.  

Given the reduced-form innovations, we estimate the model by maximum likelihood using 

the Matlab codes provided by Kevin Sheppard. The results from the reduced-form model provide a 

system of 24 nonlinear equations that can be solved in the 24 unknowns - that is the 24 structural 

parameters -,  

* *' ' '

*

*

C C BCC B

G BGA

T BTA

=

=

=

 

where asterisks denote the reduced-form parameters. These estimates yield the following 

representation of the conditional second moments 

' '
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1 1
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3 Details on the analytical formulas used for the calculation of the VIRFs can be found in Spargoli and 
Zagaglia (2007).  
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We should stress that proposition 2.1 of Engle and Kroner (1995) guarantees that the BEKK 

model is identified because the diagonal elements of C, as well as 
11

G  and 
11

T , are positive.  

Furthermore, the BEKK model is also covariance stationary according to Proposition 2.7 of Engle 

and Kroner (1995), given that the eigenvalues of G G T T⊗ + ⊗  are all less than one in module.  

The parameters of the equations for the conditional mean indicate the direct effect that a 

structural shock to a return causes to the conditional mean of the other returns. The results show 

that a 1 basis point increase in the return of the two-month natural gas forward causes a 1.33 basis 

points increase in the return of the one-month forward, while a 1 basis point increase in the return 

on the three months forward determines a 0.24 basis point decrease in that of the one-month 

forward. The return on the two-month forward responds positively to variations of the returns on 

the other maturities, especially on the three-month forward. The return on the three-month 

forward, instead, shows a negative reaction to increases in the returns on the other maturities. The 

largest spillover effect is the one between the returns on the three-month and the two-month 

maturity, while the smallest is the one between the one-month and two-month maturity. We can 

observe that the shocks to the returns have always an effect of positive sign on the returns at the 

shorter maturities. The converse does not hold, because a shock to 
1m

t
r has a positive effect on 

2m

t
r , but a shock to 

2m

t
r  has a negative impact on 

3m

t
r . Therefore, there is a transmission channel 

of positive sign that operates through the conditional means, and that runs from the longer to the 

shorter maturity but not the other way round. 

From the estimated structural coefficient it is possible to calculate the conditional second 

moments of the returns for both the structural and reduced form. In particular, the former give a 

representation of the dynamics of the structural innovations as such, which means that they do not 

incorporate the indirect effects due to spillovers among the returns. Figures 1 and 2 plot the 

conditional structural variances and correlations. The conditional structural variance of 
3m

t
r  is the 
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highest over the sample except for its middle section, where the conditional structural variance of  

1m

t
r  overcomes it. The conditional structural variance of 

3m

t
r  shows frequent and high peaks, while 

that of 
2m

t
r  is the lowest over the sample. The three conditional variances show peaks at the same 

points of the sample. 

Figure 2 shows that the returns on the three maturities are strongly correlated, and that 

there are frequent peaks that push the correlations to extreme levels. It is difficult to detect a 

pattern in the dynamics of these conditional moments, given their frequent oscillations. However, 

one can say that the structural correlation between  
1m

t
r  and 

2m

t
r  becomes positive, and oscillates 

around 0.5, after the 500th observation. Yet, there are frequent peaks that make it negative and 

reach -1. Combining the evidence from the conditional structural correlations with that on the 

conditional structural variances, we can notice that is that the bigger a conditional variance at a 

maturity relative to that of another maturity, the stronger the correlation is between the 

corresponding returns. For example, in the period comprised between observation 0 and 500 the 

correlation between 
1m

t
r  and 

2m

t
r  oscillates around a value between 0 and -0.5 and the structural 

variance of 
2m

t
r  is almost equal to the one of 

1m

t
r . In the subsequent range of observations, 

however, the latter becomes much bigger than the former and, at the same time, the correlation 

between the two returns oscillates around a higher mean in absolute value. The same considerations 

apply also for the conditional structural correlation between 
3m

t
r  and 

1m

t
r : when the conditional 

structural variance of 
3m

t
r  is bigger than 

1m

t
r - i.e. in the period between 0 and 500 - the correlation 

is higher in absolute value than in the following period where the two structural variances are 

approximately equal. This also holds for the conditional structural correlation between 
2m

t
r  and 

3m

t
r . This suggests that the comovements between the returns are driven by the dynamics of the 

most volatile. 

Figures 3 and 4 plot, respectively, the reduced-form conditional variances and correlations 

that incorporate the linkages among the returns. The reduced-form conditional variances are 

generally smaller than those of the structural form, which means that the spillovers among markets 

contribute to a reduction of the volatility of structural innovations. The size of the reduced-form 

conditional variances seems to be the inverse of that of the structural-form variances. This supports 

the view that forward prices are more volatile for short maturities, given they are the most traded 

and liquid along the maturity structure. Therefore, even if the structural conditional variance of 
1m

t
r  
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is the lowest over the sample, the reduced-form variance is the highest because of the spillovers and 

linkages among the returns. 

Figure 4 shows that the correlation between 
1m

t
r  and 

2m

t
r  seems to have three regimes. 

The first regime goes from observation 0 to 500, when it oscillates around a mean value between 

0.5 and 1. The second regime is from observation 500 to 2500, where it oscillates around a mean 

value around 0. The third regime is similar to the first. The same consideration holds for the 

reduced-form conditional correlation between  
3m

t
r  and 

1m

t
r . This means that the return on the 

shortest maturity is independent from those on the other maturities, which can be explained by the 

fact that the closer the expiration date of a derivative product is, the more its price follows the price 

of the underlying commodity. The reduced-form conditional correlation between 
3m

t
r  and 

2m

t
r  has 

smaller oscillations and has a mean value comprised between 0.5 and 1. Furthermore, it is perfectly 

positive in most part of the sample. These facts, together with a structural-form conditional 

correlation with a negative mean value, could be interpreted as a suggestion that the two-month and 

three-month maturities are held for hedging purposes.  

Now we turn to the analysis of the persistence of the effects of the shocks, which we 

carried out through volatility impulse responses. As explained earlier, given that GARCH are non-

linear in the innovations, the effect of a shock depends both on the size and the timing. Therefore, 

our use of VIRFs is twofold. On the one hand, we can plot traditional impulse responses after a 

specific shock occurred at a specific point in time. On the other hand, we can compute the 

distribution of VIRFs, that is we can calculate impulse responses for each shock and then 

determine their frequency. This should be done for each time horizon of the VIRF.   

Figure 5 shows the impulse responses on a potentially significant date, namely the second 

Gulf war shock, which takes place on the 20th of March 2003. The shock is absorbed very quickly, 

given that the effect on all the conditional moments vanishes after 3 or 4 days. The shock has a 

negative impact on the conditional variances, in particular on that of
1m

t
r , and on the correlation 

between 
3m

t
r  and 

2m

t
r  while it has an impact of positive sign on the correlations between 

1m

t
r   and 

2m

t
r , and on those between 

3m

t
r  and 

1m

t
r . The finding about the reaction of the conditional 

variance of 
1m

t
r  confirms that the returns on the shortest maturities are more volatile. The response 

of the conditional correlation shows that a shock to the returns on the one-month maturity 

determines an effect of the same sign as that on the two and three-month maturity, which can be 

interpreted as a transmission mechanism of volatility shocks. However, this does not hold for the 
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maturities at two and three months. This suggests that the transmission process takes place directly 

from the short maturity to the rest of the forward curve. 

Turning to the distribution of the VIRFs, Figures 6 Figure 7 present respectively the 1st, 

10th, 25th, and the 50th, 75th, 90th and 99th percentiles. At a first glance, we can again notice that the 

effect of the shocks tend to absorbed very quickly, given that after 3 or 4 days all the percentiles 

become close to zero. It should be noted also that the immediate impact of the shock has a great 

dispersion, because the extreme percentiles of the distribution are very far from each other for all 

the VIRFs. It is interesting to analyze the median of the VIRF distribution, in order to understand 

whether the shocks have a positive or a negative impact on the conditional moments. From Figure 

7, it is evident that the shocks exert mainly a negative impact on the conditional variance of  
2m

t
r  

and 
3m

t
r  and on the correlation between 

2m

t
r  and 

3m

t
r , given that even the 75th percentile is 

negative. As regards the other moments, the distribution of their VIRFS is symmetric because the 

50th percentile is approximately zero. Therefore, the shocks generate effects of positive and negative 

sign in the same proportion. 

 

Conclusions 

We study the relation between the returns on one-month, two-month and three-month maturities 

of natural gas forwards traded in the New York Mercantile Exchange. We estimate a BEKK-

GARCH model (Engle and Kroner, 1995) from which we identify the parameters of a structural 

model VAR model with heteroskedasticity in the structural innovations. In this way, we obtain 

estimates of the spillovers among the three returns both in term of the first and second conditional 

moments.  

We find that the evidence about conditional second moments is in line with that 

concerning forwards in general: the shorter the maturity, the higher the volatility of the return, and 

the more the return becomes independent from the other returns, and follow the dynamics of the 

underlying commodity price. We find also that the returns on the three-month maturity are those 

with the highest volatility, which could be interpreted as a consequence of the greater uncertainty 

that characterizes the factors guiding longer maturities. Another result is that the co-movement 

between the returns is driven by the dynamics of the most volatile. We detect a transmission 

mechanism that runs from the long to the short section of the forward curve. Finally, we also show 

that the effects of the shocks on the conditional second moments have a very little persistence, 

given that they vanish after 4 or 5 days.  

 



 12 

References 

Cassola, Nuno, and Claudio Morana, “Comovements in Volatility in the Euro Money Market”, 

ECB Working Paper, No. 703, December 2006 

Engle, R.obert F., and Kenneth F. Kroner, “Multivariate Simultaneous Generalized ARCH'”, 

Econometric Theory, 11, 1995 

Hafner, Christianam M., and Helmut Herwartz, “Volatility Impulse Responses for Multivariate 

GARCH Models: An Exchange Rate Illustration”, Journal of International Money and Finance, 25(5), 

2006 

Rigobon, Roberto, “Identification through Heteroskedasticity”, Review of Economics and Statistics, 

85(4), 2003 

Rigobon, Roberto, “The Curse of non Investment Grade Countries”, Journal of Development 

Economics, 69, 2002 

Rigobon, Roberto, and Brian Sack, “Spillovers across U.S. Financial Markets”, unpublished manuscript, 

MIT Sloan School of Management, 2003(a) 

Rigobon, Roberto, and Brian Sack, “Measuring the Reaction of Monetary Policy to the Stock 

Market”, Quarterly Journal of Economics, 118(2), 2003(b) 

Rigobon, Roberto, and Brian Sack, “The Impact of Monetary Policy on Asset Prices”, forthcoming on 

the Journal of Monetary Economics, 2004 

Spargoli, Fabrizio, and Paolo Zagaglia, “The Comovements between Futures Markets for Crude 

Oil: Evidence from a Structural GARCH Model”, unpublished manuscript, Stockholm University, 

August 2007 

Wright, Philip, The Tariff on animal and Vegetable Oils, The institute of Economics, The Macmillan 

Company, New York, 1928  

 

 

 

 

 

 

 

 

 

 

 



 13 

 

 



 

Figure 1: Plot of the data series 
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Figure 2: Structural conditional variances 
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Figure 3: Structural conditional correlations 
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Figure 4: Reduced-form conditional variances 
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Figure 5: Reduced-form conditional correlations 
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Figure 6: VIRFs for the second Gulf-war shock 
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Figure 7: 1st, 10th and 25th percentiles of the VIRF distribution 
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Figure 8: 50th, 75th and 90th and 99th percentiles of the VIRF distribution 

 

 

 


