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Abstract: 

Two real-world observations are not easily replicated in models of crime. First, 

although capital punishment is optimal in Becker’s (1968) model, it is rarely observed 

in the real world. Second, criminal procedure and the evaluation of evidence vary 

across societies and historical periods, the standard of proof being sometimes very 

high and sometimes quite low. In this paper, we develop a general equilibrium model 

of judicial procedure allowing for innocent persons being convicted. We show that the 

median voter theorem applies to this model, making judicial procedure endogenous. 

So formulated, the model can replicate both empirical observations. 
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1. INTRODUCTION 

 

In the ever-growing literature on the economics of crime, there are two important 

issues deserving more attention. One is the Becker (1968) paradox. From that seminal 

paper, it follows that capital punishment is optimal for society, even for minor crimes. 

The reason is that if punishment is sufficiently severe, no crimes will be committed, 

and no punishment will be inflicted; the government will save tax money, and social 

optimum will be attained. The paradox lies in the fact that although this result is very 

robust to the model specification, we rarely observe capital punishment in the real 

world – in particular not for minor crimes – neither across countries nor across time in 

a given country. Thus, there might be something missing in the theoretical model that 

makes it deviate from reality, and a small literature has emerged dealing with this 

issue.2 One prominent attempt to resolve the paradox was published by Stigler (1970), 

who argued that it is optimal to have a scale of punishment according to the nature of 

the crime; if there were only one type of punishment, the marginal deterrence effect 

would disappear, and a criminal engaged in a minor crime might as well commit a 

more brutal, and more profitable, crime instead.  The fallacy of this argument is 

evident: if punishment were so severe that no crimes were committed, there would be 

no need for marginal deterrence. 

 

The second issue deserving attention is that of Type II errors, i.e., the risk that an 

innocent person might be convicted (in the original Becker model, there is only Type 

I errors, i.e., the guilty criminal might escape). There is a small but growing literature 

in this field. Harris (1970) discussed how to extended Becker’s analysis by taking 

Type II errors into account. He formulated a problem where the social loss of crime, 

crime fighting and punishment should be minimized, one of the parameters 

representing the degree of legal safeguards to suspects. However, his formal analysis 

does not discriminate between errors of Type I and errors of Type II. Png (1986) not 

only mentions the occurrence of Type II errors, but also analyzes their effects on 

optimal policy, treating the burden of proof as exogenous. The same can be said of 

Tullock’s (1980) penetrating analysis of legal procedure. Kaplow and Shavell (1994, 

p. 13) go one step further by mentioning the problem of choosing an optimal burden 
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of proof, which is at the heart of the trade-off between Type I and Type II errors, but 

they do not pursue that analysis. Rubinfeld and Sappington (1987) do analyze the 

choice of standard of proof but this does not affect incentives to commit crimes and 

thus not the number of criminals in society. Andreoni (1991) endogenizes the number 

of crimes, but does not close the model completely; he assumes that the criminal’s 

gain from committing a crime, as well as the judge’s disutility from convicting an 

innocent person, are exogenous parameters.3  

 

These papers assume that the court has aversion to Type II errors. The origin of this 

aversion is, however, not explained but rather taken for granted. To analyze the trade-

off between Type I and Type II errors satisfactorily, i.e., to investigate the appropriate 

choice of criminal procedure, it is necessary to derive the court’s aversion to these 

errors from fundamentals. Since judges and juries could be seen as representing the 

population in general it is natural to employ a median-voter framework to study not 

only legislation per se, but also judicial procedure (i.e., the trade-off between Type I 

and Type II errors). In fact, such a set-up is in conformity with Becker’s 

methodological approach to explain social phenomena from individuals’ self interest, 

not from abstract moral principles. 

 

In doing so, we can also point out one possible resolution to the Becker paradox: if 

the median voter runs a risk of being innocently convicted, he or she might be 

reluctant to endorsing capital punishment. This is, however, not always the case. If 

punishments are very severe, and consequently no crimes are committed, the median 

voter does not run any risk of being innocently punished. The Type I-Type II model 

therefore needs additional features, for instance a mechanism that leads to some 

crimes being committed regardless of the punishment, in order for the median voter to 

vote against capital punishment. 

 

 

 

                                                                                                                                                                          
2 See Friedman (1999). 
3 The problem of errors of Type I and Type II also occurs in principal-agent models with testing 
possibilities. Nalebuff and Scharfstein (1987) show that high enough fines may result in a full-
information competitive equilibrium where no low-productivity individuals mimic high-productivity 
ones. This is parallel to Becker´s case of capital punishment leading to a no-crime equilibrium. 
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2. THE MODEL 

 

2.1 General Setup 

For simplicity, we study a stationary economy. There is a continuum of agents, and 

each agent chooses whether to be a worker or a criminal, thereby maximizing his 

expected utility. The proportions of workers and criminals in society are 

endogenously determined in general equilibrium. If a criminal encounters a worker, a 

robbery takes place. If a robbery has been committed, the culprit (or an innocent 

bystander) may be convicted. 

 

We assume that all individuals have identical instantaneous utility functions. 

However, they differ with respect to time preference (see below). The difference in 

time difference leads to different occupational choice; some individuals choose to be 

workers, some to be criminals. The instantaneous utility is a function of consumption, 

work effort, and pain from punishment. A person who chooses to be a criminal does 

not have any disutility from work effort. A person who is not convicted (regardless of 

whether he is guilty or not) does not suffer any pain from punishment.  

 

A worker earns )1( tw −  in each period, where w is the wage rate and t the tax rate 

(taxes are used to finance the police force and the legal system). For simplicity, we 

assume (1) that the utility function is additively separable in income and work effort, 

(2) there is no saving either by the individual or society, and (3) the number of 

working hours is exogenously given and set equal to one for convenience. Denoting 

work effort by â  and the disutility of work effort by )ˆ(aa , the instantaneous utility of 

a worker who is not robbed can, therefore, be written as )ˆ())1(( aatwu −− . For 

notational simplicity, we will write this as auaatwu −=−− )ˆ())1(( . If the worker is 

robbed, his utility is instead aaau −=− )ˆ()0( , where we have set 0)0( =u . 

 

A robber, if he meets a victim, will rob the latter of his after-tax earnings; thus the 

successful robber consumes )1( tw − . A robber who does not encounter a suitable 

victim consumes zero. Having committed a robbery, the robber may be convicted. Let 

us denote the probability of Type I error, that is, the culprit is not convicted, by 1P . 

Thus, 11 P−  is the probability of a successful robber being convicted; in that case, a 
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punishment ϕ̂  is inflicted upon him. Like the disutility of work effort )ˆ(aa , the 

disutility of punishment )ˆ(ϕϕ  enters separably in the utility function. Note that ϕ̂   

should not necessarily be regarded as a monetary fine; in order to keep ϕ̂  out of the 

government budget equation, we would rather interpret it as the pain costlessly 

inflicted upon the convicted person by the legal authorities.4 We assume that the legal 

process takes one time period, that is, a crime committed in period t leads to a 

punishment in period t+1. A successful crime thus leads to a robber’s utility 

utwu =− ))1((  in one time period, and (with probability 11 P− ) a punishment ϕ̂  in the 

next period. If δ  is the robber’s discount factor, the present value of the convicted 

robber’s utility is thus δϕϕϕδ −=−− utwu )ˆ())1(( . 

 

The probabilities that a worker meets a robber, and that a robber meets a worker, 

depend on the relative numbers of workers and robbers in society. To derive these 

probabilities, we must specify the encounter technology of our model economy. 

 

2.2 The Encounter Technology 

For Type II errors to occur, we need an encounter technology allowing for innocent 

persons being convicted. The easiest way to do this is by assuming that people 

interact in triplets. In each point of time each individual is randomly assigned to a 

triplet, with two other people in it. Thereby we achieve the simplest possible 

configuration in society that can consist of one criminal, one victim and one innocent 

bystander. 

 

Assume the proportion of criminals in the population to be c, while the proportion of 

workers is (1 – c). With no loss of generality, we normalize the size of the population 

to unity; thus c is also the number of criminals in society. Further, we assume that 

people are randomly allocated into triplets. A given triplet can alternatively consist of 

three criminals (C, C, C), two criminals and a worker (C, C, W), two workers and a 

criminal (W, W, C), or three workers (W, W, W). The order of the elements is 

immaterial to the reasoning. The probabilities of the four possible configurations are 

thus 3c , )1(3 2 cc − , 2)1(3 cc −  and 3)1( c− , respectively. 

                                                            
4 For a model where punishment does not only occur in the criminal’s utility function, but also has a 
time dimension (i. e., an incarceration effect), see Persson and Siven (2006). 
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A robbery takes place if there is at least one worker and one criminal in a triplet. This 

setup is used since it provides a simple representation of proximity. In the real world, 

a crime is often triggered by the criminal being close to the victim. And an innocent 

person may be suspected of the crime if he is close to the victim (either in a social or a 

spatial sense). 

 

In the (C, C, W) case, only one of the criminals can commit the robbery; which one is 

determined by tossing a fair coin. When the robbery has taken place, the police arrive. 

There will then be one victim (who can, by definition, not be suspected), one guilty 

criminal, and one innocent bystander (who also happens to be a professional robber, 

although innocent of this particular crime) in the triplet. 

 

In the (W, W, C) case, the sole criminal can rob only one worker. The one to be 

robbed is determined by tossing a coin. When the police arrive, there will be one 

victim, one guilty criminal, and one innocent bystander (who in this case happens to 

be a worker) in the triplet.5 

 

The police analyze the evidence, which is somewhat distorted, so it might be that the 

innocent bystander sometimes looks quite guilty. In that case, which occurs with 

probability 2P , a Type II error is committed.6 In the normal case, however, the true 

culprit is convicted; this happens with probability 11 P− . 

 

The probabilities of the two types of error depend on two things: police resources per 

crime, and judicial procedure. Police resources per crime, in turn, depend on the size 

of the tax base, the tax rate and the number of crimes committed. We will return to 

this issue in Section 3.1, where we discuss the government’s budget constraint. Here, 

it suffices to note that since the tax base and the number of crimes depend on c, we 

can regard 1P  and 2P  as functions of, inter alia, c. 

 

                                                            
5 In the (C, C, C) and (W, W, W) cases, no robbery takes place. Consequently, nobody can be 
innocently suspected, and neither Type I nor Type II errors can occur. 
 
6 The explicit modeling of the distortion of evidence will be discussed in Section 3.2. 
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Judicial procedure can be characterized by society’s method of evaluating evidence. If 

the evidence happens to be very faint compared to the stringency requirements of the 

legal system, both persons standing in the vicinity of the victim may be acquitted. 

This generally happens when society has a large aversion to Type II errors, and thus 

defines “beyond a reasonable doubt” so that 2P  is quite small. With such a stringent 

evaluation of evidence, 11 P−  will also be quite small and consequently, 1P  will be 

large. In other societies, or for other types of crimes, one may rather convict an 

innocent person than running the risk of releasing a criminal; thus both persons might 

be convicted although we know that only one of them can be guilty. For such a case, 

we have 2P  quite large. Which case should apply depends on technology and 

preferences (i.e., how dangerous to society a particular type of crime is). 

 

2.3 Individual Utility 

Let us now look at a given worker. In his triplet, the other two people will be  

• (W, W) with probability 2)1( c− . The worker will then spend the rest of the 

period unharmed, consuming all his net income. 

• (W, C) with probability cc)1(2 − . If he is robbed (which occurs with a 50 

percent probability) he cannot be convicted of that robbery. If he is not 

robbed, he will be an innocent bystander but may nevertheless be convicted of 

the robbery that took place in his triplet; this will happen with probability 2P . 

• (C, C) with probability 2c . He will then be robbed with certainty. 

 

The worker’s expected utility can then be written 

 

{ }[ ]
,)(

)(5.0)())(1(5.0)1(2)()1(
2
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2

w
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where each of the first three terms correspond to one of the three contingencies in the 

encounter technology. Note that we have added the discounted value of next period’s 

utility at the end of the expression. Rearranging the terms, the present value of the 

worker’s expected utility in a stationary equilibrium  can be written as 
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(1) [ ]ϕδ
δ 2)1()1(

)1(
1

PccaucVw −−−−⋅
−

= . 

 

The first two terms inside the square brackets stand for the expected utility of working 

in a certain period, whereas the last term represents the expected discounted utility of 

being unjustly punished in the next period. 

  

For a given criminal, the other two people in his triplet will be  

• (W, W) with probability 2)1( c− . The criminal then robs one of the workers, 

and is convicted in the next period with probability 11 P− . 

• (W, C) with probability )1(2 cc − . The criminal will then have a 50 percent 

chance of robbing the worker, in which case he is convicted in the next period 

with probability 11 P− . With a 50 percent probability, he will instead be the 

innocent bystander; he then gets no booty, but is innocently convicted in the 

next period with probability 2P .7 

• (C, C) with probability 2c . From our assumption of only one encounter per 

period, it follows that criminals cannot steal from each other (since, before 

they have encountered a worker, they have no money in their pockets). A 

criminal who meets another criminal will thus end the day empty-handed, but 

may find consolation in the fact that he cannot be innocently convicted. 

 

We can thus write the criminal’s utility as: 

 

[ ] ( )[ ]
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This can be simplified as 

 

(2) [ ])1()1()1(
1

1
21 cPPcucVc +−−−−

−
= ϕδ

δ
,  

                                                            
7 For simplicity we consequently assume that the probability of being innocently convicted is the same 
for a worker as for an (in this particular case innocent) criminal. The court is thus not taking the 
previous criminal record into account when scrutinizing evidence. 
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where, in analogy with (1), the first term within the square brackets represents the 

criminal’s expected utility of his booty, whereas the second term represents his 

expected utility from being punished in the next period (punishment being either 

deserved or undeserved). 

 

2.4 Market Equilibrium 

It is now time to specify the heterogeneity of the population. In most crime models, 

agents are assumed to differ with respect to the real wage, w. This could easily be 

done also in our model, but we have chosen another route. For simplicity, we assume 

that people have identical wages, but differ with respect to their time preference, δ , 

which simplifies the analysis in two respects. First, the robber’s booty does not 

depend on whom he robs; it will be the same for all victims. Second, we can 

characterize hard-core criminals in a simpler way than if people differed with respect 

to their wage rates. But the assumption of people differing with respect to their time 

preference rates is not made for simplicity only; we also think that it contains a certain 

element of realism. While we lack empirical studies of the rates of time preference of 

criminals versus non-criminals, the notion of some persons (for example, drug 

addicts), being more concerned about immediate satisfaction than about possible 

consequences for the future, does not seem too far-fetched. 

 

Setting cw VV = , we obtain the cut-off time preference 

 

(3) 
)1()1(

ˆ
1Pc

a
−−

=
ϕ

δ  

 

such that cw VV >  for all δδ ˆ>  and cw VV <  for all δδ ˆ< . Thus, everybody with a 

time preference rate above δ̂  will choose to be a worker, while everybody with a time 

preference rate below δ̂  will choose to be a criminal.8 This is a surprisingly simple 

                                                            
8 This follows from the fact that since ϕδ )1)(1( 1PcaVV wc −−−=− , we have that 

0/)( <∂−∂ δwc VV . 
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expression where we note that the cut-off rate δ̂  is independent of the utility function 

)(⋅u . 

 

Let us now consider the relation between c and δ̂ . If δ  were uniformly distributed on 

[ ]1,0 , then c = δ̂ , and we could substitute this into the equation cw VV =  to get rid of 

one variable. However, in addition to assuming the distribution of δ  to be 

rectangular, we introduce a mass point of measure σ  at 0=δ . This mass point 

corresponds to the number of “hard core” criminals who, since criminal process takes 

one time period, are unaffected by punishment.9 It means that the total number of 

criminals in society is given by 

 

(4) 10),1(ˆ <<−+= σσδσc . 

 

We can now set wV , as given by (1), equal to cV , as given by (2), to yield the cut-off 

rate δ̂ . Since c and δ̂  are connected through (3), we can choose which of these two 

variables we want to eliminate from the cut-off equation. It turns out to be somewhat 

simpler to eliminate δ̂ . Thus, cw VV =  and (3) implies the equilibrium relationship 

 

(3’) 
)1)()(1(

)1(

1Pcc
a

−−−
−=
σ
σϕ . 

 

This equation gives us the equilibrium relation between the severity of punishment, ϕ, 

and the number of criminals in society, c, for given values of the technological 

parameters (a and σ ), and a given value of the variable 1P  representing the legal 

system. For the rest of the paper, it is convenient to work with this equation rather 

than with its equivalent (3). In the Appendix (section 1) we show that for every value 

of ϕ it has at least two roots c, the larger of which is the unstable one.  

 

2.5 Political Equilibrium 

                                                            
9 The mass point serves the purpose of ruling out a zero-crime equilibrium. Another way of achieving 
the same goal would be to build a model where some random events occur that look like crimes even if 
they are not (like a worker dropping his wallet). For a discussion of such a model – the empirical 
relevance of which may perhaps be discussed – see footnote 18 below. 
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We will now demonstrate that the median voter theorem applies to this model. Let us 

first multiply each agent’s utility (as expressed by (1) for workers and (2) for 

criminals) by δ−1 . This is just a linear transformation, which affects neither the 

individual’s ranking of different policy alternatives nor his marginal rates of 

substitution. With this transformation, and substituting (3’) into (1), we immediately 

see that worker’s preferences can be written in the form )()( qHqJVw ⋅+= δ . Here, q 

is a vector of policy variables common to all individuals (in this case, t, c, ,1P and 

2P ; note that ϕ  has been eliminated by using the equilibrium condition (3’)), while 

δ  is the worker’s individual rate of time preference. Thus, workers have so-called 

intermediate preferences, and if only workers were allowed to vote, the median voter 

theorem would immediately apply.10 

 

The preferences of criminals, represented by (2) multiplied by δ−1  (and taking (3’) 

into account in order to eliminate ϕ ), can be similarly written in the form 

)(~)(~ qHqJVc ⋅+= δ . They also satisfy the condition for intermediate preferences, 

which means that if only criminals were allowed to vote, the median voter theorem 

would apply. 

 

The problem arises since there are two groups of individuals, with different indirect 

utility functions, and the individual can endogenously switch between these groups 

depending on the policy vector q. It is well known in the literature that the existence 

of such groups may cause problems in political-economics models.11 If there were, for 

instance, an incentive for the extremes of each group to form a coalition, the median 

voter theorem would not apply. In the Appendix (section 2) we show that if the 

median voter is a worker, such coalitions cannot occur in our model. Thus, the median 

voter will be the decisive voter, and in the policy analysis below, we will study the 

policy vector ),,,( 21 PPtq m ϕ≡  preferred by the median voter. Since ϕ  and c are 

related via (3’), we could as well regard ),,,( 21 PPctq M ≡  as the policy vector; in 

fact, this is somewhat more convenient and will therefore be employed for the rest of 

the paper. 

 

                                                            
10 Cf. Persson and Tabellini (2000, pp. 25-28). 
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Substituting ϕ, as given by (3’), into the worker’s utility (1), and noting that the 

median voter’s time preference is )1/()5.0( σσδ −−=m , gives us the median voter’s 

utility in general equilibrium:12 

 

(5) �
�

�
�
�

�
+

−
⋅

−
−⋅−−= 1

1
21

2
)1(ˆ

1

2

P
P

c
c

aucVmed σ
σ

. 

 

In political equilibrium, expression (5) is maximized with respect to the policy 

variables ,,, 1Pct  and 2P . 

 

2.6 Will there be Capital Punishment in Political Equilibrium? 

At this early stage, we can already see the answer to one of the issues raised in the 

Introduction: why is capital punishment rarely observed in the real world? From 

Becker’s (1968) model, it follows that the punishment should be set at a maximum, 

even for minor offences. Still, we rarely observe capital punishment in the real world 

– not even for the most serious of crimes. The reason for this discrepancy between 

Becker’s result and the observed reality has given rise to a minor literature in the 

economics of crime.13 Our model can be used to shed new light on that issue. 

 

By the equilibrium relation (3’), we have eliminated ϕ from our notation, and instead 

we treat c as a policy variable. Equation (3’) tells us, however, what value we should 

assign to ϕ to obtain the particular value of c that maximizes (5). The question of 

capital punishment could therefore be phrased in terms of c instead of ϕ. Thus 

formulated, the question boils down to asking whether ϕ should be set so as to drive c 

down to σ . We see from (5) that this is not optimal for the median voter. Assume that 

t, 1P , and 2P  are given, and furthermore have values such that ∞<−< )1/(0 12 PP . 

From (5) we then see that setting σ=c  means that the median voter’s utility is minus 

infinity. Thus the median voter does not want σ=c , and we have therefore proved 

that in a model with a non-zero probability of Type II errors, there will be no capital 

punishment in political equilibrium. 

                                                                                                                                                                          
11 Cf. Roine (2006). 
12 For convenience, we have multiplied the utility by mδ−1 . Thus, med

mm VV ˆ)1( =− δ . 
13 See, for instance, Friedman (1999). 
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Note that the mere possibility of Type II errors is not sufficient to rule out capital 

punishment. We also need a mechanism leading to some crimes being committed 

even if ϕ is very high. If not, it would be optimal to actually drive crime down to zero; 

if no crimes occur, no innocent persons could be innocently convicted. In the triplet 

model, this function is performed by the spike σ ; if some individuals are never 

deterred by the prospect of a future punishment, there will always be some crime, and 

thus any innocent median voter runs the risk of being punished. In fact, setting 0=σ  

in (5), we cannot see that driving c down to σ  results in an infinitely negative utility 

for the median voter, since 1lim
0

=
→ c

c
c

. 

 

We have here assumed that the distribution of the rate of time preference is connected 

on [0, 1]. If the distribution is not connected, i.e., if it consists of a spike of measure σ 

at 0 and a rectangular distribution on [m, 1], where m > 0, there is nobody with a 

),0( m∈δ . In such a case there is no reason to have a punishment ϕ  higher than what 

is necessary to drive down crime to its absolute minimum (= σ). Thus there is no need 

for capital punishment, regardless of whether Type II errors have been introduced into 

the model or not.14 What we have shown above is that even if the distribution of δ is 

connected, capital punishment will not be optimal. 

 

Naturally, the encounter technology with triplets and a spike σ  is a stylized parable, 

intended to make the notion of proximity analytically tractable. There are other, 

equally plausible, technologies leading to similar conclusions.15 Which setup is the 

most suitable depends on the question asked and is ultimately an empirical question. 

 

 

 

 

                                                            
14 With such a non-connected distribution for δ, the expression for the median voter’s utility, i.e., the 
equivalent of equation (5), becomes 

 �
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It is evident that this expression does not necessarily go to minus infinity as σ→c . 
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3. THE CONVICTION TECHNOLOGY 

 

3.1 The General Form of the )( 12 PP  Function 

Before working out the grand maximization of (5), it is necessary to take a closer look 

at the conviction technology, represented by probabilities 1P  and 2P . All we know so 

far is that there is a trade-off between these probabilities. This trade-off is illustrated 

in Figure 1 and has the following properties: 

 

• 2P  is monotonically decreasing in 1P  

• the trade-off becomes more favorable if the amount of police resources per 

crime increases, as illustrated by the dashed curve in Figure 1 

• 02 =P  for 11 =P  and 12 =P  for 01 =P . 

 

(Figure 1) 

 

While the first two points are rather self evident,16 the third deserves some discussion. 

Recall our basic encounter technology with three persons in a triplet: when the police 

arrive, there is one person lying on the ground, obviously being the victim, and two 

bystanders both claiming innocence. If there is any uncertainty as to which of the two 

bystanders actually committed the crime, there is only one way of avoiding Type II 

errors, namely to always acquit both of them. Likewise there is only one way of 

completely avoiding Type I errors, namely to always punish both bystanders. 

 

The amount of police resources per crime is equal to the total tax revenue )1( ctw −  

divided by the number of crimes. Since the population is normalized to unity, the total 

number of triplets is 1/3. There is one crime in every triplet of type (C, C, W) and (W, 

W, C), and there are [ ] )1()1(3)1(3
3
1 22 cccccc −=−+−  of these. Thus, the amount 

of police resources per crime is ctw / , and if policemen (who are assumed to be hired 

outside the model to keep the number of professions down) have the same wage rate 

                                                                                                                                                                          
15 Cf. the model sketched in footnote 18. 
16 For a discussion of a model where at a constant police budget the probability of detection declines 
when the number of criminals increases, see Sah (1991). 
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as workers, the number of policemen per crime is ct / . We can thus write the error 

function as 

 

(6) )/,( 122 ctPPP =  

 

with 

 

(7) .0,0,0 22

1

2 >
∂
∂<

∂
∂<

∂
∂

c
P

t
P

P
P

 

 

This is the function depicted in Figure 1; if 1P  is changed, we move along the curve, 

and if ct /  is increased, the curve is bent inwards (according to the dashed curve). 

 

The median voter will thus choose values for t and c, such that (5) is maximized.17 

Simultaneously, he chooses a value of 1P , such that the ratio )1/( 12 PP −  be minimized. 

This latter choice is equivalent to choosing the appropriate meaning of the phrase 

“proved guilty beyond a reasonable doubt”, where “reasonable” means trading Type I 

errors against Type II errors. Since this trade-off only occurs at one place in the 

objective function (5), we see that regardless of the other policy variables, the optimal 

burden of proof is always equivalent to minimizing the ratio )1/( 12 PP − . Naturally, 

this result is model-specific, but it is somewhat more general than one may first 

believe.18 

 

                                                            
17 While the tax rate t is a policy variable directly at the policy-maker’s disposal, the number of 
criminals c is only indirectly so. Choosing c means, by (3’), choosing a punishment ϕ consistent with 
the desired value of c. Note that ϕ is a function of c, but the reverse does not hold (there may be several 
values of c for each value of ϕ). 
18 In fact, the ratio occurs in several other models. For instance, we can conceive of a model where 
individuals meet in duplets, and where a worker can lose his money in two ways: either by simply 
dropping his wallet (with a given probability λ ), or by being robbed if the other person in the duplet 
happens to be a criminal. The police cannot discriminate between these two events and thus, the other 
person in the duplet may be innocently suspected of having robbed the worker. Such a model, with 
separable utility, also gives rise to a median-voter utility function where the error probabilities occur in 
the form of a ratio )1/( 12 PP − . This model represents a situation where there is uncertainty of whether 
a crime has been committed or not – a feature not uncommon in the history of crime (c.f., for instance, 
the famous Bülow case). 
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Depending on the curvature of the )( 12 PP  function we could easily get corner 

solutions for the judicial procedure. As seen for Figure 1, a necessary condition for an 

inner solution ( 10 1 << P , 10 2 << P ) is that )( 12 PP  contains both concave and 

convex segments.19  

 

3.2 An Explicit Conviction Technology 

So far, we have only discussed 1P  and 2P  in general terms. Behind these abstract 

probabilities there is, however, a specific situation, which will be analyzed within the 

context of a signaling problem. 

 

When a crime has taken place in a given triplet, the police arrive to find two persons 

standing there, next to the victim. One of these is the culprit, and one an innocent 

bystander – who may be a robber by profession (if the triplet is of the (C, C, W) type), 

but who happens to be innocent in this particular case. Each of these two persons 

sends out a signal; the culprit’s signal is “1”, while the bystander’s signal is “0”. The 

police, however, receives only a distorted version of these signals, i.e., “ ε−1 ” from 

the culprit, and “ε ” from the bystander. The random distortion ε  is drawn from a 

known probability distribution with a density function )(εf . The court looks at the 

signal received and weighs the evidence according to the following decision rule: If 

the signal received is below a threshold s, the person who emitted the signal is 

acquitted. If the signal received is equal to or above the threshold s, the person is 

convicted. 

 

The critical value s represents the strictness of legal procedure. It is to be optimally 

chosen in order to maximize the median voter’s utility (5). Different values of s attach 

different meanings to the phrase “proved guilty beyond a reasonable doubt” and thus 

correspond to different points on the ( 1P , 2P ) curve. For a given s, we have 

 

(8) )Pr(),1Pr( 21 sPsP ≥≡<−≡ εε . 

 

                                                            
19 This is seen by drawing a half-ray from the point ( 0,1 21 == PP )  to any point on the curve in 

Figure 1. )1/( 12 PP −  is minimized when the (numerical value of the) slope of that half-ray is 
minimized. 
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A high value of s means that the court requires a very strong signal in order to convict 

a person; thus the probability of a Type II error is low while the probability of a Type 

I error is high. Similarly, a low value of s means that the court is not scrutinizing the 

evidence very carefully; the probability of a Type II error is thus higher, and the 

probability of a Type I error is correspondingly lower. This is why we could regard 

2P  as a function of 1P  in Section 3.1 above (where s had not yet been introduced in 

the notation). Note that if, in his optimization, the median voter chooses a low value 

of s , it may frequently be the case that both persons in the triplet are convicted, 

although we know that only one could possibly be guilty of the crime. Such cases are 

well documented in the history of criminal procedure. Similarly, if s  is relatively 

high, which seems like the normal case in modern Western legal systems, both 

persons would often be acquitted, although we know that one of them must be guilty. 

 

A simple way of obtaining a function with both convex and concave segments, like in 

Figure 1, is to assume the density function to be bimodal. To analyze this feature in a 

simple fashion, we take as our point of departure the density function 

 

(9) [ ]1,0,)1)(1()(
~ ∈−+= εεαε αf . 

 

This particular parametrization is not chosen for its realism, but for its simplicity. For 

instance, by (8), it yields very simple expressions for the Type I and Type II 

probabilities: 

 

 
.)1(

,
1

2

1
1

α

α

+

+
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=

sP
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Parameter α  is an index of skewness. For 0<α , the density function is an upward-

sloping function of ε ; it displays a negative skewness (note that if 0<α , then we 

must impose the additional constraint that 1−>α  for f
~

 to be a density function). For 

0=α , the density function is rectangular (skewness = 0), and for 0>α , it displays 

positive skewness. For each of these cases, there is a plausible story. The case of a 

positive skewness corresponds to the normal case where the distorted signal ),1( εε−  

received by the police is likely to be rather similar to the original signal (1, 0) sent out 
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from the triplet. The negatively skewed density represents the case where the offender 

manipulates the evidence in order to make himself look more innocent, and the 

bystander look guiltier, in the eyes of the police. This is the typical case in crime 

fiction – where even the physical environment in our model (a triplet containing one 

victim, one culprit and one innocent bystander) is not a mere parable for more 

realistic circumstances, but has a stark resemblance to the scene of the crime in 

classical crime novels. 20 

 

Now, we can conceive of a case where the police receive two stories, one from the 

offender (who tries to manipulate the evidence) and one from the bystander (who 

presumably tells a story closer to the truth). Thus, the police hear two versions of 

what has happened in the triplet. The two versions are somewhat distorted; the 

bystander might for some purely random reason also display personal traits  making 

him seem suspicious in the eyes of the police. The stories are therefore represented by 

two probability densities, both of the general form (9), but one with positive and the 

other with negative skewness. The consolidated picture the police obtain is a convex 

combination of the two probability densities. We denote the weight attached by the 

police to the story from the innocent bystander by k and that attached to the story from 

the culprit by 1 – k. Thus, the probability density function of ε  can be written as a 

weighted sum of two monotone functions: 

 

 ,10,)1)(1()1()1)(1()( 21
21 <<−+⋅−+−+⋅= kkkf αα εαεαε  

 

where 01 >α  and 02 <α . This function yields the following expressions for the Type 

I and Type II probabilities: 

                                                            
20 In our model, the culprits do not really have any incentive to cast blame on others; all they want is to 
make themselves look innocent, i.e., to make their signal )1( ε−  fall below the critical threshold s. 
But since we have assumed the disturbance to be the same for the two persons, such a policy 
automatically increases the bystander’s signal, ε ; thus, there is a built-in incentive to cast blame on 
others. There are many other, equally plausible, model formulations dealing with this issue in different 
ways. For instance, it may be assumed that the culprit’s and the bystander’s signals are subject to 
different distortions, and that the police will thus observe ),1( 01 εε− , where 1ε  and 0ε  are drawn 

from different probability distributions. Further, the court’s decision rule affects the agent’s incentive 
to cast blame on others. For instance, if, instead of looking at absolute signals ),1( 01 εε−  and 

comparing them to the threshold s, the court looks at relative magnitudes (for example, by always 
convicting the person with the highest signal), it can benefit the perpetrator to cast the blame on the 
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Now, the shape of the density function is endogenous; it depends on the amount of 

police resources assigned to the investigation of a particular crime. A simple way to 

represent this is to assume that k is increasing in the amount of police resources 

assigned to a particular crime; with more police resources, it will be more difficult for 

the true culprit to cast the blame on the innocent bystander. We assume the amount of 

police resources to be the same for all crimes. As noted in Section 3.1, the number of 

policemen per crime is t/c. Thus, we want k to be increasing in t/c; a simple function 

satisfying this, as well as the condition that 10 ≤≤ k , is 

 

(11) ctectk /1)/( β−−= , 

 

where β  is a productivity parameter.21 Inserting this into (10) above closes the 

model; maximizing the median voter’s utility (5) subject to (10) and (11) yields the 

optimal values of the policy parameters c, t, and s. 

 

 

4. SOME NUMERICAL PROPERTIES 

 

Having parameterized the model in the way outlined above, numerical solutions are 

easily obtained. For instance, assuming linear utility )1())1(( twtwu −≡− , and 

choosing the parameter values a = 1, w = 10, σ = 0.01, β = 1, 51 =α  and 5.02 −=α , 

yields the following solution for the endogenous variables: 

 

Criminal procedure: s = 0.786 

Tax rate: t = 0.032 

Punishment: ϕ = 471 

                                                                                                                                                                          
bystander. The optimal choice of a decision rule is an interesting extension of the model that will not be 
further pursued here. 
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Number of criminals: c = 0.013 

Probability of Type I Error = 0.291 

Probability of Type II Error = 0.040 

 

This particular parameter configuration thus yields a criminal procedure that seems 

rather similar to that of modern Western societies, with a high value of s and the 

probability of Type II errors correspondingly close to zero. Whether the values chosen 

for the exogenous parameters are realistic or not is beyond the scope of this paper; the 

above solution is intended as an illustration (and an existence proof) only. 

 

Trying other configurations shows that criminal procedure is sometimes very sensitive 

to changes in the exogenous parameters. For one configuration we may get an s close 

to unity, while for a slightly different configuration we get an s close to zero. In terms 

of parameter values, there may thus be only a small step between the judicial systems 

of Western society on one hand and those of medieval Europe, or of Stalinist Russia, 

on the other hand.22 An interesting question, also beyond the scope of this paper, is 

whether actual changes in the legal system – for instance, the increase in s and the fall 

in ϕ  that we have witnessed since the Middle Ages – can be replicated in the context 

of the present model, by entering realistic figures for, e.g., real wage growth, police 

productivity, etc. 

 

 

5. CONCLUDING COMMENTS 

 

Let us first summarize our results. We have developed a general equilibrium model of 

crime, with a conviction technology allowing for innocent persons being convicted. In 

such a model, not only the severity of punishment and the amount of police resources, 

but also criminal procedure, can be treated as endogenous. We have also shown that 

although there are two types of agents in the model, with individuals endogenously 

switching from one type to another, the median voter theorem still applies. Solving 

                                                                                                                                                                          
21 There are many other ways of modeling this. For instance, instead of assuming k to be a function of 
t/c, we could assume that parameters 1α  and 2α  are functions of t/c. 
22 Granted, neither punishment in medieval Europe nor Stalinist Russia was the results of a median 
voter’s optimization. These terms are used here only to give a local habitation and a name to theoretic 
properties of our model. 
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the model, it turns out that capital punishment is not optimal. This resolution of the 

Becker paradox is not only due to the possibility of errors of Type II. In addition, a 

hard core of unalterable criminals is required. Paradoxically, the existence of such a 

hard core thus makes it optimal to have more lenient punishments in society. It is 

therefore possible that the movement towards a more liberal policy observed in many 

countries over the last century is due to the existence of such a hard core being 

increasingly acknowledged. One would think that the introduction of more lenient 

punishment would be the result of policy-makers thinking that people can easily be 

deterred – but it might as well be the other way around. 

 

A strategic simplification in our model lies in the particular encounter and conviction 

technologies used. As for the former, we used the setup with triplets as the simplest 

way of modeling proximity. For the conviction technology, it would be an interesting 

task to investigate other types of signaling mechanisms, decision rules for the courts, 

and technologies by which police resources affect the probabilities of the two error 

types. This aspect points in two different directions. First, it is not evident that police 

resources should be evenly spread across all crimes. Concentrating resources to a few 

crimes, while disregarding the others, might instead be an optimal way of trading 

Type I errors against Type II errors. The simplest way of doing this would be by a 

purely random device: the police only investigate x percent of all crimes, while 

writing off the rest (this is a behavior we sometimes seem to observe in the real 

world). A more intriguing policy would be to condition police resources on some 

observable feature, like the signal received (1-ε  for the culprit and ε  for the innocent 

bystander). The decision rule would then be to concentrate resources to those crimes 

where the observed signal is particularly strong (or weak). Furthermore, punishment 

could also be a more general function of the signal received, and not only the simple 

step function ϕ = 0 for signal < s and ϕ  = constant for signal > s.  

 

Second, it would be tempting to assume that police resources are primarily 

concentrated to individuals with a previous record of criminal activities. Such a 

formulation would, however, introduce a state variable into the model and thus make 

the analysis much more complicated. Accepting that additional complication opens a 

rich field for future research. For instance, not only could police investigations be 
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made contingent on the individual’s track record, but so could criminal procedure. In 

our notation, the optimal threshold s would thus be different for different persons – a 

feature that is not allowed in modern Western societies (at least not officially), but is 

well known from other historical periods and other societies. 

 

Let us finally say a few words about empirical testing. In the real business cycle 

literature, the point of departure is a stylized fact observed in the real world, for 

instance a positive correlation between two macroeconomic variables. The issue is 

then whether one can construct a general equilibrium model such that, when exposed 

to a particular set of disturbances, it would generate a similar correlation between 

these variables. This would, in principle, also be possible in the economics of crime. 

For instance, if we observed that the severity of punishment (ϕ ) is positively 

correlated with procedural strictness (s), across countries or over time, we would ask 

whether there is some stochastic process of disturbances in the deep parameters of our 

model that would generate the same correlation. Unfortunately, most of the variables 

used in the economics of crime are only observable with great difficulty. Although we 

may have a feeling for some societies employing a more rigorous standard of proof, 

or providing more severe punishment than others, it would be very costly indeed to 

provide hopeful researchers with reliable data on these variables. These costs in 

themselves constitute a major explanation why there is a trade-off between Type I and 

Type II errors – and why this trade-off, although difficult to quantify, is so important 

for our understanding of society.
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APPENDIX 

 

1. Some Properties of the General Equilibrium Solution 

In this appendix we will analyze the general properties of equation (3’). First, we note 

that the ϕ function has two asymptotes where ∞→ϕ , namely one for 1→c  and one 

for σ→c . Its general shape is depicted in Figure A1.23 From the existence of the two 

asymptotes, and the fact that ϕ is a continuous function, we know that for any value of 

ϕ such that (3’) has a solution σ < c < 1, there must be at least two solutions24 (there 

could be more than two solutions, due to the 1P  function). Rearranging and 

completing the square terms, (3’) could be written as 

 

(A.1) 
ϕ

σσσσ
)1(
)1(
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)1(

2
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−−−−±+= , 

 

where the expression under the root sign must be non-negative for a real solution to 

exist. Note that 1P  is a function of c. Thus, (A.1) is not a closed-form solution to (3’); 

it merely characterizes the solution. We will use this characterization to show that 

(disregarding the minimum point in Figure A1, where the two roots coincide) at least 

one of the solutions satisfies 2/)1( σ+<c . 

 

(Figure A1) 

 

If 1P  had merely been a constant, then it would immediately have been evident from 

(A.1) that one root satisfies 2/)1( σ+<c . But since 1P  is a function of c, this 

requires some more consideration. Note, however, that if we can show that there 

exists a solution associated with the minus sign in (A.1), then we have proved our 

conjecture.  

                                                            
23 There might be some wiggles at the bottom of the curve, corresponding to additional roots due to the 
non-linearities caused by the )(1 cP  function. We have, however, performed a large number of 
numerical simulations of the model (cf. Section 4) without detecting any such wiggles. All additional 
roots, in excess of  those depicted in Figure 1, occur outside the admissible domain 1≤≤ cσ . 
24 The feed-back effects of general equilibrium models of crime often generate multiple solutions in the 
fraction of criminals; see for example Murphy et al. (1993), Huang et al. (2004) and Burdett et al 
(2004). 
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Assume that there exists a solution 2/)1(1 σ+>c . This solution must therefore be 

associated with the plus sign in (4’) and it is then straightforward to show25 that there 

cannot exist an additional root 2/)1(2 σ+>c . Since we know that (3’) has at least 

two roots, there must be at least one root associated with the minus sign in (A.1). This 

proves our conjecture: there exists at least one root 2/)1( σ+<c . Further, the roots 

must be located in the fashion depicted in Figure A1, with the minimum point of the 

)(cϕ  curve located to the left of the 2/)1( σ+  line. 

 

The model thus has (at least) two solutions: one equilibrium with many criminals (a 

high c), and one equilibrium with few criminals (a low c). Since all parameter values 

are the same, the two equilibria differing only by the former having more criminals 

and a lower GDP, it is tempting to assume that such an equilibrium can never be 

efficient. This is not true, however; the equilibrium with a high c means that relatively 

few crimes are committed (since there are so few potential victims). Thus, the 

probability of being innocently convicted is relatively low in such an equilibrium, and 

we cannot a priori rule out the possibility of this dominating over the higher 

probability of being robbed (for a worker) or the lower probability of finding a victim 

(for a criminal). However implausible it may sound, we cannot therefore say that the 

equilibrium with a low c is always preferred to that with a high c. 

 

Instead, we rely on a stability argument to rule out the equilibrium with a high number 

of criminals. We will show that if there exists a root 2/)1( σ+>c , then that root 

must be unstable.26 In our the paper, we therefore only consider equilibria with a low 

c, characterized by .2/)1( σ+<c  Since σ , the number of hard criminals is assumed 

to be quite small, we will only consider solutions27 such that 0 < c < ½. In fact, in the 

numerical simulations in Section 4, c will be in the order of magnitude of a few 

                                                            
25 The expression under the root sign in (A.1) is decreasing in 1P , while 1P , in turn, is increasing in c 

(cf. section 3.2, where we explicitly formulate the 1P  function). Thus, the right-hand side in (4’) is 
decreasing in c. If a solution c > (1 + σ)/2 exists, it must satisfy (A.1) with the plus sign. Increasing c 
somewhat will increase the left-hand side, while decreasing the right-hand side of (A.1), and vice versa 
for reducing c. Thus, if there is a solution c > (1 + σ)/2, no other such solution can exist. 
26 For a similar result in a different model of crime and punishment, see Persson and Siven (2006). 
27 If there are multiple stable equilibria, there must be some coordination of expectations to drive the 
economy towards one of these. 
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percent.28 This has implications for the political equilibrium to be discussed in the 

next section; it means that the median voter will always be a worker. 

 

From equations (1) and (2), we see that the utility difference between being a criminal 

and a worker, for an individual with time preference δ , is 
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Let us now look at the marginal individual, i.e., the individual with a time preference 

rate, δ~  such that there are exactly c individuals with δδ ~≤  and (1 – c) individuals 

with δδ ~≥ . Thus, we know from (3) that )1/()(
~ σσδ −−= c . Note that if c is the 

equilibrium c, i.e., one of the roots of equation (3’), then δδ ˆ~ = , where δ̂  is the cut-

off rate defined by )ˆ()ˆ( δδ wc VV = . So far, however, c could be any number, such that 

1≤≤ cσ . 

 

Assume that there is a dynamic adjustment such that if the marginal individual finds it 

more attractive to be a criminal than a worker, i.e., if 0)
~

( >δF , then the number of 

criminals will increase: 
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~
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where h(.) is an increasing function. For the model to be stable, a larger number of 

criminals should mean a lower utility differential )
~

(δF  for the marginal individual. 

Approximating )
~

(δF  around the equilibrium δ̂  yields 
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Since 0)ˆ( =δF  by the definition of δ̂ , we have 

                                                            
28 Note, however, that this refers to equilibrium values of c; for a full analysis, we have to compare out-
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If we can show that 0
~

/)ˆ( >∂∂ δδF , we then know that in a small neighborhood of δ̂ , 

any  δδ ˆ~ >  will continue to increase further and further away from δ̂ . Thus, the root 

c associated with δ~  by the relation )1(
~ σδσ −+=c  will be unstable. 

 

After some calculation, and taking into account that 0)ˆ( =δF , we have 
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We know that 0/1 >∂∂ cP ; thus the first term within square brackets is always 

positive. The second term is positive if 1ˆ2 >δ . Since )1/()(ˆ σσδ −−= c , this 

condition is equivalent to 

 

2
1 σ+>c . 

 

This completes our proof: if equation (3’) has a root larger than 2/)1( σ+ , that root 

must be unstable. 

 

2. The Median Voter Theorem 

When proving that the median voter will be the decisive voter in this model, we will 

study two policy vectors: mq , which is the policy vector preferred by the median 

voter, and q, which is an arbitrary policy vector. By equation (4’), we only deal with 

solutions of the model such that c < ½, which means that the median voter will always 

be a worker. 

 

By the definition of mq , we have 

                                                                                                                                                                          
of-equilibrium values, too. 
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 )()()()( qHqJqHqJ mmmm ⋅+≥⋅+ δδ , 

 

where the J and H functions are defined by the worker’s utility function (1), 

multiplied by )1( mδ− , and where mδ  is the median worker’s rate of time preference. 

This expression can be written as 

 

(A.2) [ ])()()()( mmm qHqHqJqJ −≥− δ . 

 

Let us first look at a q, such that .0)()( ≤− qJqJ m  This means that the right-hand 

side must also be non-positive. Since mδ  is a positive number, inequality (A.2) will 

also hold for all mδδ ≥  (note that everyone with a mδδ ≥  is also a worker). Thus, 

for all q such that 0)()( ≤− qJqJ m , all individuals with a time preference mδδ ≥  

will side with the median voter if confronted with the two policy alternatives, q and 
mq . Since these individuals constitute 50% of the population, the median voter’s 

preferred policy mq  will be a Condorcet winner. 

 

Let us now turn to policies q, such that 0)()( ≥− qJqJ m . This case is slightly more 

complicated than that above, and it is helpful to graphically illustrate the various 

combinations of time preference rates on [0, 1]. In Figure A2, we show the median 

voter’s time preference mδ , the time preference qmδ̂  of an individual who is 

indifferent between being a worker and a criminal if the median-voter’s preferred 

policy mq  is implemented, and the time preference qδ̂  of an individual who is 

indifferent between being a worker and a criminal, if an arbitrary policy q is 

implemented. Since we here only deal with the case where the median worker is a 

worker, we have that m
qm δδ <ˆ . We first assume that qmq δδ ˆˆ < , and will deal with the 

opposite case later. 

 

 (Figure A2) 
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We will now study individuals in all three line segments to the left of mδ  in Figure 

A2. Let us first look at an arbitrary person with a δ  such that m
qm δδδ ≤≤ˆ . This 

person will be a worker both at q and mq . Whether he will side with the median voter 

depends on the sign of the expression  

 

 [ ])()()()( qHqJqHqJ mm ⋅+−⋅+ δδ . 

 

 

This can be written as  

 

(A.3) [ ])()()()( qHqHqJqJ mm −⋅+− δ . 

 

By (A.2) we know that this is non-negative for mδδ = . By assumption, 

0)()( ≥− qJqJ m . If the expression within square brackets in (A.3) is also non-

negative, then the proof is complete; expression (A.3) is non-negative. If the 

expression within square brackets is negative, we know from (A.2) and the fact that 

mδδ <  that (A.3) must still be non-negative; thus the person with [ ]m
qm δδδ ,ˆ∈  will 

support the median voter’s preferred policy. 

 

Let us now look at the intermediate line segment in Figure A2. We thus deal with a 

person with a δ  such that qmq δδδ ˆˆ ≤≤ , i.e. who will be a worker at q, but a criminal 

at mq . If such an individual is to support the median voter’s preferred policy against 

any policy q such that 0)()( ≥− qJqJ m , then the expression 

 

(A.4) [ ])()()(~)(~ qHqJqHqJ mm ⋅+−⋅+ δδ  

 

must be non-negative. Here, the J~  and H~  functions are defined by the criminal’s 

utility function (2), multiplied by )1( δ− . To show that (A.4) is, in fact, non-negative, 

we first need some properties of the J , H,  J~  and H~  functions. Since the switch-
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point individual qmδ̂  is indifferent between being a criminal and a worker at mq , we 

have 
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This expression, together with the definitions of the J and J~  functions by (1) and (2), 

gives us 
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We substitute (A.5) into (A.3) to obtain 
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The first term in this expression (within square brackets) is obviously non-negative by 

(A.2) and the fact that mδδ < . The second term is non-negative, since qmδδ ˆ< . Thus, 

expression (A.4) is non-negative, which means that a person on the line segment 

[ ]qmq δδ ˆ,ˆ  in Figure A2 will also support the median voter’s preferred policy. 

 

Finally, we look at a person with a δ , such that qδδ ˆ0 ≤≤ . This is an individual who 

will be a criminal at both q and mq . For such a person to prefer mq  to an arbitrary 

policy vector q such that 0)()( ≥− qJqJ m , the expression 

 

(A.6) [ ])(~)(~)(~)(~ qHqJqHqJ mm ⋅+−⋅+ δδ  

 

must be non-negative. To show that this is indeed the case, we first note that for 

individual qδ̂ , who is indifferent between being a criminal and a worker at the policy 

vector q, the following must hold: 
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 )(ˆ)()(~ˆ)(~ qHqJqHqJ qq δδ +=+ . 

 

This, together with (1) and (2), means that 

 

(A.7) 
q

a
qHqHaqJqJ

δ̂
)()(~,)()(~ −=+= . 

 

Inserting this into (A.6), taking account of (A.5), and rearranging terms, yields 

 

 ( )[ ]
�
�

�

	






�

�
−+−+−

qmq

mm aa
qHqHqJqJ

δδ
δδ ˆˆ)()()()( . 

 

The first term (within square brackets) is non-negative by (A.3). The sign of the 

second term depends on whether qmq δδ ˆˆ < . But we see that for 0=δ , the sign of that 

term is irrelevant to the sign of (A.6). Further, if we let δ  increase from zero to qδ̂ , 

the sign of (A.6) is not affected either, since we have proved above that a person at 

the switch-point qδ̂  will prefer mq  to q. Thus, letting δ  increase will not cause (A.6) 

to change signs. Accordingly, (A.6) is non-negative; an individual with a time 

preference rate of δ  in the left line segment of Figure A2 will prefer mq  to any other 

policy q, such that 0)()( ≥− qJqJ m . 

 

For the parameter configuration in Figure A2, we have thus shown that the median 

voter’s preferred policy will be a Condorcet winner over all other policies q such that 

0)()( ≥− qJqJ m . It now remains to show that this is also the case if we change the 

order of qδ̂  and qmδ̂ , so that qmq δδ ˆˆ >  as displayed in Figure A2.  This is 

straightforward; for the rightmost (i.e., qδδ ˆ≥ ) and leftmost (i.e., qmδδ ˆ≤ ) line 

segments, the proof will be the same as before (note that we just showed that it is 

immaterial for the sign of (A.6) whether qmq δδ ˆˆ > . For the intermediate case (i.e., 

qqm δδδ ˆˆ ≤≤ ), we want to investigate the sign of 
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(A.8) [ ])(~)(~)()( qHqJqHqJ mm ⋅+−⋅+ δδ . 

 

Taking account of (A.7), this can be written as 

 

 ( )[ ]
�
�

�

	






�

�
−+−+− 1ˆ

1
)()()()(

q

mm aqHqHqJqJ
δ

δ . 

 

The first term is non-negative by (A.3), while the second term is non-negative since 

1ˆ ≤qδ . Thus (A.8) is non-negative; the policy vector mq  will be a Condorcet winner 

also in this case. 

 

 (Figure A2) 
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   Figure 1: The general shape of the 21 , PP  function.  
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Figure A1: The image of equation (3’) in (c, ϕ) space. 

c 

ϕ 

σ 1 (1 + σ)/2 
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 Figure A2: Various combinations of discount factors on [0, 1]. 
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