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1 Introduction

To handle nontransitive indi®erence relations, Luce [5] introduced his well-known thres-

hold model in which a decision maker prefers one outcome over another if and only if the

increase in utility exceeds a certain nonnegative threshold. Formally, denoting the set of

outcomes by X, strict preference by Â and indi®erence by », each x 2 X is assigned a

utility u(x) and a threshold t(x) ¸ 0 such that for all x; y 2 X:

x Â y , u(x) > u(y) + t(y)

x » y ,
(
u(x) · u(y) + t(y);
u(y) · u(x) + t(x):

In this note, also incomparability between outcomes and nontransitivity of strict prefer-

ences is allowed. Incomparabilities arise if the decision maker is not capable to compare

outcomes, ¯nds it unethical to do so, or thinks that outcomes are comparable, but lacks

the information to do so. Fishburn [4] motivates nontransitive preferences. In this case

the double implications above are replaced by single implications, so that we want for all

x; y 2 X:

x Â y ) u(x) > u(y) + t(y)

x » y )
(
u(x) · u(y) + t(y);
u(y) · u(x) + t(x)

Our main theorem gives necessary and su±cient conditions for the existence of functions u

and t as above on a broad class of preference structures over a countable set of alternatives.

As a corollary, a representation theorem of interval orders (See [1] and [2]) is obtained.

2 De¯nitions

A preference structure on a set X is a pair (Â;») of binary relations on X such that

² For each x; y 2 X, at most one of the following is true: x Â y; y Â x; x » y;

² The relation » is re°exive and symmetric.

The ¯rst condition implies that Â is anti-symmetric (if x Â y, then not y Â x). With Â
interpreted as strict preference and » as indi®erence, this leads to a very general type of

preferences in which neither strict preference, nor indi®erence is assumed to be transitive

and in which a decision maker may have pairs x; y 2 X which he cannot compare.
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Consider a set X with preference structure (Â;»). A path in X is a ¯nite sequence

(x1; : : : ; xm) of elements of X such that for each k = 1; : : : ;m ¡ 1, either xk Â xk+1 or

xk » xk+1. In the ¯rst case, we speak of a Â-connection between xk and xk+1, in the
second case of a »-connection between xk and xk+1. A cycle in X is a path (x1; : : : ; xm)

in X with at least two di®erent elements of X and x1 = xm.

A path (x1; : : : ; xm) in X has two consecutive »-connections if for some k = 1; : : : ;m¡
2: xk » xk+1 and xk+1 » xk+2 or | in case the path is a cycle | if x1 » x2 and

xm¡1 » xm = x1.

Denote by ¤ the composition of Â and », i.e., for each x; y 2 X:

x¤ y , (9z 2 X : x Â z; and z » y):

Since » is re°exive, x Â y implies x¤ y. The relation ¤ is acyclic if its transitive closure

is irre°exive, i.e., if there is no ¯nite sequence (x1; : : : ; xm) of elements of X such that

x1 = xm and for each k = 1; : : : ;m¡ 1: xk ¤ xk+1.
A special case of a preference structure is an interval order (Fishburn, [2]). The

preference structure (Â;») is an interval order if for each x; y 2 X

x » y , ( not x Â y and not y Â x); (1)

and for each x; x0; y; y0 2 X

(x Â y and x0 Â y0) ) (x Â y0 or x0 Â y):

In interval orders, exactly one of the claims x Â y; y Â x; x » y is true. De¯ne the binary

relation º on X by taking for each x; y 2 X:

x º y , not y Â x:

Then it is easily seen that a preference structure satisfying (1) is an interval order if and

only if for each x; x0; y; y0 2 X:

x Â x0 º y0 Â y ) x Â y: (2)

Hence, interval orders have transitive strict preference Â. The preference structure of an
interval order can be identi¯ed with the relation Â, since the relations » and º follow

from Â.

Lemma 2.1 Let Â be an interval order on a set X. Then the relation ¤ is acyclic.
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Proof. Suppose, to the contrary, that there exists a cycle (x1; y1; x2; y2; : : : ; xm¡1; ym¡1; xm)

such that for each k = 1; : : : ;m¡ 1: xk Â yk and yk » xk+1. Then x1 Â y1 by de¯nition.

Moreover, x1 Â y1 » x2 Â y2, so (2) implies x1 Â y2. Similarly, one shows that x1 Â yk

for each k = 1; : : : ;m ¡ 1. In particular, x1 Â ym¡1. However, by de¯nition of the cycle,

ym¡1 » xm = x1, so x1 » ym¡1 by symmetry of ». But at most one of the two possibilities
x1 Â ym¡1 and x1 » ym¡1 is true, a contradiction. 2

Some additional conventions and matters of notation: µ denotes weak set inclusion, ½
denotes proper set inclusion. Summation over an empty set yields zero. The in¯mum of

the empty set equals in¯nity. IN denotes the set of positive integers, Q the set of rationals,

IR the set of reals, IR+ the set of nonnegative reals.

3 The representation theorem

This section contains the main theorem and an application of this theorem to obtain a

well-known characterization of interval orders.

Theorem 3.1 Let X be a countable set and (Â;») a preference structure on X. The
following claims are equivalent.

(a) There exist functions u : X ! IR and t : X ! IR+ such that for all x; y 2 X:

x Â y ) u(x) > u(y) + t(y)

x » y )
(
u(x) · u(y) + t(y);
u(y) · u(x) + t(x)

(b) The relation ¤ is acyclic;

(c) Every cycle in X contains at least two consecutive »-connections.

Proof.

(a) ) (b): Assume (a) holds and suppose that ¤ is cyclic. Take a sequence (x1; : : : ; xm)

of points in X such that x1 = xm and for each k = 1; : : : ;m ¡ 1 : xk ¤ xk+1. Then

for each such k there exists a yk 2 X such that xk Â yk and yk » xk+1, which implies

u(xk) > u(yk) + t(yk) ¸ u(xk+1). Hence u(x1) > u(x2) > : : : > u(xm) = u(x1), a

contradiction.

(b) ) (c): Suppose (x1; : : : ; xm) is a cycle in X without two consecutive »-connections.
W.l.o.g. x1 Â x2. Let (y1; : : : ; yn) with n · m be the sequence of points in X obtained by
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removing from (x1; : : : ; xm) all those points xk (k = 1; : : : ;m ¡ 1) satisfying xk » xk+1,

i.e., all those points that are indi®erent to the next point in the cycle. Notice that by

construction y1 = x1, yn = xm = x1, and for each k = 1; : : : ; n ¡ 1 there exists an

l 2 f1; : : : ;m¡ 1g such that

² either yk = xl and yk+1 = xl+1, in which case yk Â yk+1, which implies yk ¤ yk+1,

² or yk = xl and yk+1 = xl+2, in which case yk Â xl+1 and xl+1 » yk+1, which also

implies yk ¤ yk+1.

But then the sequence (y1; : : : ; yn) indicates that ¤ is cyclic.

(c) ) (a): Assume (c) holds. Since X is countable, write X = fxk j k 2 INg. Call a path
from x to y a good path if it does not contain two consecutive »-connections. De¯ne for
each x ´ xk 2 X:

S(x) := fn 2 IN j there exists a good path from x to xn starting with a Â -connectiong;
T (x) := fn 2 IN j there exists a good path from x to xng;
u(x) :=

P
n2S(x) 2

¡n;
v(x) :=

P
n2T (x) 2

¡n;
t(x) := 2¡k¡1 + v(x)¡ u(x):

We proceed to prove that u and t de¯ned above give the desired representation.

² Clearly S(x) µ T (x), so v ¸ u and t > 0.

² Let x; xk 2 X; x Â xk. Then T (xk) µ S(x). Moreover, k 2 S(x), but k =2 T (xk),

since by assumption every cycle in X has two consecutive »-connections. Hence
T (xk) ½ S(x) and k 2 S(x) n T (xk). So u(x) = v(xk) +

P
n2S(x)nT (xk) 2

¡n ¸ v(xk) +

2¡k > v(xk) + 2¡k¡1 = u(xk) + t(xk).

² Let x; y 2 X;x » y. Then S(y) µ T (x). Hence u(x) + t(x) > v(x) ¸ u(y) and

similarly u(y) + t(y) ¸ u(x).

This completes the proof. 2

Remark 3.2 Luce [5] considers nonnegative threshold functions, Fishburn [2] and Bridges

[1] consider positive threshold functions. Our statement of (c) involves nonnegative thresh-

old functions t : X ! IR+. However, in the proof that (c) implies (a) we actually construct

a positive function. Clearly, the proof that (a) implies (b) | and hence the theorem |

also holds if t were required to be positive rather than nonnnegative. The theorem was
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formulated with nonnegative threshold functions for intuitive reasons: there seems to be

no reason to require that su±ciently perceptive decision makers need to have a positive

threshold above which they can perceive changes in utility.

An immediate corollary of this theorem is a well-known representation theorem of interval

orders. See Fishburn [2, Theorem 4] and Bridges [1, Theorem 2].

Theorem 3.3 Let X be a countable set and Â a binary relation on X. The following

claims are equivalent.

(a) The relation Â is an interval order;

(b) There exist functions u; v : X ! IR; v ¸ u; such that for each x; y 2, x Â y if and

only if u(x) > v(y);

(c) There exist functions u; t : X ! IR; t > 0, such that for each x; y 2, x Â y if and only

if u(x) > u(y) + t(y).

Proof. Obviously (c) ) (b) ) (a). That (a) ) (c) follows from Lemma 2.1, Remark

3.2, and Theorem 3.1. That u(x) > u(y) + t(y) implies x Â y is clear: y Â x implies

u(y)+ t(y) > u(y) > u(x)+ t(x) > u(x) and x » y implies u(y)+ t(y) ¸ u(x). In interval

orders exactly one of the claims x Â y; y Â x; x » y holds, so one must have that x Â y. 2

4 Uncountable Sets

In Theorem 3.1, the proof that (a) ) (b) ) (c) holds for arbitrary, not necessarily

countable, sets X. Moreover, it is easy to see that also (c) implies (b) for arbitrary

sets. However, acyclicity of ¤ does not imply the existence of the desired functions u; t

if the set X is uncountable. This is not surprising: it is usually necessary to require

additional assumptions to guarantee the existence of preference representing functions on

uncountable sets. The purpose of this section is to indicate that such assumptions are not

straightforward. Fishburn [3] discusses representations of interval orders on uncountable

sets.

The existence of functions u; t as in part (a) of Theorem 3.1 implies that

8x; y 2 X : x¤ y ) u(x) > u(y): (3)

Hence, the existence of a function u : X ! IR satisfying (3) is a necessary condition.

However, it is not su±cient. Suppose such a function u exists. Without loss of generality,
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u is bounded (take x 7! arctan(u(x)) if necessary). The function t : X ! IR+ then

has to satisfy for each x; y 2 X, if y Â x, then u(y) ¡ u(x) > t(x) and if y » x, then

u(y)¡ u(x) · t(x).

De¯ne S(x) := supfu(y) ¡ u(x) j y » xg and I(x) := inffu(y) ¡ u(x) j y Â xg. Let
y Â x; z » x. Then u(y) > u(z), so S(x) · I(x). Notice also that S(x) ¸ u(x)¡u(x) = 0.
So if S(x) < I(x), one can take t(x) 2 [S(x); I(x)). However, if S(x) = I(x), then the
only candidate for t(x) equals S(x). But to make sure that u(y) ¡ u(x) > t(x) for all y
with y Â x, we need the additional property that the in¯mum I(x) is not achieved.
The next example shows that in some cases there exists a function u : X ! IR

satisfying (3), but in which the last property is not satis¯ed.

Example 4.1 Take X = IR and de¯ne for each x; y 2 IR:

x Â y , x ¸ y + 1;

x » y , jx¡ yj < 1:

Then

x¤ y , 9z 2 IR : (x ¸ z + 1; jz ¡ yj < 1) , 9z 2 IR : x ¸ z + 1 > y > z ¡ 1 , x > y:

So ¤ is acyclic and the set of functions preserving the order ¤ is the set of strictly

increasing functions u : IR ! IR. For every strictly increasing function u and every x 2 X
we have that I(x) = infy¸x+1 u(y) ¡ u(x) = u(x + 1) ¡ u(x). Hence the in¯mum is

achieved. This means that a function t exists if and only if there is an increasing function

u such that

8x 2 IR : S(x) < u(x+ 1)¡ u(x):

Suppose such a u does exist. We will derive a contradiction by constructing an injective

function f from the uncountable set IR n Q to the countable set Q. For each x 2 IR n Q,
take f(x) 2 (S(x); u(x + 1) ¡ u(x)) \ Q. In order to show that f is injective, let x; y 2
IRnQ; x < y. Then f(x) < u(x+1)¡u(x) < supfu(z)¡u(y) j z < y+1g = S(y) < f(y).
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