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Abstract 
 
This paper applies the concept of inverse demands and its related scale and substitution effects to model the 
demand for liquid assets in China. We also propose a new model, termed the Modified Almost Ideal Inverse 
Demand System (MAIIDS), which nests the Almost Ideal Inverse Demand System (AIIDS) as a special case. 
We estimate this new model and its special case by using Chinese panel data and find it statistically superior to 
the AIIDS. Results also reveal the improved regularity features of the MAIIDS, and show that demand patterns 
of liquid assets across different income groups in China are distinctive. 
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1 .  I N T R O D U C T I O N  
 
Chinese households

' 
demands for liquid assets have witnessed significant changes during the 

economic transition from the centrally planned regime to a market system. This phenomenon 
results from three basic reasons. First, the economy has experienced a robust expansion with 
an average annual real GDP growth over 9% in the past two decades. Second, due largely to 
significant economic marketization and decentralization, her national income is redistributed 
in favor of households and enterprises rather than the state. For instance, the ratio of 
government revenue to GDP declined dramatically from 31.2% in 1978 to 11.6% in 1997. 
Third, the economy is quickly “monetized” as the ratio of broad money to GDP increased 
from 45% in 1981 to 106% in 1997, whereas financial reforms gradually introduced a variety 
of financial instruments for individuals to diversify assets portfolios. Therefore, in-depth 
analyses of China

'
s household assets demand, such as identification of liquid assets demand 

determinants and understanding of substitutability among different liquid assets, consist of a 
micro foundation for optimal capital mobilization and effective monetary policy. 
 
Against the backdrop of China

'
s rapid economic expansion and macroeconomic volatility 

since the late 1970s, many authors have examined this focal issue from various angles. The 
early work done by Chow (1987) and Feltenstein and Farhadian (1987) established the basic 
framework for subsequent studies. Although different specification and estimation methods 
have been proposed and evaluated by Feltenstein and Ha (1991), Li (1992), Ma (1993), Hafer 
and Kutan (1994), Huang (1994), Yu (1997) and Xu (1998), the dominant approach has been 
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to express different liquid assets as linear or log-linear functions of interest rates and other 
variables, and they are estimated on an equation by equation basis. Despite the simplicity and 
hence its widespread popularity, shortcomings of this approach are well known. The most 
obvious of these is that those models are inconsistent with an underlying preference with the 
choice of explanatory variables and functional forms resting largely on ad hoc considerations. 
As a result, the estimates obtained are of limited use for analyzing the substitutability and 
complementarity relationships among all assets. Additionally, movements of liquid asset 
prices in China as revealed by movements of interest rates are very sticky. It has long been 
recognized that quantities of liquid assets supply in China are determined in advance of their 
current rental prices. Consequently, prices rather than quantities appear to be endogenous in 
the demand and supply relationships. To avoid theoretical and statistical inconsistency, the 
specification of inverse demands with rental prices of assets depending on quantities, may be 
required to empirically analyze the pattern of liquid assets demand in China.  
  
In this paper, we propose a theoretically and statistically consistent framework for modeling 
and estimating complete demand systems for liquid assets, where the concepts of duality 
theory, inverse demands, substitution effect and scale effect are all incorporated. More 
specifically, we generalize a parametric representation of the direct utility function in order to 
generate inverse demand systems for composite liquid assets in the spirit of the Almost Ideal 
Inverse Demand System (AIIDS) of Barten and Bettendorf (1989) and Eales and Unnevehr 
(1994).  Like the AIIDS, this new model, termed the Modified Almost Ideal Inverse Demand 
System (MAIIDS), is a flexible system, but it is more general than the AIIDS in providing 
more flexibility to the form of quantity effects and in preserving regularity properties in a 
wider region of quantity space. Since the MAIIDS includes the AIIDS as a special case, it 
permits nested testing using conventional statistical techniques. Thus, it enables us to shed 
light on the abilities of the AIIDS, now the most widely used inverse demand system, to 
provide satisfactory approximations to observed behavior.     
 
We estimate this new model and its special case by using Chinese household panel data in the 
period of 1990-1997. Once the models are estimated, the coefficients can be used to compute 
the scale, own/cross quantity and complementarity elasticities among different liquid assets, 
which are useful for macroeconomic policy analysis. We further adopt Fry, Fry and 
McLaren

'
s (1996) procedure to transform the deterministic equations to log-ratio form for 

estimation. This procedure not only restricts the shares implied by the model to the unit 
simplex, but also provides a transparent representation of the restrictions implied by the 
AIIDS. 
 
The remainder of this paper proceeds as follows. Section 2 develops a formal theoretical 
model of liquid assets demand. The empirical specification of our new inverse demand 
equations is discussed in Section 3. Descriptions of the data and estimation method are 
provided in Section 4, followed by the interpretation of empirical estimates in Section 5. 
Finally, Section 6 recapitulates and concludes. 
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2 .  T H E  T H E O R E T I C A L  M O D E L  
 
Let NR λ  represent the N-tuples of real numbers, let Ω

N
 represent the nonnegative orthant, and 

let N
+Ω  represent the strictly positive orthant. Suppose that individuals

' 
preferences are 

represented by a direct utility function: 
 

u = U(x)         (1) 
 
where x∈Ω

N 
is an Nx1 vector of liquid assets demand. The direct utility function U(x) is said 

to be regular if it satisfies the following regularity properties (RU):
 1 

 
RU1: U: Ω

N
 → λR  

RU2: U is continuous 
RU3: U is nondecreasing in x 
RU4: U is quasiconcave in x. 
 

The uncompensated inverse demand equations are related to the direct utility function via 
Hotelling-Wold

'
s identity:  

 

    
∑ ∂∂

∂∂
===

j
jj

iUCi

x]x/)(U[
x/)(U)(R

m
pr

ii x
xx      (2) 

where pi is the rental price of asset i, m∈ 1
+Ω  is the total expenditure on liquid assets, ri∈

1
+Ω  

is the normalized rental price of asset i, and the superscript UC reminds us that we are 
considering uncompensated functions.  
 
 Dual to (1) is the distance function, defined by: 

 
 D

C
(x, u) = Max d {d : U(x ⁄ d) ≥ u}      (3) 

 
where the superscript C is to indicate that (3) represents the compensated functions; i.e., the 
functions are conditioned on x and u. This function formally measures the amount by which 
all quantities of assets must be changed proportionally to attain a particular utility level 
(Anderson 1980; Cornes 1992, pp.72-84). The definition of D

C
 in (3) implies that it will 

inherit the following regularity conditions RD
C
: 

 
RD

C
1: D

C
: Ω

N
 × λR → 1

+Ω  

RD
C
2: D

C
 is continuous 

RD
C
3: D

C
 is nondecreasing in x 

RD
C
4: D

C
 is nonincreasing in u 

RD
C
5: D

C
 is concave in x 

                                                 
1
  The notation u=U(x) is indicative of that used in the rest of this paper. Upper case letters denote functions, 

and the corresponding lower case letters denote the scalar values of those functions. 



Inverse Demand Systems for Composite Liquid Assets   
 

 4  
 
 

RD
C
6: D

C
 is homogeneous of degree one (HD1) in x. 

 
The empirical importance of the distance function lies in two features. The first is the 
“derivative property”; that is, differentiation of D

C
 with respect to quantities x yields a 

system of compensated inverse demand share form: 
 
    )u ,(Rr C

i i
x= = ∂D(x, u) ⁄  ∂xi.      (4) 

 
Second, duality theory demonstrates that at the optimum:  
 
     D

C
(x, u) = 1.         (5) 

 
The compensated inverse demands can then be converted into the uncompensated inverse 
demands by substituting for u from the inverted form of (5); i.e.,  
 

[ ] )(R) U(,R)u ,(Rr UC
i

CC
iii

xxxx === . 
 
Likewise, the uncompensated inverse demand functions can be converted back to 
compensated functions via the following identical relationship: 
 

)u *,(R]u) ,(D*[R)d*(R)(Rr C
i

CUCUCUC
iiii

xxxxx ====  
 
where x* = x ⁄ d is a reference vector in quantity space lying on the indifference surface. 
 
To describe substitution possibilities between the liquid assets, it is useful to derive the 
quantity, scale and complementarity elasticities of inverse demands. Let UC

ijF  denote the 

uncompensated quantity elasticities for asset i with respect to xj, 
UC
iS  the scale elasticity of 

asset i, C
ijF  the compensated quantity elasticities for asset i with respect to xj, and σij the 

Hicks elasticities of complementarity between assets i and j. [See Sato and Koizumi (1973); 
Kim (2000)]  In notation, they are defined as: 
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where jjj xrw =  is the budget share of asset j, and note that jiij σσ = .
2
  

 
Quasiconcavity of the direct utility function implies that UC

iiF , C
iiF  and iiσ  are nonpositive. 

Furthermore, interpretation of quantity and scale elasticities can be made in a manner similar 
to price and expenditure elasticities. For example, demand for asset i is said to be flexible (or 
inflexible) if C

iiF  and UC
iiF  are less than (or greater than) minus one.  Likewise, ijσ  is negative 

(or positive) if assets i and j are Hicksian q-substitutes in the Hicksian sense; assets i and j are 
classified as gross (or net) substitutes and complements according to whether UC

ijF  (or C
ijF ) is 

negative and positive respectively. Lastly, assets are termed luxuries (or necessities) if their 
scale elasticities are greater than (or less than) minus one. 
 
3 .  M O D E L  S P E C I F I C A T I O N S  
 
3.1 The AIIDS Specification 
 
The theoretical antecedent of the model to be considered is the AIIDS developed by Barten 
and Bettendorf (1989) and Eales and Unnevehr (1994). This model is now the most 
commonly used inverse demand system because it retains all desirable properties of Deaton 
and Muelbauer

'
s (1980) Almost Ideal Demand System (AIDS). As shown in Eales and 

Unnevehr (1994), the functional form of the derived share equations of AIIDS is very similar 
to the AIDS, except the exogenous variables are quantities rather than prices and expenditure.   
 
For purposes of exposition, it is useful to exhibit the logarithmic distance function 
corresponding to the AIIDS: 
 
    log(D

C
) = log[X1(x)] – uX2(x)       (6) 

 
where Xk(x), k=1 and 2, are two positive and continuous functions of quantities.

3
 The AIIDS 

results if X1 is specified as an HD1 Translog functional form, and X2 is specified as an HD0 
Cobb-Douglas functional form.  
 
 The direct utility function dual to the AIIDS is given by: 
 
    u = log(X1) ⁄ X2.         (7) 
 
Applying Hotelling-Wold

'
s identity to (7) after some manipulation, we obtain the AIIDS 

share equations: 
 
    UC

iiRx = UC
iW  = E1i – E2i log(X1)      (8) 

 

                                                 
2
  See Anderson (1980), Kim (2000) and Sato and Koizumi (1973) for the derivation of the quantity, scale 

and complementarity elasticity equations.  
3
  Since X1(x) is a real, continuous, HD1, nondecreasing and concave function, it can be interpreted as the 

index of aggregate quantity demand for liquid assets.    



Inverse Demand Systems for Composite Liquid Assets   
 

 6  
 
 

where UC
iW  is the uncompensated budget share equation, and Eki=∂log(Xk) ⁄ ∂log(xi), k=1, 

2.
4
 As X1 is HD1 in x but X2 is HD0 in x, ΣiE1i = 1 and ΣiE2i = 0. Moreover, the scale, 

quantity and complementarity elasticities corresponding to the AIIDS take the forms: 
 
  UC

iS  = –1 – E2i ⁄ 
UC

iW  

   UC
i

ijjiij
ij

UC
ij  W

)1Xlog(2E1E2E1E
δF

−−
+−=   

   UC
i

UC
j

ij
UC

ij
C
ij W

W
2EWFF −−=  

   UC
j

UC
i

2
ijijij

UC
j

iji
ij WW

)]1X[log(2E)1Xlog()2E1E1E(
W

)1Xlog()δ2E(
σ

−−
+

−−
=  

 
where )]xlog()xlog(/[)Xklog(Ek ji

2
ij ∂∂∂= , (k=1, 2). 

 
Now we should take a moment to investigate the regularity properties of the AIIDS. As being 
noted, the AIIDS is regular if it satisfies the regularity conditions RU1 to RU4 over the entire 
nonnegative orthant NΩ = {x: x ≥ 0}. It is clear from (8) and the continuity of X1 and X2 that 
the requirements of RU1 and RU2 are met. However, it is shown in Appendix B that for X1 
sufficiently large, the AIIDS share equations will violate the monotonicity (RU3) and 
curvature (RU4) conditions. Unfortunately, there is no simple parametric restriction available 
to ensure that the AIIDS is regular even over a region containing the sample data. In response 
to these irregular features, we next suggest a modification to the AIIDS, which is more 
flexible in capturing alternative shapes for the effects of quantities on the budget share 
equations, and in preserving regularity conditions in a wider region of quantity space. 
 
3.2 The Modified AIIDS (MAIIDS) Specification 
 
Using some intuition stemming from Cooper and McLaren

'
s (1992 and 1996) Modified AIDS 

model, and from their ideas about global regularity conditions, we choose the general form of 
the direct utility function as: 

     ( )
2X

1
λ

11X)(U
λ








 −
=x        (9) 

 
where X1 is defined as before, X2 now is HDη instead of HD0 in x, and λ and η are the 
parameters to be estimated. Hotelling-Wold

'
s identity applied to (9) gives the MAIIDS 

budget share equations: 
 

     
IX)ηλ(1

IX2E1E)IXλ1(W iiUC
i −+

−+
=      (10) 

                                                 
4
  The general form of the AIIDS budget share equations (8) is derived by Eales and Unnevehr (1994), while the 

linearized version of (8) in first-difference form is derived by Barten and Bettendorf (1989). Although both 
forms are very similar to each other, it is noteworthy that interpretation is different between the two.  
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where IX = (X1
λ
 - 1) ⁄ λ, and E1i and E2i are defined as before in which ΣiE1i=1 and ΣiE2i=η. 

In the form (10), one sees the direct connection between the AIIDS and MAIIDS; setting λ 
and η to be zero reduces (10) to (8). Selection between the MAIIDS and AIIDS is hence 
based on the statistical significance of λ and η. 
 
To facilitate comparison with AIIDS it is shown that for MAIIDS: 
 

   
IX)ηλ(1

]W)ηλ(2E1Eλ)[IXλ1(
)1Xlog(

W UC
iii

UC
i

−+
−−−+

=
∂
∂ ,    (11) 

 
whereas for AIIDS ∂ UC

iW ⁄ ∂ log(X1) = -E2i. (11) shows how the response of MAIIDS budget 
share equations to growth in aggregate quantity X1 can be modified by X1, the levels of 
quantity demands xi, and the estimated budget shares UC

iW . More importantly, it is shown in 
Appendix C that the MAIIDS allows the imposition of regularity conditions over a more 
extensive region of quantity space. 
 
If we define Z as -ηIX ⁄ [1 + (λ - η)IX], which is a monotonic mapping of X1 into the [0, -η ⁄ 
(λ-η)] interval, then the MAIIDS budget share equations take the form: 
 
    UC

iW  = (1 - Z) E1i + Z E2i  ⁄  η,       (12) 
 
and it follows that:  
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where Vi = ηE1i (Z – 1) ⁄  Z – E2i. 
 
The MAIIDS budget share equations, rewritten as (12), have some interesting and intuitively 
attractive interpretations. If λ < 0, then the budget shares UC

iW  will monotonically move 
from E1i for the poor (when X1 → 0 then Z → 0) to E2i ⁄ η for the rich (when X1 → ∞ then Z 
→ 1). On the other hand, if λ > 0, then UC

iW  will converge to E1i  for X1 → 0 and to (λE1i - 
E2i) ⁄ (λ - η) for X1 → ∞ [when X1 → ∞ then Z → - η ⁄ (λ - η)]. 
 
3.3 Empirical Inverse Demand Functions 
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As mentioned by Cooper and McLaren (1992) in the context of Marshallian demands, the 
budget share systems such as (8) and (10) only relate to individuals or households and may 
not fulfill the exact aggregation conditions. Borrowing their ideas about aggregation issues, 
the appropriate estimating forms of AIIDS and MAIIDS are: 
 

AIIDS:  UC
iW  = E1i – E2i log(X1) + δ ik k

k

d∑  

MAIIDS: UC
iW  = (1 - Z) E1i + Z E2i  ⁄  η + δ ik k

k

d∑  

 
where dik are the social economic variables acting as a proxy for the change in distribution of 
spending power, and δik are the parameters satisfying ∑iδik=0.   
 
We next turn our attention to the issue of choosing the functional forms for the aggregate 
quantity functions X1 and X2. Note that the AIIDS corresponds to the specification of X1 
Translog and X2 Cobb-Douglas; that is, 
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jj )xlog()xlog(γ2/1)xlog(αexp1X  

∏=
j

j
jβx2X  

 
where ∑ =

j
j 1α , ∑ =

j
ij 0γ , γij = γji, and αj, βj, and γij are the parameters, leading to the 

AIIDS and MAIIDS estimating forms: 
 

  AIIDS: )1Xlog(β)xlog(γαW ij
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iji
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i −+= ∑ + δ ik k
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   MAIIDS: 
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IXβ)xlog(γα)IXλ1(
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+ δ ik k
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d∑ . 

 
Recall that when λ=0 and η=0, the MAIIDS becomes the AIIDS. 
 
4 .  T H E  D A T A  A N D  E S T I M A T I O N   
 
4.1 Brief Remarks on the Database 
 
Chinese household data used in this study cover the period of 1990-1997. The data are drawn 
from China

'
s annual Family Income and Expenditure Survey of Urban Households conducted 

by the National Statistical Bureau of China (NSBC). The survey contains variables such as 
household income source, expenditures on goods and services, and holdings of various liquid 
assets. In each year, the statistical authority surveys more than 25,000 urban households from 
all thirty provinces and municipals. After obtaining individual household observations, the 
NSBC first aggregates the variables according to their residential provinces, and then 
computes the average values for all variables. Since the NSBC does not release the household 
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data in 1994, we estimate the household demand model for the entire period of 1990-97 but 
lacking 1994 data. In addition, we use the data from 28 provinces to undertake regressions by 
excluding both Tibet and Hainan, because the people live in the former have quite different 
demand behavior and the latter is a newly autonomous province.  
 
The asset variables examined here consists of four composite liquid assets: (1) currency 
holdings (x1), defined as cash holdings by the end period minus cash holdings at the 
beginning of the period; (2) household bank savings (x2), which is the aggregated deposits 
with all financial intermediaries including commercial banks and mutual saving banks; (3) 
government bonds (x3), which is household holdings of all types of government equities, 
including short-term Treasury bill and long-term Treasury bonds, and Treasury-backed State 
Bank bonds, and (4) miscellaneous liquid assets (x4), which contains informal assets such as 
household lending to small enterprises, and small time deposits at informal intermediaries 
and insurance companies.  
 
The formula used for computing the rental price of each liquid asset is given by: pi = (rT – ri) ⁄ 

(1 + rT) + 
•

p , where rT is the benchmark interest rate, ri is the own rate of return on asset i, and 
•

p  is the annual inflation rate.
5
 The first term of the formula is the opportunity cost of a 

specific holding asset i and the second term 
•

p  is the inflation cost. In order to proxy the 
yields from different assets, we adopt the following measures. Three-year Treasury bill yield 
(rT) is used as the benchmark interest rate. The yield of currency (r1) is set to be zero. The 
yields of saving deposits (r2) and government bonds (r3) are represented by the interest rates 
of one-year term deposits and one-year banking notes (jirong zhaijuan) respectively, and the 
yield of the miscellaneous liquid assets (r4) is proxied by the one-year lending rate of banks. 
Lastly, the change in the total cost of living index in each province is used as the 
measurement of inflation cost.   
  
The dummies variables (dk) are used to proxy the impacts of social economic factors on 
liquid assets demand from different development regions. As defined in  
 
Table 1, 28 provinces are categorized as three regions according to their degree of 
development and affluence. Region 1 consists of high income provinces; Region 2 includes the 
middle income provinces, and Region 3 contains the low income provinces. Based upon the 
above classification, we define two dummy variables d1 equals one for the observations in 
Region 1 and zero otherwise, and d2 equals one for the observations in Region 2 and zero 
otherwise. 
 

                                                 
5
  This formula is the revised version of Barnett

'
s (1978) rental price formula.  
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4.2 The Stochastic Specification of the Share Equations  
 
To implement the empirical analysis, the inverse demand functions need to be imbedded 
within a stochastic framework. The traditional approach to the stochastic specification is to 
append a normally distributed error term εi to the deterministic component, UC

iW (x; θ); i.e., 
wi = UC

iW (x; θ) + εi (i = 1,......, 4) 
where θ is a vector of parameters. Fry, Fry and McLaren (1996), however, argued that this 
approach is statistically deficient. In particular, Conditions RU imply that the deterministic 
component UC

iW (x; θ) are restricted to the closed unit interval (0, 1), leading to a nonzero 
probability that the modeled budget shares will fall outside the unit simplex. If the 
assumption of the normal distribution of the error term is maintained, an alternative 
transformation is necessary. One such transformation introduced by Fry, Fry and McLaren 
(1996) is defined as: 
     yi = log(wi ⁄ w4)  (i = 1, 2, 3) 
 
with Jacobian: (w1 ×......× w4)

-1
. Thus, our general functional form for estimation becomes: 

 
yi = log (wi ⁄ w4) = log [ UC

iW (x; θ) ⁄ UC
4W (x; θ)] + ui  (i = 1, 2, 3) 

 
where ui are the error terms characterized by a multivariate normal distribution with zero 
mean and constant contemporaneous variance covariance matrix.   
 
Directly applying this procedure to the MAIIDS share equations, the budget share equations 
become: 
 

yi = log(wi ⁄ w4)=log































+
−+

−







++

+
−+

−







++

∑
∑

∑
∑

k
kk4

4
j

j4j44

k
kik

i
j

ijiji

dδ
IX)ηλ(1

IXβ)xlog(γα)IXλ1(
 

dδ
IX)ηλ(1

IXβ)xlog(γα)IXλ1(
 

 + ui.  (14) 

 
The corresponding specification for the AIIDS is exactly the same, except for the additional 
restriction that η=0 and λ=0. Henceforth, estimation of AIIDS and MAIIDS can be based 
upon (14). 
 
5 .  E M P I R I C A L  R E S U L T S  
 
5.1 Analysis of the Estimates 
 
Estimation has been carried out by using the LSQ option (adjusted for a heteroscedastic 
variance covariance matrix) of TSP 4.5 computer package, which is well suited to the 
estimation of systems with complex cross-equation constrains. Table 2 presents the parameter 
estimates along with t ratios, R

2
, and the maximized log likelihood values of the AIIDS and 

MAIIDS. There are a number of points worth to be highlighted. First, the estimated 



Inverse Demand Systems for Composite Liquid Assets   

 11  
 
 

coefficients in both models take the same signs and similar magnitudes. Second, the overall 
fit of both models as reflected by the R

2 
is quite good, noting that estimation is in log-ratio 

form. Third, on the basis of R
2
, there is little to choose between the models, but on the basis 

of a comparison of log likelihood values, MAIIDS outperforms AIIDS. It is also noteworthy 
that the values of λ and η are significantly different from zero as reflected by their 
asymptotic t ratios. A chi-square test of the restrictions (λ=0 and η=0) implied by the AIIDS 
results in a calculated χ

2
 statistic of 26.46, compared with the critical value for 2

)2(χ  (at the 
1% level) of 9.28.  These figures indicate that the AIIDS is rejected in favor of the MAIIDS. 
Thus, the freeing up of λ and η is desirable on statistical grounds. 
 
Casting some light on the aggregate demand coefficients or βi, the positive signs are shown in 
savings and miscellaneous asset equations whilst the negative signs appear in cash and bond 
equations. Recall that for the AIIDS, ∂wi ⁄ ∂log(X1) = -βi. Hence, under the AIIDS, an 
increase in aggregate assets demand will reduce the shares of savings and miscellaneous 
assets but raise the shares of cash and bonds. In other words, there exists a change in 
household preferences for liquid assets when the portfolio size changes. As for the 
magnitudes of βi, we find that β4 in the AIIDS is not significantly different from zero so that 
the effect of log(X1) toward miscellaneous assets is still unclear. On the other hand, the 
absolute values of β1 and β2 in AIIDS appear to be large and significantly different from zero.  
 
The coefficients of the regional dummy variables (δik) in both models turn out to have notable 

impact on the households
'
 demands for liquid assets. Indeed, half of the estimated coefficients 

have t-ratios with absolute values larger than 1.65, and note that their signs and magnitudes 
in both models are very comparable. As indicated by the signs of δk1 (k=1 to 4), households 
in Region 1 have higher shares in savings deposits but lower shares in cash and bonds when 
compared with Regions 2 and 3 households. These findings may reflect the higher popularity 
of traditional assets such as cash and bonds in less developed provinces. The positive sign of 
δ21 might be due to the fact that Region 1 households are more affluent, and hence they may 
have higher incentive and ability to save. One may perceive that the negative signs of δ11 and 
δ31 are the mirror images of the restricted investment opportunity of Region 3 households. 
Possibly, households in less developed provinces have lower discretionary income and are 
facing less convenient financial services, which restrict their opportunity for holding more 
sophisticated investment assets. The dummy coefficients of δk2 demonstrate positive sign in 
cash, bonds and miscellaneous assets equations but negative in savings equation. Despite 
these, all of them are insignificantly different from zero at the 1% level, indicating that the 
impact of the dummy variable in Region 2 on the budget shares is trivial.    
 
Of possibly greater importance than these statistical results are the regularity properties of the 
AIIDS and MAIIDS. Given the parameter estimates in Table 2, an analysis of the fitted 
values of both models indicates that the required monotonicity properties (RU3) are satisfied 
over the entire sample period. Nonetheless, for all quantities reduce by 900%, the 
monotonicity conditions of AIIDS (but not MAIIDS) are violated as the predicted shares of 
cash and bonds turn out to be negative for some observations. This finding is not surprising 
since the AIIDS will stray outside the (0, 1) interval under large changes in aggregate 
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demand. It might be concluded that MAIIDS outperforms AIIDS as far as monotonicity 
requirements are concerned.  
 
Regarding the curvature requirements, the parameter estimates reveal that both models 
cannot satisfy Condition RU4 at a substantial fraction of the quantity situation in our sample. 
This indicates that the unrestricted version of AIIDS and MAIIDS are not globally regular 
which is a disappointing aspect of this study. Though constrained estimation would be a 
simple option to deal with this problem, the irregular of the models might be caused by other 
factors such as oversimplified static theory, insufficiently robust functional forms, the 
application of an essentially micro theory specification to macro data, and the rather high 
level of aggregation of our series. Variations on the specifications in the inverse demand 
context need to be investigated along with these other potential sources of irregularity.  
 
Since AIIDS is statistically dominated by MAIIDS, in the following subsection the 
coefficient estimates of MAIIDS will be used to compute the point estimates of the quantity, 
scale and complementarity elasticities.   
 
5.2 Analysis of the Elasticity Estimates  
 
Table 3 presents the estimates of uncompensated quantity elasticities, scale elasticities, 
compensated quantity elasticities and Hicks complementarity elasticities for the MAIIDS. 
The first part of this table reports the estimates of uncompensated elasticities. It is shown that 
our estimates offer no surprise; all the uncompensated own quantity elasticities ( UC

iif ) are 
negative and generally greater than minus one, which obeys the inverse law of demand, and 
indicates that all liquid assets are inflexible. We also find that, apart from UC

31f , UC
34f  and UC

43f , 
the uncompensated cross quantity elasticities are all negatively small. In the case of positive 
uncompensated cross quantity elasticities, the magnitudes are very small. While cash, savings 
deposits and bonds are shown to be gross weak substitutes among themselves, miscellaneous 
assets appear to be a gross complement for bonds.  
 
Scale elasticities, reported in the second part of Table 3, measure the effects of a 
proportionate increase in quantity demands on the rental prices of liquid assets. The scale 
elasticities of cash and bonds are obviously different from minus one, suggesting 
nonhomothetic preferences. Furthermore, all assets, with the exception of cash and bonds, are 
necessities; of these, miscellaneous assets (or bonds) have the smallest (or highest) scale 
elasticity. This is perhaps intuitively plausible because the Chinese households have a 
persistent heritage of holding cash balance. Note also that bonds may be perceived as more 
sophisticated financial instruments compared with savings deposits and miscellaneous assets. 
Henceforth, the rental prices of cash and bonds would be less responsive to the growth of 
total portfolio size. Another noteworthy finding is that the scale elasticity for cash is greater 
than minus one, which does not agree with the findings in the studies of Baumol-Tobin type 
models. Not all studies obtain this result so ours can be viewed as a contribution to that 
debate, favoring the view that cash is a luxury good.      
 
The third part of Table 3 gives the estimates of compensated own ⁄ cross quantity elasticities 
of assets demand. These estimates aim at measuring net substitution and complementarity 
relationships when utility is held constant. It is important to note that some of the liquid 
assets appearing to be gross substitutes change as complements when the definition of the 
compensated elasticities is used. This might appear to be a contradiction but it could be 
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resolved easily when one considers scale effects in the final calculation. In this respect, it is 
useful to recall that j

UC
i

UC
ij

C
ij wSFF −= . It is now apparent that only if the gross substitution 

effect (measured by the term UC
ijF ) is larger than the scale effect (measured by the term 

j
UC
i wS ) will C

ijF  have the same sign as UC
ijF .  

 
Primary interest of this study lies in the Hicks elasticities of complementarity between asset 
pairs; the fourth part of Table 3 contains the estimates of these elasticities. Overall, the Hicks 
elasticities of complementarity ( ijσ ) contain the same information as the uncompensated 

quantity elasticities UC
ijf ; all of them take the same signs, but the Hicks complementarity 

elasticities are symmetric. The Hicks complementarity elasticities indicate that all liquid 
assets (except bonds and miscellaneous assets) are Hicksian q-substitutes to each other. 
Interestingly, bonds have an own quantity responsiveness that is two to five times that of any 
of the other three assets. In addition, σ24 indicates the strongest degree of gross substitution 
between savings deposits and miscellaneous assets in the portfolio. We also observe that 
cash-savings deposits, cash-miscellaneous assets, savings deposits-bonds and savings 
deposits-miscellaneous assets show a notably higher degree of substitution than the 
remaining asset pairs in the portfolio. Therefore, there exists notable substitution among 
those liquid assets. This implies the usual measurement of monetary aggregate in Chinese 
macroeconomic control is not optimal since in principle the effectiveness of any policy action 
designed to affect a particular monetary aggregate is reduced (see Barnett et al. 1992). In this 
case, broader definitions of money instead of M2 or M3 should be selected as target control 
in the context of the Chinese economy.  
 
In order to examine regional variations in household assets demand, region-specific quantity, 
scale and complementarity elasticities are computed and reported in Table 4.

6
 The first part 

of this table reports the uncompensated and compensated quantity elasticities in three 
regions. Comparing these quantity estimates among three regions, the differences turn out to 
be small. In particular, the gross and net substitution/complementarity patterns among three 
regions are very similar; of the 32 relevant points comparison only 2 ( UC

13f  and UC
32f ) alter in 

sign, comparing the estimates in Regions 1, 2 and 3.  
 
The computed scale elasticities in Table 4 appear to be different from those in Table 3. As 
can be seen, the magnitudes of UC

is  among three different regions are incomparable, 
revealing that the scale effects toward all asset prices are quite diverse across different 
income groups. This regional variation may be due largely to the difference in investment 
habit in urban China. Judging from the point estimates of UC

is , we find that miscellaneous 
assets are defined as luxury goods in Regions 1 and 3 but a necessity in Region 2. More 
interestingly, savings deposits are classified as luxury goods in Region 3 but as necessities in 
Regions 1 and 2. It might be concluded that the rental price of savings deposits is more 
responsive to the scale of assets demand in less developed provinces. Cash is expected to be a 
luxury but it is only in Regions 1 and 2 that we obtain the correct result for this asset. In 
Region 3, cash is grouped as a necessity, which reveals the fact that cash is more important in 
                                                 
6
  Quantity, scale and complementarity elasticities in three defined regions under the MAIIDS are calculated 

on the basis of the regional mean values (that is quantities) and the nationwide statistics (that is the 
estimated coefficients in Table 2).   



Inverse Demand Systems for Composite Liquid Assets   
 

 14  
 
 

less developed provinces. For the remaining item, bonds are recognized as luxury goods in all 
three regions. Note, however, that UC

3s  in Region 3 is notably larger than those in Regions 1 
and 2, which is consonant with a “a prior expectation” in the Chinese economy context; that 
is traditional assets such as government bonds are more popular in less developed provinces.   
 
The estimated Hicks complementarity elasticities, presented in the third part of Table 4, 
measure the substitutability of all assets pair in three different regions. It is shown that the 
signs of ijσ  (except 34σ ) are consistently negative among the three regions. With respect to 

their magnitudes, however, one sees that the absolute values of ijσ  in Region 1 are notably 
larger than those in Regions 2 and 3. These findings yield two implications. First, there is 
evidence of stronger substitutability among the liquid assets in more developed provinces; 
second, substitutability of asset pairs across different income groups are fairly diverse. As 
being expected, cash should be a close Hicksian q-substitute for the other three assets. In 
Region 1, the estimated sign and size of j1σ  justifies this argument. Notwithstanding, cash 
turns out to be weak Hicksian q-substitutes for savings deposits, bonds and miscellaneous 
assets in Regions 2 and 3. We further read that savings deposits - bonds and savings deposits 
- miscellaneous assets in all regions show higher degree of substitution than other asset pairs 
in the portfolio, which is in line with the findings in Table 3. 
 
6 .  C O N C L U S I O N S  
 
This paper lays out an inverse demand system approach to the analysis of preference 
interaction among liquid assets and tests it on the Chinese panel data. In this approach, we 
implicitly assume that supplies of liquid assets in China are predetermined by the central 
bank with adjustments of rental prices of those assets providing the market clearing 
mechanism. This proposed method has several advantages over the traditional approach. In 
particular, the empirical model of assets demand presented here are more general than the 
traditional forms since they do not reply on the assumption that all liquid assets can be 
aggregated. Furthermore, it allows for the simultaneous estimation of all rental price 
functions of liquid assets. This feature not only ensures that the derived equation system is 
consistent with an underlying preference but also yields some insights about the substitution 
possibilities inherent in a consumer demand model.    
 
In an empirical illustration, we have introduced a new inverse demand system, the MAIIDS, 
which nests Barten and Bettendorf (1989) and Eales and Unnevehr

'
s (1994) AIIDS as a 

special case. We have also provided prima facie evidences in favor of improved regularity 
properties of MAIIDS relative to AIIDS. Using the standard modeling scenario, we have 
estimated this new form and tested the restrictions corresponding to its AIIDS special case. 
Judged by the likelihood ratio test, the AIIDS is dominated by the MAIIDS.  
 
Among others, the empirical evidence that is of special interest to monetary authorities is the 
relatively small own quantity and cross quantity effects of the inverse demand for liquid 
assets. We also find that substitutability is moderately high among liquid assets, thereby 
indicating that broader definitions of money may be satisfactory macroeconomic policy 
targets in the context of the Chinese economy. Furthermore, bonds are relatively popular in 
less developed provinces. On the other hand, the substitutability among the liquid assets is 
much higher in wealthy provinces than in poor counterparts. Probably, these findings mirror 
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three phenomena: diverse demand patterns of liquid assets across different income groups; 
increasing regional discrepancies in China

'
s economic development during market oriented 

reforms; and limited investment channels in less developed regions. According to these, the 
government should maintain an adequate social network and speed up the reforming process 
in financial system particularly in the backward region. 
 
 
Appendix A: Notation 
 
The following is a listing of principal notation used throughout the paper.  
 
x = (x1,......, xN)

'
 = a vector of quantities of liquid assets 

U(x) = the direct utility function 
pi = the rental price of the ith liquid asset 
m = the total expenditure on liquid assets 
ri = pi ⁄ m = the normalized rental price of the ith liquid asset 

D
C
(x, u) = the distance function 

)(R UC
i

x  = the uncompensated inverse demand equations 

)u ,(R C
i

x  = the compensated inverse demand equations 
UC
ij

F  = the uncompensated quantity elasticity equations 
UC
i

S  = the scale elasticity equations 
C
ij

F  = the compensated quantity elasticity equations 

ij
σ  = the Hicks complementarity elasticity equations 

UC
i

W  = the uncompensated budget share equations 

EKi (k=1, 2) = ∂log(Xk) ⁄ ∂log(xi) 
EKij (k=1, 2) 

= 
)xlog()xlog(

)Xklog(

ji

2

∂∂
∂  

IX = (X1
λ
 - 1) ⁄ λ 

Z = -ηIX ⁄ [1 + (λ-η)IX ] 
ui = the normally distributed error term 

2
'kχ  = the Chi-Squared critical values with k

'
 degree of freedom 
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Appendix B: Regularity Properties of AIIDS 
 
In this paper it is claim that the AIIDS will violate Conditions RU3 and RU4 for X1 and 
hence IX large enough.  
 
 Consider these conditions in turn: 
 
RU3: This condition requires that the budget shares UC

iW  lie globally in the unit interval. It 
follows from (8) that the AIIDS budget share equations are: 
 
    UC

iW  = E1i – E2i log(X1).       (B1)  
 
From (B1), it is apparent that for X1 sufficiently large or small, the budget shares UC

iW  will 
stray outside the (0, 1) interval, thereby violating Condition RU3. 
RU4: This condition requires that the Hessian matrix of the direct utility function be negative 
semidefinite. The violation of this condition can be illustrated by investigating the AIIDS 
uncompensated own quantity elasticity equations. Given the specific Cobb-Douglas 
formulation of X2 in AIIDS, E2ii = 0. The ith uncompensated own quantity elasticity UC

iiF  can 
then be simplified as: 
 
   UC

iiF  = -1 + (E1ii ⁄ 
UC

iW ) – (E2i E1i ⁄ 
UC

iW ).     (B2) 
 
The nature of the curvature violation problem for AIIDS is now obvious. For E2i > 0, as X1 
increases, UC

iW  decreases monotonically from E1i to -∞. When UC
iW  tends to a negatively 

small number, the third term in (B2) – (E2iE1i ⁄ 
UC

iW ) turns out to be positively large and 
dominates in UC

iiF . Thus, it is obvious that there is a tendency for the required nonpositivity 
of UC

iiF  to be violated when X1 is sufficiently large; this may occur even before UC
iW  strays 

outside the (0, 1) interval. 
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Appendix C: Regularity Properties of MAIIDS 
 
This appendix investigates the regularity features of MAIIDS and provides a formal proof of 
the claim that MAIIDS will preserve the regularity conditions over a much wider range of 
quantity space than is AIIDS.  
 
 As shown in Section 3, the MAIIDS budget share equations are of the form: 
 

     
IX)ηλ(1

IX2E1E)IXλ1(
W iiUC

i −+
−+

= .    (C1)  

 
It is clear from (C1) that the requirements of RU1 and RU2 are met. Furthermore, it is 
equally clear from (C1) that in the region λ ≥ -1 and X1 ≥ 1, we have IX ≥ 0, and thus the 
restrictions 1 ≥ E1i ≥ 0 and 0 ≥ E2i ≥ -1 are sufficient to ensure MAIIDS satisfies Condition 
RU3 or 1 ≥ UC

iW ≥ 0.  
 
We next examine the maintenance of quasiconcavity restriction of MAIIDS. Given that X2 is 
replaced by the Cobb-Douglas form, the MAIIDS uncompensated own quantity elasticity 
equation UC

iiF  is given by: 
UC

iiF  = -1 + (1 - Z)Vii. 
 
where  
 

Vii = [ ] 















−−−−+ i

i
iiiUC

i

1E
η
2E

)ηλ(Zη1E1E
W

1 . 

 
Clearly, the possible source of violation of nonpositivity of Fii comes from the term Vii. For λ 
< 0, however, Z asymptotes to unity when X1 increases. That implies the term Vii asymptotes 
to zero and has less weight as X1 increases. Therefore, for X1 Translog and X2 Cobb-
Douglas, MAIIDS appears to be more regular than AIIDS. 
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Table 1. Classification of 28 Provinces in China 
 
Region 1: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian,  

Shandong, Guangdong. 
Region 2: Shanxi, Liaoning, Anhui, Hubei, Hunan, Sichuan, Jilin,  

Heilongjiang, Jiangxi, Henan. 
Region 3: Guizhou, Yunnan, Shaanxi, Ningxia, Xinjiang, Inner Mongolia,  

Gansu, Guangxi, Qinghai. 
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Table 2. Comparison of Coefficients: AIIDS and MAIIDS 
 AIIDS MAIIDS 
Parameter Estimate t-ratio Estimate t-ratio 
α1 0.375 20.077** 0.374 22.641** 
α2 0.403 21.501** 0.401 24.028** 
α3 0.086 15.887** 0.086 16.775** 
α4 0.136 27.880** 0.138 24.613** 
γ11 0.102 17.823** 0.102 19.232** 
γ12 -0.094 -17.446** -0.094 -19.162** 
γ13 -0.003 -2.152** -0.003 -2.586** 
γ14 -0.006 -6.161** -0.006 -6.360** 
γ21 -0.094 -17.446** -0.094 -19.162** 
γ22 0.140 25.797** 0.141 27.521** 
γ23 -0.016 -9.232** -0.017 -10.364** 
γ24 -0.030 -16.252** -0.031 -14.905** 
γ31 -0.003 -2.152** -0.003 -2.586** 
γ32 -0.016 -9.232** -0.017 -10.364** 
γ33 0.015 17.557** 0.016 18.326** 
γ34 0.004 5.396** 0.004 4.791** 
γ41 -0.006 -6.161** -0.006 -6.360** 
γ42 -0.030 -16.252** -0.031 -14.905** 
γ43 0.004 5.396** 0.004 4.791** 
γ44 0.032 19.381** 0.033 18.253** 
β1 -0.042 -3.949** -0.021 -2.289** 
β2 0.047 4.534** 0.006 1.286 
β3 -0.006 -4.175** -0.003 -2.321** 
β4 0.001 1.033 0.000 1.083 
η   -0.017 -2.054** 
λ   -1.936 -3.593** 
δ11 -0.033 -2.649** -0.044 -3.686** 
δ12 0.016 1.525 0.012 1.168 
δ21 0.038 3.302** 0.048 4.333** 
δ22 -0.018 -1.868* -0.015 -1.618 
δ31 -0.005 -2.719** -0.005 -3.170** 
δ32 0.003 1.621 0.004 2.363** 
δ41 0.000 -0.083 0.001 0.653 
δ42 0.000 -0.215 0.000 -0.147 
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Table 2. Continued 
 
 AIIDS MAIIDS 
Log-Likelihood 4440.89 4454.21 
   

R
2
   

Cash 0.645 0.641 
Savings 0.660 0.643 
Bonds 0.733 0.680 
Miscellaneous Assets 0.761 0.801 
 
AIIDS Restriction Test (η=0 and λ=0):  
 
Likelihood Ratio Test Statistic: 26.46 
 
1% Critical Value: χ( )2

2 = 9.21 
 
Note: * Significant at 10% level with a two-tailed test. 
 ** Significant at 5% level with a two-tailed test. 
 Asset Set: {1=Cash, 2=Savings Deposits, 3=Bonds, 4=Miscellaneous Assets}. 
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Table 3. Elasticity Estimates: MAIIDS 
 
Uncompensated Quantity Elasticities 

UC
11f  -0.488 

UC
31f  0.040 

UC
12f  -0.296 

UC
32f  -0.065 

UC
13f  -0.007 

UC
33f  -0.521 

UC
14f  -0.014 

UC
34f  0.138 

UC
21f  -0.136 

UC
41f  -0.042 

UC
22f  -0.810 

UC
42f  -0.351 

UC
23f  -0.024 

UC
43f  0.071 

UC
24f  -0.044 

UC
44f  -0.415 

Scale Elasticities 
UC
1s  -0.832 

UC
3s  -0.801 

UC
2s  -1.011 

UC
4s  -1.025 

Compensated Quantity Elasticities 
C

11f  -0.310 
C
31f  0.212 

C
12f  0.283 

C
32f  0.492 

C
13f  0.021 

C
33f  -0.494 

C
14f  0.033 

C
34f  0.184 

C
21f  0.080 

C
41f  0.178 

C
22f  -0.106 

C
42f  0.362 

C
23f  0.010 

C
43f  0.105 

C
24f  0.013 

C
44f  -0.357 

Hicks Elasticities of Complementarity 
σ11 -3.073 σ23 -1.917 
σ12 -1.825 σ24 -2.150 
σ13 -1.478 σ33 -13.580 
σ14 -1.685 σ34 0.062 
σ22 -2.452 σ44 -7.446 
 
Note: All elasticities are estimated at the sample mean values of exogenous variables. 

UC
ijf , C

is , C
ijf  and σij are the point estimates or the scalar values of the relevant elasticity 

equations in (13). 
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Table 4. Elasticity Estimates Among Different Regions: MAIIDS 
 
Uncompensated and Compensated Quantity Elasticities 
 Region 1 Region 2 Region 3 

UC
11f  -0.522 -0.509 -0.459 
UC

12f  -0.117 -0.304 -0.378 
UC

13f  0.002 -0.007 -0.011 
UC

14f  -0.004 -0.014 -0.021 
UC
21f  -0.161 -0.138 -0.129 
UC
22f  -0.859 -0.799 -0.797 
UC
23f  -0.027 -0.024 -0.023 
UC
24f  -0.049 -0.045 -0.042 
UC

31f  0.108 0.017 0.036 
UC

32f  0.044 -0.062 -0.121 
UC

33f  -0.553 -0.584 -0.443 
UC

34f  0.130 0.122 0.157 
UC
41f  -0.048 -0.044 -0.036 
UC
42f  -0.422 -0.317 -0.331 
UC
43f  0.074 0.066 0.068 
UC
44f  -0.391 -0.457 -0.418 
C

11f  -0.293 -0.387 -0.257 
C

12f  0.479 0.073 0.351 
C

13f  0.035 0.015 0.018 
C

14f  0.043 0.020 0.038 
C
21f  0.094 0.106 0.066 
C
22f  -0.196 -0.045 -0.095 
C
23f  0.009 0.019 0.006 
C
24f  0.003 0.023 0.014 
C
31f  0.348 0.165 0.124 
C
32f  0.669 0.393 0.198 
C
33f  -0.519 -0.558 -0.430 
C
34f  0.179 0.163 0.182 
C
41f  0.156 0.188 0.137 
C
42f  0.110 0.403 0.292 
C
43f  0.102 0.108 0.094 
C
44f  -0.349 -0.392 -0.369 
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Table 4. Continued 
 
Scale Elasticities 
 Region 1 Region 2 Region 3 

UC
1s  -0.904 -0.554 -1.018 
UC
2s  -1.006 -1.108 -0.981 
UC
3s  -0.949 -0.670 -0.445 
UC
4s  -0.807 -1.058 -0.871 

Hicks Elasticities of Complementarity 
 Region 1 Region 2 Region 3 
σ11 -8.757 -2.336 -1.159 
σ12 -5.327 -1.427 -0.684 
σ13 -3.701 -1.165 -0.616 
σ14 -5.082 -1.290 -0.644 
σ22 -8.466 -1.839 -0.878 
σ23 -5.664 -1.444 -0.786 
σ24 -7.957 -1.571 -0.784 
σ33 -41.129 -10.253 -4.341 
σ34 0.459 -0.119 0.320 
σ44 -21.754 -5.719 -2.631 
 


