Significance of Employing a Multilateral Index Formula for Interstate Comparisons: A Case Study of the Australian Farm Sector

Boon L. Lee

School of Economics and Finance, Queensland University of Technology, Brisbane, Queensland 4001, Australia (Email: bl.lee@qut.edu.au)

Abstract. The paper demonstrates the drawbacks on using official data and binary indices when attempting an interstate comparison of output and productivity growth. The use of official data in one's national currency still requires a numerary currency due to price variations across states. Even with the use of index number formulas, some indices have shown to fail the transitivity property when more than 2 states are concerned. Hence the paper aims to demonstrate the significance of using a multilateral index formula like the Geary-Khamis (GK) method, EKS method and CCD method for derivation of appropriate currency converters or purchasing power parities (PPPs) to enable proper quantification of real output at the multilateral level. Subsequently, the paper demonstrates the variations in results between official aggregates and multilateral aggregates based on the GK method.

JEL Classification: C43, O47

1. Introduction

The purpose of this paper is not to dwell into the theorems of index number formulas but to illustrate with real data the outcomes of using multilateral index formulas over bilateral index formulas when considering a study involving more than 2 states/regions. It is well-known that international comparative studies involving more than two countries require the use of multilateral index formula (Drechsler, 1973). However, this approach does not end there as it is also applicable at the regional, firm as well as plant level (Coelli, Rao and Battese, 2002). Studies which have focused on regions or states within a country include Knopke, Strappazzon and Mullen (1995), Islam (2000) and Knopke, O'Donnell and Shepherd (2000). These studies which focused mainly on broad acre level or specific regions like wheat-sheep zone or by type of crop use the Theil-Tornqvist method to derive productivity indices. There are also studies which simply use state aggregates to compare growth rates between states such as Harris and Harris (1992), Neri (1998), Martin, Lubulwa, Chapman and Love (2001) and Nguyen, Smith and Meyer-Boehm (2003). While it may seem straight-forward to simply compare each state's gross state product as a form of output performance, there is still the need to remove the price differentials of products across states. Furthermore, any study which involves more than two regions/countries must satisfy the properties of 'transitivity' and 'base-invariance' which the Theil-Tornqvist does not.

While the basic issues regarding the conversion of value aggregates into a comparable form is recognised, the current study focuses on the index number problems arising in a multilateral context. Index number formulas like the Laspeyres, Paasche, Fisher and Theil-Tornqvist index are best suited for bilateral comparisons, but not at the multilateral level as they do not satisfy the transitivity property (Coelli, Rao and Battese, 2002). Transitivity is an important requirement that ensures internal consistency of comparisons between all pairs of countries in the context of a multilateral comparison (Kravis, Heston and Summers (1982) and Drechsler (1973)).

Often considered important in the context of multilateral comparisons, is the symmetric treatment of all the countries/regions, referred to as the 'base-invariance' property. This property guarantees that all regions/countries are treated equally in the comparisons exercise, regardless of the order in which the regions/countries enter into comparisons.

The purpose of the paper is two-fold; first, to illustrate the transitivity property using real data based on the following multilateral index formulas, the Elteto-Koves-Szulc (EKS), Caves, Christensen and Diewert (CCD) and Geary-Khamis methods and various bilateral index formulas. To do this, the study draws upon the data of the ABS 1996-97 Agriculture aggregates for six states; second, to demonstrate the variations in results between using official aggregates and GK aggregates.

The paper is organised as follows. Section 2 describes the methodology of the multilateral index formulas used in the study. Section 3 describes the data used and some of its limitations. Section 4 demonstrates the transitivity property in relation to the various price indices and discusses the findings. The paper concludes with some brief remarks.

2. Methodology

In order to obtain consistent multilateral comparisons between states, one has to generate transitive indices. The following index numbers satisfy the transitivity property. Elteto and Koves (1964) and Szulc (1964) formulated an index known as the EKS which is a matrix of comparisons between all pairs of countries/states using the Fisher index number formula and is expressed as

$$EKS_{xz} = \prod_{i=1}^{M} \left[F_{xy} * F_{yz} \right]^{1/M}$$
(1)

where EKS_{xz} is the index between countries/states x and z through a link country/state y for i=1, 2, M and Fxz represent the Fisher index for any pair of states x and z. The choice of the Fisher index is mainly because of the ideal properties of the Fisher index as demonstrated by Diewert (1992).

Caves, Christensen and Diewert (1982) formulated a multilateral index formula using a generalised Theil-Tornqvist index (TT) usually referred to as the CCD index. The CCD index is derived from the work of Elteto and Koves (1964) and Szulc (1964) and is expressed as

$$CCD_{xz} = \prod_{i=1}^{M} \left[TT_{xy} * TT_{yz} \right]^{1/M}$$
(2)

where CCD_{xz} is the index between countries/states x and z through a link country/state y for i=1, 2, M. Both the EKS and CCD index are transitive in nature.

Another multilateral index formula used in the study is the Geary-Khamis (GK) method, developed by Geary (1958) and Khamis (1972)¹. This method is also widely used in international comparisons (see Kravis, Heston and Summers, 1978 and 1982; OECD, 1990).

Geary (1958) provided the framework underlying this method based on the idea of the purchasing power parity (PPP) of a currency. This framework was further refined by Khamis (1972) who described the mathematical and statistical properties of the GK method.

The GK method derives PPPs for different currency units (PPP for the currency of country j), and average international prices for each of the commodities included (P_i for commodity i). While the current study is an interstate comparison rather than an international comparison, the application is still feasible as different

¹ See Rao (1993) or Rao, Maddison and Lee (in Maddison. Rao and Shepherd (eds), 2002) for a detailed description of the computational procedures and properties of the Geary-Khamis method.

states have different producer price levels for all commodities which indicate that one Australian dollar will still have a different purchasing power between states. The GK method is appealing as it produces PPPs for converting principal aggregates, as well as interstate average prices for each commodity which allows for more disaggregated level of comparison. The PPPs and interstate average prices P_i are expressed as functions of the observed price and quantity data from different states using the following interdependent system of equations. For the currency of state j, the PPP is defined as:

$$PPP_{j} = \frac{\sum_{i=1}^{N} p_{ij} q_{ij}}{\sum_{i=1}^{N} P_{i} q_{ij}}$$
(3)

where: p_{ij} and q_{ij} are, respectively, the price and quantity of i-the product for state j.

Equation (3) shows the number of currency units of state j that are equivalent in purchasing power to one unit of the numerary currency unit in which the interstate average prices are specified. The interstate prices (P_i) are each expressed as:

$$P_{i} = \frac{\sum_{j=1}^{M} \left(\frac{p_{ij} q_{ij}}{PPP_{j}} \right)}{\sum_{s=1}^{M} q_{ij}}$$
(4)

Geary-Khamis equations (3) and (4) are an independent system of equations which are solved by using observed price and quantity data on N commodities from M states to determine (i) M purchasing power parities: PPP₁, PPP₂, ..., PPP_M; and (ii) N commodity interstate average prices: P_1 , P_2 , ..., P_N .

Khamis (1972) proved that if one of the PPPs is set to unity, then the rest of the unknown parities and interstate prices can be solved uniquely. This offers a choice as to which state's currency is set to unity. In the current study, New South Wales (NSW) is used as the reference state for which the PPP is set to unity (ie. equalling 1). Solving equations (3) and (4) will lead to numerical values of PPPs and P_{is} respectively. The interstate prices are average prices for all commodities across all states involved in the multilateral comparisons. For purposes of comparing value

aggregates across states, the Geary-Khamis method offers the flexibility of using PPPs directly for conversion of aggregates or using interstate prices to revalue the quantities.

3. Sources and Data Limitations

The data source for the benchmark year 1996-97 drawn from the Australian Bureau of Statistics, <u>Agriculture</u>, Cat No. 7113.0 provided detailed information for quantity produced and value output. Of the 77 commodities, a sample of 65 commodities was used in deriving the PPPs. These are provided in Appendix 1. Essentially, derivation of price index requires price and quantity data. Value output and production levels drawn from ABS, Agriculture 1996-97, Cat. No. 7113.0 were used to derive average unit prices for each commodity implicitly. Unfortunately, not all commodities were included due to the following reasons.

The first problem in the data was that of "holes". These "holes" are simply data which was either not collected or not published, or that the state produces an insignificant amount or simply does not produce that commodity. As such, the current study focuses on six states, namely New South Wales (NSW), Victoria (Vic), Queensland (Qld), South Australia (SA), Western Australia (WA) and Tasmania (Tas). Northern territory was not included due to the above-mentioned data problems while the Australian Capital Territory aggregates were incorporated in NSW. Another data problem was that some commodities had production estimates but had no gross value². This implied that the derivation of the PPPs and interstate average prices for the benchmark year 1996-97 is based on a selected number of commodities which is less than the total number of agricultural products produced.

While the sample of commodities may not account for all agricultural products, based on the data used for 1996-97, the gross value for each state at each state's price shows that the proportion of data used is above 70% which is an ideal coverage in deriving reliable PPPs. The ratios of the sample gross value to total gross value for each state are as follows: NSW (73%), Vic (86%), Qld (83%), SA (87%), WA (83%), Tas (72%).

² For example, commodities such as beetroot and peas (see ABS, <u>Agriculture</u> 1996-97, cat. No. 7113.0, p. 60 and 62).

4. Empirical Results

4.1 Outcome of using binary indices in multilateral study

In this section we consider the outcome of deriving price index numbers when more than 2 states are involved. In a study which takes into account more that 2 states, we are typically interested in all pairs of comparisons, i.e. across all pairs of states. For a pair of states (x,z) an index, I_{xz} can be derived. Using the Laspeyres, Paasche, Fisher and Theil-Tornqvist price index formulae, and considering all pairs of states, (x,z) with x,z = 1,2,...,M we derive a matrix of index numbers comparisons between all pairs of states (see Coelli, Rao and Batteses (2002) for details on these price indices).

$$\begin{bmatrix} I_{11} & I_{12} & K & I_{1M} \\ I_{21} & I_{22} & K & I_{2M} \\ M & & & \\ I_{M1} & I_{M2} & K & I_{MM} \end{bmatrix}$$

This matrix represents all multilateral comparisons involving M states and ideally all comparisons should be internally consistent, ie. satisfy the transitivity property. To illustrate the transitivity property, assuming I_{xz} to be an index number formula, where X and Z are two countries/states, transitivity requires that for all triplets (sets of three countries/state - X, Y and Z):

$$I_{xz} = I_{xy} \times I_{yz}$$

In this equation, $I_{xy} \times I_{yz}$ is an indirect comparison between countries/states X and Z through a third or link country/state Y, whereas I_{xz} is a direct comparison. Therefore, transitivity requires that the direct and indirect comparisons provide the same index.

Using the price and quantity of the 65 commodities for the 6 states (see Section 4 for details on data source and limitations), we derive the Laspeyres, Paasche, Theil-Tornqvist and Fisher index numbers for all pairs of states as shown in Tables 1, 2, 3 and 4.

Using the above tables, we can prove that all four indices fail the transitivity property. From the Laspeyres Price index, a direct comparison between NSW and Qld is 0.944 (Qld being the base state). For an indirect comparison between NSW and Qld through Vic, this would be given by

$$I_{NSW,Vic} * I_{Vic,Qld} = 1.221 * 0.580 = 0.708 \neq 0.944$$

which does not satisfying the transitivity property. If we were to use SA as the intermediate state, then this would be given as

$$I_{NSW,SA} * I_{SA,Qld} = 1.070 * 0.625 = 0.668 \neq 0.944$$

Using the Theil-Tornqvist index with Vic as the intermediate state between NSW and Qld,

$$I_{NSW,Vic} * I_{Vic,Qld} = 1.146 * 0.793 = 0.909 \neq 0.944$$

Using the Fisher index with Vic as the intermediate state between NSW and Qld,

$$I_{NSW,Vic} * I_{Vic,Old} = 1.154 * 0.645 = 0.744 \neq 0.962$$

The same result happens where the property of transitivity fails. What this implies is that the use of any binary index formula in determining output and productivity levels across states is biased as there is no internal consistency.

4.2 Outcome of using Multilateral index formulas

The EKS price indices and the CCD price indices are shown in Tables 5 and 6 and satisfy the transitivity property which can be proven as follows.

A direct comparison between NSW and Qld is 0.861 (Qld being the base state). For an indirect comparison between NSW and Qld through Vic, this would be given by

$$I_{NSW,Vic} * I_{Vic,Old} = 1.239 * 0.695 = 0.861 = I_{NSW,Old}$$

[INSERT Table 5]

As a result of satisfying the transitivity property, this method is widely used by international organisations such as EUROSTAT and OECD

[INSERT Table 6]

Table 6 price indices based on the CCD approach satisfies the transitivity property as follows. A direct comparison between NSW and Qld is 0.939 (Qld being the base state). For an indirect comparison between NSW and Qld through Vic, this would be given by

$$I_{NSW,Vic} * I_{Vic,Qld} = 1.159 * 0.810 = 0.939 = I_{NSW,Qld}$$

What this tells us is that regardless on whether a direct or indirect comparison is attempted, one should obtain the same results, this ensuring that internal consistency is achieved.

[INSERT Table 7]

The GK price indices also satisfies the transitivity property whereby

 $I_{NSW,Vic} * I_{Vic,Old} = 1.034 * 1.500 = 1.550 = I_{NSW,Old}$

4.3 Gross Farm Product based on GK PPPs and 1996-97 constant prices

In this section, a brief comparison of output based on two sets of prices is compared (constant price <u>viz-a-viz</u> GK PPPs). GK Purchasing Power Parities for the benchmark year 1996-97 are derived first before applying them to each state's gross farm product to arrive at the gross farm product at GK PPPs for all other years. Both results are presented in Tables 8 and 9.

[INSERT Tables 8 and 9]

From Table 8 with New South Wales indexed at 100, Victoria's farm output for the year 1996-97 was 89 while Queensland was 63. Converted using GK PPPs shown in Table 9 with NSW equalling 100, Victoria's output was 106 while Queensland was 59. Such discrepancy in results is clear indication that in any type of cross-sectional comparison, appropriate converters must be employed. Furthermore, one cannot rely on official aggregates as they do not take into account price variation across states.

5. Conclusion

The main focus of the paper was to demonstrate the significance of a multilateral index formula over the bilateral index formulas by means of testing the transitivity property. For the benchmark year 1996-97, when price differentials were not taken into consideration, the results showed that NSW had the greatest output based on Australian Bureau of Statistics data. However, when the GK PPPs were used, results showed that Victoria's output was above that of NSW level. Over the period 1991 to 1999, Victoria's output was the highest amongst all other states and higher than the official figures which demonstrate that using interstate official aggregates can still cause biasness in output and productivity growth.

References

- Coelli T, Rao D S P, Battese G (2002) An Introduction to Efficiency and Productivity Analysis. Kluwer Academic Publishers, Boston
- Caves D W, Christensen L R, Diewert W E (1982) The Economic Theory of Index Numbers and the Measurement of Input, Output and Productivity. Econometrica 50:1393-1414
- Diewert W E (1992) Fisher ideal output, input and productivity indexes revisited. Journal of Productivity Analysis 3:211-248
- Drechsler L (1973) Weighting of Index Numbers in Multilateral Comparisons. Review of Income and Wealth 19:17-34
- Elteto O, Koves P (1964) On an Index Computation Problem in International Comparisons (in Hungarian). Statistztikai Szemle 42:507-518
- Geary R C (1958) A Note on the Comparison of Exchange Rates and Purchasing Power Parities Between Countries. Journal of the Royal Statistical Society 121(1):97-99
- Harris P, Harris D (1992) Interstate Differences in Economic Growth Rates in Australia, 1953-54 to 1990-91. Economic Analysis and Policy 22(2):129-148
- Islam N (2000) An Analysis of Productivity Growth in Western Australian Agriculture. University of Western Australia, Discussion Paper 00.15
- Khamis S H (1972) A New System of Index Numbers for National and International Purposes. Journal of the Royal Statistical Society 135(1):96-121

- Knopke P, O'Donnell V, Shepherd A (2000) Productivity Growth in the Australian Grains Industry. ABARE Research Report 2000.1, Canberra
- Knopke P, Strappazzon L, Mullen J (1995) Productivity Growth: Total factor productivity on Australian broad acre farms. Australian Commodities, 2(4): 486-497
- Kravis I B, Heston A, Summers R (1978) International Comparisons of Real Product and Purchasing Power. John Hopkins University Press, Baltimore.
- Kravis I B, Heston A, Summers R (1982) World Product and Income. John Hopkins University Press, Baltimore
- Rao D S P, Maddison A, Lee B L (2002) International Comparison of Farm Sector Performance: Methodological Options and Empirical Findings for Asia-Pacific Economies, 1900-94, in: Maddison A, Rao D S P, Shepherd W (eds) The Asian Economies in the Twentieth Century. Edward Elgar, Cheltenham, 27-52
- Martin P, Lubulwa M, Chapman L, Love G (2001) Farm Performance, in ABARE, Australian farm surveys report: financial performance of Australian farms, 1-17.
- Neri F (1998) The Economic Performance of the States and Territories of Australia: 1861-1992. The Economic Record 74(225):105-120
- Nguyen, D-T, Smith C, Meyer-Boehm G (2003) Variations in Economic and Labour Productivity Growth among the States of Australia: 1984-85 to 1998-99, in: Williams C, Draca M, Smith C (eds), Productivity and Regional Economic Performance in Australia, Office of Economic and Statistical Research Queensland Treasury 41-66
- Organisation for Economic Cooperation and Development (1990) National Accounts -Main Aggregates 1960-1988. Vol 1, Paris
- Rao D S P (1993) Intercountry Comparisons of Agricultural Output and Productivity. FAO Economic and Social Development Paper, 112, Rome
- Szulc B (1964) Index Numbers for Multilateral Regional Comparisons (in Polish). Przeglad Statysticzny 3:239-254

			Table 1			
		1	Laspeyres Price	Indices		
			Base Stat			
	NSW	Vic	Qld	SA	WA	Tas
NSW	1.000	1.221	0.944	1.070	1.020	1.278
Vic	0.916	1.000	0.580	0.949	0.928	1.118
Qld	1.020	1.396	1.000	1.319	0.913	1.402
SA	0.889	1.173	0.625	1.000	0.952	1.298
WA	1.063	1.392	1.031	1.134	1.000	1.44
Tas	0.736	0.996	0.454	0.976	0.765	1.00
			Table 2			
			Paasche Price			
			Base State	-		
	NSW	Vic	Qld	SA	WA	Та
NSW	1.000	1.092	0.981	1.125	0.941	1.35
Vic	0.819	1.000	0.717	0.853	0.719	1.00
Qld	1.059	1.724	1.000	1.601	0.970	2.20
SA	0.934	1.053	0.758	1.000	0.881	1.02
WA	0.980	1.077	1.095	1.051	1.000	1.30
Tas	0.783	0.894	0.713	0.770	0.691	1.00
			Table 3			
		The	eil-Tornqvist Pri			
			Base State	-		
	NSW	Vic	Qld	SA	WA	Та
NSW	1.000	1.146	0.944	1.053	0.969	1.16
Vic	0.873	1.000	0.793	0.905	0.826	1.02
Qld	1.059	1.260	1.000	1.131	0.988	1.25
SA	0.950	1.105	0.884	1.000	0.922	1.10
WA	1.032	1.211	1.012	1.085	1.000	1.25
Tas	0.860	0.976	0.797	0.905	0.797	1.00
			Table 4			
			Fisher Price In			
	NSW	Vic	Base State Qld	e SA	WA	Та
NSW	1.000	1.154	0.962	1.097	0.979	1.31
Vic	0.866	1.154	0.962	0.900	0.979	
Qld	1.039	1.551	0.645	0.900 1.453	0.817	1.05 1.75
SA	0.911	1.112	0.688	1.000	0.916	1.15
WA	1.021	1.225	1.062	1.092	1.000	1.37
Tas	0.759	0.944	0.569	0.867	0.727	1.00

Source: ABS, Agriculture 1996-97 Cat. No. 7113.0

Table 5 EKS (Fisher) Price Indices						
			Base Stat	е		
	NSW	Vic	Qld	SA	WA	Tas
NSW	1.000	1.239	0.861	1.135	0.961	1.352
Vic	0.807	1.000	0.695	0.916	0.776	1.091
Qld	1.162	1.440	1.000	1.319	1.117	1.571
SA	0.881	1.092	0.758	1.000	0.847	1.192
WA	1.040	1.289	0.895	1.181	1.000	1.407
Tas	0.740	0.916	0.636	0.839	0.711	1.000

Source: ABS, Agriculture 1996-97 Cat. No. 7113.0

		FK	Table 6 S (TT) Price Ind			
			Base Stat			
	NSW	Vic	Qld	SA	WA	Tas
NSW	1.000	1.159	0.939	1.052	0.952	1.177
Vic	0.863	1.000	0.810	0.908	0.822	1.016
Qld	1.065	1.234	1.000	1.121	1.014	1.254
SA	0.950	1.101	0.892	1.000	0.905	1.119
WA	1.050	1.217	0.986	1.105	1.000	1.236
Tas	0.850	0.984	0.798	0.894	0.809	1.000

Source: ABS, Agriculture 1996-97 Cat. No. 7113.0

Table 7 Geary-Khamis (GK) Price Indices						
			Base Stat			
	NSW	Vic	Qld	SA	WA	Tas
NSW	1.000	1.034	1.550	2.344	1.752	9.868
Vic	0.968	1.000	1.500	2.268	1.131	4.210
Qld	0.645	0.667	1.000	1.512	1.131	6.367
SA	0.427	0.441	0.661	1.000	0.748	4.210
WA	0.571	0.590	0.884	1.338	1.000	5.631
Tas	0.101	0.105	0.157	0.238	0.178	1.000
Tas	0.101	0.105	0.157	0.238	0.178	

Source: ABS, Agriculture 1996-97 Cat. No. 7113.0

Appendix 1	
Agricultural Commodity Production in 1996/97 (MT ^a)	

	NSW	Vic	QId	SA	WA	Tas
CROPS AND PASTURES						
Cereals for grain						
Barley Grain sorghum Maize Oats Rice Triticale Wheat	1,483,000 417,000 256,000 607,000 1,248,000 317,000 8,363,000	1,189,000 3,000 7,000 304,000 6,000 167,000 2,262,000	429,000 1,003,000 130,000 26,000 0 6,000 1,980,000	1,923,000 0 156,000 0 141,000 2,795,000	$\begin{array}{c} 1,635,000\\ 2,000\\ 5,000\\ 546,000\\ 0\\ 35,000\\ 7,516,000 \end{array}$	35,000 0 14,000 7,000 8,000
Legumes						
Lupins for grain Field peas for grain	96,000 18,000	52,000 213,000	0 0	102,000 195,000	1,272,000 26,000	0 1,000
Crops cut for Hay						
Cereals for hay Non cereals for hay	229,000 15,000	189,000 26,000	52,000 21,000	330,000 23,000	413,000 19,000	6,000 4,000
Oilseeds						
Canola	331,000	132,000	0	53,000	108,000	0
Other crops						
Sugar cane for crushing Peanuts (in shell) Tobacco	2,231,000 1,000 0	0 0 4,000	36,232,000 46,000 5,000	0 0 0	170,000 0 0	0 0 0
Pastures and grasses cut for Hay						
Lucerne Other	412,000 355,000	187,000 1,255,000	179,000 66,000	84,000 249,000	21,000 325,000	12,000 204,000
HORTICULTURE						
Citrus						
Oranges Lemons and Limes Mandarins	231,543 5,679 5,566	88,963 5,371 5,319	16,126 6,428 44,566	180,683 13,706 16,004	5,308 794 1,472	0 0 0
Pome						
Apples Pears (excl. Nashi)	83,231 3,195	118,968 146,060	28,045 1,496	28,865 6,136	38,218 9,932	55,649 742
Stone						
Apricots Cherries Nectarines Peaches Plums and prunes	926 3,439 8,030 15,411 10,409	8,936 2,008 7,033 43,487 4,618	277 2 2,556 3,297 1,972	15,235 948 1,362 7,694 4,271	341 101 2,859 2,191 3,912	205 185 41 17 6

Appendix 1 - continued Agricultural Commodity Production in 1996/97 (MT^a)

	NSW	Vic	Qld	SA	WA	Tas
Other orchard nei.						
Avocados Mangoes	4,199 273	1,793 0	11,744 28,366	901 0	1,445 1,095	0 0
Nuts						
Almonds Macadamia	144 9,675	3,731 0	1 6,374	2,014 0	3 3	0 0
Kiwifruit	418	2,255	255	0	453	0
Raspberries	31	208	10	5	2	105
Strawberries	210	3,376	3,755	1,322	2,444	129
Tropical						
Bananas Papaw	38,914 124	0 0	143,748 5,793	0 0	13,360 174	0 0
Grapes	209,901	329,687	4,530	374,589	21,796	1,497
VEGETABLES						
Asparagus Beans, French and runner Broccoli Cabbages and brussels sprouts Carrots Cauliflowers Celery Cucumbers Lettuces Marrows, squashes and zucchinis Melons Water Rock and cantaloupe Mushrooms Onions, white and brown Potatoes Pumpkins Sweet corn Tomatoes	2,534 2,197 3,407 11,124 559 13,765 11,691 195 5,264 12,967 1,859 6,058 11,094 12,260 13,816 136,173 19,731 34,273 102,795	4,252 2,038 19,198 25,375 3,353 99,274 17,409 22,403 795 36,557 1,035 1,155 7,856 14,237 15,615 315,727 4,595 7,366 167,563 PRODUCTS	821 18,391 9,116 13,920 24,403 28,522 10,518 11,717 6,778 42,251 8,942 55,262 36,890 4,165 21,789 115,435 38,688 14,822 109,911	$\begin{array}{c} 123\\ 128\\ 1,828\\ 7,131\\ 1,542\\ 40,307\\ 3,709\\ 4,247\\ 1,153\\ 6,085\\ 163\\ \end{array}$	111 690 2,649 5,075 2,226 52,992 16,213 5,922 1,726 10,197 750 22,950 10,454 1,315 20,321 116,004 14,513 1,668 9,038	13 14,154 4,253 3,376 8 22,546 4,851 389 157 2,457 669 0 0 856 59,677 317,448 1,885 5,352 682
Livestock products						
Cattle and calves (no.) Sheep and lambs (no.) Pigs (no.) Poultry (no.)	2,297,000 8,862,000 1,338,000 133,364,000	2,373,000 8,786,000 1,197,000 86,733,000	2,639,000 1,762,000 1,002,000 61,089,000	385,000 4,066,000 427,000 28,008,000	413,000 4,716,000 550,000 36,360,000	248,000 748,000 75,000 0
Wool Whole milk (L) Eggs (doz)	195,481 1,192,000,000 74,870,000	175,209 5,622,000,000 44,670,000	45,850 797,000,000 22,225,000	89,579 535,000,000 10,706,000	160,022 349,000,000 15,684,000	18,876 529,000,000 4,001,000
Beekeeping						
Honey produced Beeswax produced	12,620 234	4,403 76	4,190 68	3,036 58	1,729 40	1,012 14

Source: ABS, Agrculture 1996-97, Cat No. 7113.0. (a) units are in MT unless otherwise specified. "0" indicates either data was not collected or not published.

Appendix 1 - continued Value Output (\$mill), 1996/97

	NSW	Vic	Qld	SA	WA	Tas
CROPS AND PASTURES						
Cereals for grain						
Barley Grain sorghum Maize Oats Rice Triticale Wheat	332.6 77.2 51.1 87.3 307.6 49.2 1,746.8	242.0 0.6 1.8 42.7 2.7 29.1 484.9	66.7 179.0 25.4 4.6 0.0 1.0 421.6	358.6 0.0 19.2 0.0 20.8 602.1	299.6 0.3 1.3 70.7 0.0 5.1 1,621.1	6.6 0.0 2.2 0.0 1.3 1.4
Legumes						
Lupins for grain Field peas for grain	21.1 4.4	12.2 52.7	0.0 0.0	23.0 47.7	193.0 6.0	0.0 0.1
Crops cut for Hay						
Cereals for hay Non cereals for hay	24.9 2.2	22.4 3.8	6.2 2.3	39.0 1.7	48.9 2.2	0.9 0.2
Oilseeds						
Canola	126.5	48.1	0.0	21.4	42.6	0.0
Other crops						
Sugar cane for crushing Peanuts (in shell) Tobacco	71.6 0.8 0.0	0.0 0.0 24.8	1,112.0 34.1 28.8	0.0 0.0 0.0	2.9 0.0 0.0	0.0 0.0 0.0
Pastures and grasses cut for Hay						
Lucerne Other	47.0 30.4	27.7 154.7	21.7 10.1	12.3 43.7	4.3 30.5	3.0 26.3
HORTICULTURE						
Citrus						
Oranges Lemons and Limes Mandarins	116.2 9.9 7.1	48.3 3.1 7.0	11.0 7.3 56.7	86.1 10.2 13.9	2.2 0.5 2.1	0.0 0.0 0.0
Pome						
Apples Pears (excl. Nashi)	98.0 1.8	124.4 87.1	26.8 1.0	48.7 7.4	41.3 8.1	54.2 0.6
Stone						
Apricots Cherries Nectarines Peaches Plums and prunes	2.5 13.8 14.0 15.6 16.8	6.5 8.3 12.3 27.4 5.0	0.5 0.0 4.8 5.2 3.1	32.1 8.4 3.6 8.2 6.6	0.5 1.1 6.4 3.7 7.0	0.4 2.2 0.1 0.0 0.0

Appendix 1 - continued Value Output (\$mill), 1996/97

	NSW	Vic	Qld	SA	WA	Tas
Other orchard nei.						
Avocados Mangoes	7.7 0.7	3.3 0.0	24.7 54.9	2.4 0.0	3.9 4.8	0.0 0.0
Nuts						
Almonds Macadamia	0.8 36.8	24.9 0.0	0.0 18.0	13.4 0.0	0.0 0.0	0.0 0.0
Kiwifruit	0.8	3.6	0.4	0.0	1.2	0.0
Raspberries	0.3	2.0	0.3	0.0	0.0	0.7
Strawberries	0.9	13.3	22.0	8.3	10.8	0.6
Tropical						
Bananas Papaw	53.0 0.1	0.0 0.0	140.6 5.7	0.0 0.0	18.9 0.4	0.0 0.0
Grapes	156.8	214.7	14.4	298.3	29.2	3.0
VEGETABLES						
Asparagus Beans, French and runner Broccoli Cabbages and brussels sprouts Capsicum, chillies and peppers Carrots Cauliflowers Celery Cucumbers Lettuces Marrows, squashes and zucchinis Melons Watermelon Rock and cantaloupe Mushrooms Onions, white and brown Potatoes Pumpkins Sweet corn Tomatoes	12.5 1.9 6.0 4.6 0.5 5.6 6.0 0.1 3.4 10.9 2.4 1.9 6.4 39.0 5.8 49.4 9.7 8.5 16.9	$18.3 \\ 4.4 \\ 28.0 \\ 11.5 \\ 3.4 \\ 61.2 \\ 11.5 \\ 16.5 \\ 1.1 \\ 20.7 \\ 2.4 \\ 0.7 \\ 6.8 \\ 59.7 \\ 5.8 \\ 123.5 \\ 1.1 \\ 7.2 \\ 36.6 \\ 1000 \\ 1$	4.9 27.8 15.1 10.5 28.6 14.5 4.8 6.2 7.2 29.5 10.7 18.0 25.4 15.0 12.8 52.3 15.6 6.7 111.9	0.8 0.3 2.9 7.6 4.5 20.4 3.1 3.1 1.6 4.6 0.4 0.1 3.2 11.5 41.8 100.6 3.8 1.2 4.8	$\begin{array}{c} 0.7\\ 1.6\\ 3.5\\ 5.1\\ 3.3\\ 32.1\\ 19.9\\ 4.7\\ 2.7\\ 7.4\\ 1.9\\ \end{array}$	$\begin{array}{c} 0.1\\ 5.5\\ 5.2\\ 2.4\\ 0.0\\ 8.3\\ 2.7\\ 0.4\\ 0.4\\ 2.5\\ 2.4\\ \end{array}$ $\begin{array}{c} 0.0\\ 0.0\\ 0.1\\ 16.3\\ 84.8\\ 0.5\\ 0.9\\ 1.0\\ \end{array}$
Cattle and calves Sheep and lambs Pigs Poultry	772.6 247.5 214.3 467.5	662.5 347.3 168.6 240.7	1,232.9 53.2 160.3 166.5	137.6 134.5 54.4 89.2	282.1 237.1 73.5 89.4	75.1 18.9 np np
Wool Whole milk Eggs	989.4 494.0 123.1	512.9 1,536.9 57.8	180.8 329.5 36.7	280.2 172.7 14.4	574.6 142.6 29.3	82.1 132.6 9.0
Beekeeping						
Honey produced Beeswax produced	21.5 1.3	7.5 0.4	7.0 0.4	5.2 0.3	2.6 0.2	2.0 0.1
Cauliflowers Celery Cucumbers Lettuces Marrows, squashes and zucchinis Melons Watermelon Rock and cantaloupe Mushrooms Onions, white and brown Potatoes Pumpkins Sweet corn Tomatoes LIVESTOCK AND LIVESTOCK PR Livestock products Cattle and calves Sheep and lambs Pigs Poultry Wool Whole milk Eggs Beekeeping Honey produced	6.0 0.1 3.4 10.9 2.4 1.9 6.4 39.0 5.8 49.4 9.7 8.5 16.9 CODUCTS 772.6 247.5 214.3 467.5 989.4 494.0 123.1 21.5 1.3	11.5 16.5 1.1 20.7 2.4 0.7 6.8 59.7 5.8 123.5 1.1 7.2 36.6 662.5 347.3 168.6 240.7 512.9 1,536.9 57.8 7.5	4.8 6.2 7.2 29.5 10.7 18.0 25.4 15.0 12.8 52.3 15.6 6.7 111.9 1,232.9 53.2 160.3 166.5 180.8 329.5 36.7 7.0	3.1 3.1 1.6 4.6 0.4 0.1 3.2 11.5 41.8 100.6 3.8 1.2 4.8 137.6 134.5 54.4 89.2 280.2 172.7 14.4	19.9 4.7 2.7 7.4 1.9 8.8 13.5 5.7 8.9 38.0 6.5 1.9 5.8 282.1 237.1 73.5 89.4 574.6 142.6 29.3	2: 0. 0. 2. 2. 0. 0. 0. 0. 1. 84. 0. 0. 1. 1. 75. 18. n n , 82. 132. 9.

Source: ABS, Agrculture 1996-97, Cat No. 7113.0.

Note: Beetroot and Parsnips not included as value output figures were not available.

LISTING OF DISCUSSION PAPERS - 2003

Drew M E, & Stanford, J D, Principal and Agent Problems in Superannuation Funds, No 142, March 2003

Li S, A Single-Period Model and Some Empirical Evidences for Optimal Asset Allocation with Value-at-Risk Constraints, No 143, March 2003

Valadkhani A, An Empirical Analysis of the Black Market Exchange Rate in Iran, No 144, April 2003

Worthington A, Business Expectations and Preferences regarding the Introduction of Daylight Saving in Queensland, No 145, May 2003

Worthington A, Losing Sleep at the Market: An Empirical Note on the Daylight Saving Anomaly in Australia, No 146, May 2003

Robinson M, Tightening the Results/Funding Link in Performance Budgeting Systems, No 147, May 2003

Worthington A, & Higgs H, Risk, Return and Portfolio Diversification in Major Painting Marketing: The Application of Conventional Financial Analysis to Unconventional Investments, No 148, June 2003

Valadkhani A, Demand for M2 in Developing Countries: An Empirical Panel Investigation, No 149, July 2003

Worthington A, & Higgs H, Modelling the Intraday Return Volatility Process in the Australia Equity Market: An Examination of the Role of Information Arrival in S & PASX Stocks, No 150, July 2003

Lahiri R, Tax Distortions in a Neoclassical Monetary Economy in the Presence of Administration Costs, No 151 September 2003

Layton A, & Smith D, Duration Dependence in the US Business Cycle, No 152, August 2003

Valadkhani A, & Layton A, Quantifying the Effect of GST on Inflation in Australia's Capital Cities: An Intervention Analysis, No 153, September 2003

Worthington A, & Valadkhani A, Measuring the Impact of Natural Disasters on Capital Markets: An Empirical Application Using Intervention Analysis, No 154, September 2003

Robinson M, The Output Concept and Public Sector Services, No 155, September 2003

Worthington A, Brown K, Crawford M, & Pickernell D, Socio-Economic and Demographic Determinants of Household Gambling in Australia, No 156, September 2003

Worthington A, & Higgs H, Tests of Random Walks and Market Efficiency in Latin American Stock Markets: An Empirical Note, No 157, September 2003

(Replacing Previous No 158) Worthington A, & Higgs H, Systematic Features of High-Frequency Volatility in Australian Electricity Markets: Intraday Patterns, Information Arrival and Calendar Effects, No 158, November 2003

Worthington A, & Higgs H, Weak-form Market Efficiency in European Emerging and Developed Stock Markets, No 159, September 2003

West T, & Worthington A, Macroeconomic Risk Factors in Australian Commercial Real Estate, Listed Property Trust and Property Sector Stock Returns: A Comparative Analysis using GARCH-M, No 160, October 2003

Lee B, Interstate Comparison of Output and Productivity in the Australian Agricultural Sector – 1991 – 1999, No 161, October 2003

McCarthy S, Hedging Versus not Hedging: Strategies for Managing Foreign Exchange Transaction Exposure, No 162, November 2003

Worthington A, Emergency Finance in Australian Households: An Empirical Analysis of Capacity and Sources, No 163, November 2003

Worthington C, Debt as a Source of Financial Stress in Australian Households, No 164, November 2003

Robinson M, The Australian Budgeting System: On the Cusp of Change, No 165, November 2003

Lahiri R, Cooperation v/s Non-cooperation in R&D Competition with Spillovers, No 166, December 2003

Wolff R, Yao Q, & Tong H, Statistical Tests for Lyapunov Exponents of Deterministic Systems, No 167, December 2003

Wolff R, Barnett A, A Time Domain Test for Some Types of Non-Linearity, No 168 December 2003

LISTING OF DISCUSSION PAPERS - 2004

Drew M, Veeraraghavan M, Ye M, Do Momentum Strategies Work? - Australian Evidence, No 169, January 2004

Drew M, Mallin M, Naughton T, Veeraraghavan M, Equity Premium: - Does it Exist? – Evidence from Germany and United Kingdom, No 170, January 2004

Layton A, Valadkhani A, Measures of National Export Price Volatility Based on the Capital Asset Pricing Model, No 171, January 2004

Drew M, Marsden A, Veeraraghavan M, Small Firm Effect, Liquidity and Security Returns: Australian Evidence, No 172, February 2004

Drew M, Stanford J, Portability of Superannuation Balances, No 173, March 2004

Drew M, Naughton T, Veeraraghavan M Pricing of Equities in China: Evidence from the Shanghai Stock Exchange No 174, May 2004

Valadkhani A, Worthington A, Layton A, An Analysis of the Rising Cost of Education in Australia, No 175, April 2004

Li S, Worthington A, The Relationship Between The Adoption of Internet Banking and Electronic Connectivity: - An International Comparison, No 176, May 2004

Drew M, Marsden A, Veeraraghavan M, Does Idiosyncratic Volatility Matter? – New Zealand Evidence, No 177, May 2004

Guégan D, How Can We Dane the Concept of Long Memory? - An Econometric Survey, No 178, April 2004

Clements A, Hurn S, White S, Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility No 179, May 2004

McCarthy S, Ispriani A, An Operating/Economic Exposure Australian Case Study: Foster's Group Limited, No 180, May 2004

Lahiri R, On Skill Heterogeneity and Inflation, No 181, June 2004

Bianchi R, Drew M, Polichronis J, A Test of Momentum Trading Strategies in Foreign Exchange Markets: Evidence from the G7, No 182, June 2004

Jeisman S, Exchange Market Pressure in Australia, No 183, June 2004

Higgs H, Worthington A, Financial Returns and Price Determinants in the Australian Art Market - 1973-2003, No 184, July 2004

Worthington, A, The distribution of Financial Literacy in Australia, No 185, November 2004

Higgs H, Worthington A, Systematic Features of High-Frequency Volatility in Australian Electricity Markets: Intraday Patterns, Information Arrival and Calendar Effects, No 186, December 2004

LISTING OF DISCUSSION PAPERS - 2005

Behrens P. Economic Development Strategies: Examples from Europe and Australia, No 187, January 2005

Wilson C, Tidsell C. What Role Does Knowledge of Wildlife Play in Providing Support for Species' Conservation? No 188, February 2005

Zhang S. Consumption Behaviour Under Institutional Transitions in China, No 189, March 2005

Collet J & Fadili J. Simulation of Gegenbauer Processes Using Wavelet Packets. No 190, March 2005

Clements A & White S. Non-Linear Filtering With State Dependant Transition Probabilities: A Threshold (Size Effect) SV Model. No 191, April 2005

Clements A & White S. Non-Linear Filtering For Stochastic Volatility Models with Heavy Tails and Leverage. No 192, April 2005

Queensland University of Technology

DISCUSSION PAPERS IN ECONOMICS, FINANCE AND INTERNATIONAL COMPETITIVENESS

Significance of Employing a Multilateral Index Formula for Interstate Comparisons: A Case Study of the Australian Farm Sector

Boon Lee

Discussion Paper No 193, May 2005

Series edited by Dr Steven Li

School of Economics and Finance

ISSN 1324-5910

All correspondence to:

Dr Steven Li Editor, *Discussion Papers in Economic, Finance and International Competitiveness* School of Economics and Finance Queensland University of Technology GPO Box 2434, BRISBANE QLD 4001, <u>Australia</u>

 Telephone:
 61 7 3864 2521

 Facsimile:
 61 7 3864 1500

 Email:
 s.li@qut.edu.au