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Abstract
In this paper, we propose to study the synthesis of Gegenbauer processes using the wavelet packets

transform. In order to simulate 1-factor Gegenbauer process, we introduce an original algorithm,
inspired by the one proposed by Coifman and Wickerhauser [CW92], to adaptively search for the
best-ortho-basis in the wavelet packet library where the covariance matrix of the transformed process
is nearly diagonal. Our method clearly outperforms the one recently proposed by [Whi01], is very
fast, does not depend on the wavelet choice, and is not very sensitive to the length of the time series.
From these �rst results we propose an algorithm to build bases to simulate k-factor Gegenbauer
processes. Given the simplicity of programming and running, we feel the general practitioner will be
attracted to our simulator. Finally we evaluate the approximation due to the fact that we consider
the wavelet packet coe�cients as uncorrelated. An empirical study is carried out which supports our
results.
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1 Introduction
The simulation of long memory processes is an issue of a paramount importance in many statistical
problems. In the time domain, there exist di�erent methods devoted to this task (see [Ber94] for a non
exhaustive review of them). Alternative e�cient approaches, which operate in the frequency domain, were
also proposed (see [DH87] and [Ber94]). More recently, owing to their scale-invariance property, wavelets
have since widely adopted as a natural tool for analyzing and synthesizing 1/f long-memory processes.
They were demonstrated to provide almost Karhunen-Loève expansion of such processes [Wor96].
The simulation of fractional di�erenced Gaussian noise (fdGn) using discrete wavelet transform (DWT)
has been studied by [MW96]. This kind of processes is characterized by an unbounded power spectral
density (PSD) at 0. The proposed method lies on the fact that the DWT approximately decorrelates long
memory processes (see [DT93, TK92, Wor96, Jen99, PW00]). The orthonormal wavelet decomposition
"only" ensures approximate decorrelation. These approximations have been studied in [Wor90, Fla92,
Dij94, TK92, Wor96, Jen99, Jen00] for a variety of 1/f long memory processes.
The DWT is only adapted to processes whose PSD is unbounded at the origin. Gegenbauer processes
(sometimes also called seasonal persistent processes) are also long memory processes and are characterized
by an unbounded PSD. The main di�erence with the fdGn processes is that the singularities of the PSD of
the Gegenbauer processes can be located at one or many frequencies in the Nyquist domain, not necessary
at the origin. Therefore, a natural tool to analyze such processes appears to be the wavelet packet
transform, which is a generalization of the wavelet transform. The wavelets packets adaptively divides
the frequency axis in separate intervals of various sizes. They segment unconditionally the frequency axis
and are uniformly translated in time. Moreover, a discrete time series of size N is decomposed in more
than 2N/2 wavelet packet bases. Among these bases, one is a very good candidate to whiten the series
and then almost diagonalizes the covariance of the seasonal process.
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Recently, Mallat, Zhang and Papanicolaou [MZP98], and, following their work, Donoho, Mallat and von
Sachs [DMvS98], studied the idea of estimating the covariance of locally stationary processes by approx-
imating the covariance of the process by a covariance which is almost diagonal in a specially constructed
basis (cosine packets for their locally stationary processes) using an adaptation Coifman-Wickerhauser
best ortho-basis algorithm. Our work here can be seen as the spectral dual of theirs, since we are inter-
ested in studying the covariance of seasonal processes in the wavelet packet domain.

To the best of our knowledge, the simulation of the Gegenbauer process using the wavelet packet transform
has been �rst studied by Whitcher [Whi01]. The DWPT creates a redundant collection of wavelet
coe�cients at each level of the transform organized in a binary tree structure. Di�erent methods exist
to determine the best candidate orthonormal basis. Whitcher used a method which depends on both the
location of the singularity and the wavelet used in the DWPT. Once the basis found, it remains to apply
the DWPT using the same approximation as in [MW96].
This method consists �rst in considering the square gain function of the wavelet �lter associated with
each wavelet packet coe�cient su�ciently small at the Gegenbauer frequency. Then a pruning of this
family is done to obtain the ortho-basis. The main advantage of this method is its simplicity and its
rapidity. However several points are still questionable and must be eluded. First the notion "su�ciently
small" implies the introduction of a threshold which seems to depend both on the used wavelet and the
length of the simulated series. None indication is given to choose this threshold which remains ad hoc.
Furthermore, it is not clear why the basis should depend on the wavelet. Lastly and more annoying,
this method inherently leads to an overpartitioning of the spectra which depends on the wavelet and the
threshold considered (see Figure 4 in [Whi01]). Hence, it could be much more interesting to build, for
each Gegenbauer process, an unique valid basis for all wavelets.
In this article, we propose an alternative way to determine the appropriate basis for the simulation of
1-factor Gegenbauer process and then the simulation of k-factor Gegenbauer process. Indeed while it is
natural that this basis depends on the location of the singularity, it is not clear why this basis should
depend on the wavelet used. We propose to use an algorithm inspired by the algorithm of [CW92] to �nd
this basis. The main characteristic of this algorithm is that it returns basis depending only on the location
of the Gegenbauer frequency unlike the method of construction proposed by Whitcher which provides
basis depending both on the location of the singularity and the length of the wavelet. To point out
the role of the wavelet used, we will study the decorrelation properties of the wavelet packet coe�cients
of a Gegenbauer process when it is expressed in this basis. In particular, the in�uence of the wavelet
regularity and the location of the singularity on the decorrelation decay speed will be established.
The organization of this paper is as follows. After some preliminaries and notations related to the wavelet
packets theory (Section 2.1) and to the Gegenbauer process (Section 2.2), we will de�ne the algorithm
of Coifman and Wickerhauser and the cost function we propose (Section 3.1 and 3.2). We develop
an algorithm to build appropriate basis to simulate 1-factor Gegenbauer process (Section 3.3). This
method will be used to determine basis for the simulation of k-factor processes (Section 3.4). For this
two constructions we illustrate our results with some examples. In an other section we will evaluate the
approximation due to the fact that we consider the wavelet packet coe�cient as uncorrelated (Section 4).
We illustrate our results with some simulations.

2 Preliminaries
2.1 The wavelet packet transform
Wavelet packets were introduced by Coifman, Meyer and Wickerhauser [CMW92], by generalizing the link
between multi-resolution approximations and wavelets. Let the sequence of functions de�ned recursively
as follows:

ψ2p
j+1(t) =

∞∑
n=−∞

h(n)ψp
j (t− 2jn) (1)

ψ2p+1
j+1 (t) =

∞∑
n=−∞

g(n)ψp
j (t− 2jn) (2)
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for j ∈ N and p = 0, . . . , 2j − 1, where h and g are the conjugate pair of quadrature mirror �lters (QMF).
At the �rst scale, the functions ψ0 and ψ1 can be respectively identi�ed with the father and the mother
wavelets φ and ψ1 with the classical properties (among others):

∫
φ(t) = 1,

∫
ψ(t) = 0 (3)

The collection of translated, dilated and normalized functions ψp
j,n

def= 2−j/2ψp(2−j − n) makes up what
we call the (multi-scale) wavelet packets associated to the QMFs h and g. j ∈ N is the scale index,
p = 0, . . . , 2j − 1 can be identi�ed with a frequency index and k is the position index. It has been proved
(see e.g. Wickerhauer (1994)) that if {ψp,n

j }n∈Z is an orthonormal basis of a space Vj , then the family
{ψ2p,n

j , ψ2p+1,n
j }n∈Z is also an orthonormal basis of Vj .

The recursive splitting of vector spaces is represented in a binary tree. To each node (j, p), with j ∈ N
and p = 0, . . . , 2j − 1, we associate a space Vp

j with the orthonormal basis {ψp
j (t − 2jn)}n∈Z. As the

splitting relations creates two orthogonal basis, it is obvious that Vp
j = V2p

j+1 ⊕V2p+1
j+1 .

We call admissible tree any binary tree where each node has either 0 or 2 children. If {ji, pi}i∈I are the
leaves of an admissible tree, then, we can verify that the spaces {Vpi

ji
}i∈I are mutually orthogonal and

add-up to:
L2(R) 3 V0 = ⊕I

i=1V
pi

ji
. (4)

The wavelet packet representation is overcomplete. That is, there are many subsets of wavelet packets
which constitute orthonormal bases for the original space V0 (typically more than 22J−1 for a binary
tree of depth J). While they form large library, these bases can be easily organized in a binary tree and
e�ciently searched for extreme points of certain cost functions, see [CW92] for details. Such a search
algorithm and associated cost function are at the heart of this paper.

In the following we call the collection (Bpi

ji
)i=1,...I the basis of L2(R) and we denote it B and the tree for

which the collection {ji, pi}i∈I are the leaves, the associated tree.
Given a basis B and its associated tree T it is possible to decompose any function f of L2(R) in the basis
B. At each node (ji, pi) of the tree T , the wavelet packet coe�cients W pi

ji
(n) of f in the subspace Vpi

ji
at

position n are given by the inner product:

W pi

ji
(n) =

∫
ψpi

ji
(t− 2jin)f(t)dt. (5)

For a discrete signal of N equally-spaced samples, the wavelet packet transform is calculated using a fast
�lter bank algorithm that requires O(N log N) operations. The interested reader may refer to the books
of Mallat [Mal98] and Wickerhauser [Wic94] for more details about the wavelet packet transform.

2.2 Gegenbauer process
The k-factor Gegenbauer process is a 1/f -type process introduced by Gray et al. [GZW89]. The spectral
density f of a such process (Xt)t is given by for all |λ| ≤ 1/2

f(λ) =
σ2

ε

2π

k∏

i=1

(2| cos 2πλ− cos 2πνi|)−2di , (6)

where k is a �nite integer and 0 < di < 1/2 if 0 < |νi| < 1/2 and 0 < di < 1/4 if |νi| = 0 for
i = 1, . . . , k. The parameter di and νi are respectively called the memory parameter and the Gegenbauer
frequency. The k-factor Gegenbauer process is a generalization of the fractionally di�erenced Gaussian
white noise process (see [Hos81] and [GJ80]) in the sense that the spectral density is unbounded at k
di�erent frequencies not necessary located in 0.
The Gegenbauer process (Xt)t is related to a white noise process (εt)t with mean 0 and variance σ2

ε

through the relationship
k∏

i=1

(I − 2νiB + B2)diXt = εt, (7)
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where BXt = Xt−1 and νi = cos 2πνi.
The main characteristic of the Gegenbauer processes in the time domain is the slow decays of autoco-
variance function. In the case of a 1-factor Gegenbauer process, Gray et al. [GZW89] and then Chung
[Chu96] exhibit the asymptotic behavior of the autocovariance function,

ρ(h) ∼ h2d−1 cos(2πνh) as h →∞ (8)

The next section is devoted to the construction of the best basis diagonalizing the covariance of a N -
sample realization of a Gegenbauer process with the convention N = 2J .

3 Best-basis construction algorithm
3.1 Approximate Diagonalization in an Best-Ortho-basis
Let Xt be a stationary Gegenbauer process and Γ its covariance matrix. Let γi,j [B] the entries of
Γ [B] = BT ΓB; the covariance matrix of the coordinates W of Xt in the ortho-basis B. We de�ne
diagonalization as an optimization of the functional:

max
B
E(B) = max

B

∑

i

e(γii[B])

where e is a convex function. The optimization formulation of diagonalization is not widely used, pre-
sumably because it generally doesn't help in computing diagonalizations. Optimization of an arbitrary
objective E over �nite libraries of orthogonal bases - the cosine packets library and the wavelet packets
library - is not a problem with good algorithmic solutions. Wickerhauser [Wic91] suggested applying
these libraries in problems related to covariance estimation. He proposed the notion of selecting a "best
basis" for representing a covariance by optimization of the "entropy functional" E(B) over all bases in a
restricted library. Authors in [MZP98], developed a proposal which uses the speci�c choice e2(γ) = γ2.
In the Wickerhauser formulation, one is optimizing over a �nite library and there will not generally be
a basis in this library which exactly diagonalizes Γ. Then the di�erent convex functions e(γ) may end
up picking di�erent bases. The quadratic cost function e2 has a special interpretation in this context: it
leads to a basis which best diagonalizes Γ in a least-squares sense [DMvS98].
This cost function e2 is closely related to the Hilbert-Schmidt (HS) norm of the diagonalization error.
Indeed, de�ne the operator DBΓ = Bdiag (Γ [B])BT . In other words, this is the operator on matrices
formed by rotating into basis B, then discarding o�-diagonal elements, then rotating back into the natural
basis. A fundamental result proved in [DMvS98] is that the basis optimizing E2 =

∑
i γ2

ii[B] gives a best
approximate diagonalization and the optimal value E2 measures the error of diagonalization, that is:

arg min ‖Γ−DBΓ‖2HS = arg min

{
‖Γ‖2HS −

∑

i

γ2
ii[B]

}
= arg max

∑

i

γ2
ii[B]

3.2 Proposed Algorithm
Even if the the approach developed in [MZP98, DMvS98] wa specialized to the case of e2, it is not really
tied to the speci�c entropy measure; other "additive" convex measures can be accomodated such as the
l1 norm. Thus, we here consider the sum of the wavelet packet coe�cients variances as the additive cost
function E2 =

∑
i γii[B] =

∑
i∈I V[W pi

ji
] (i.e. e1(γ) = |γ|). The best basis Bp

j of Vp
j is the basis that

minimizes the wavelet packet coe�cients variances, among all the bases of Vp
j that can be constructed

from the tree. The construction of best bases can be accomplished e�ciently using the recursive Coifman-
Wickerhauser algorithm (CW algorithm) de�ned by

Bp
j =

{
B2p

j+1 ∪ B2p+1
j+1 if V[W 2p

j+1] + V[W 2p+1
j+1 ] < V[W p

j ],
Bp

j if V[W 2p
j+1] + V[W 2p+1

j+1 ] ≥ V[W p
j ].

(9)

The chosen criterion lies on the comparison between variance of wavelet packet coe�cients. It needs the
calculation of these variances. In the following, we will modify this criterion for two main reasons.
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On the one hand to calculate these variances we need to choose a wavelet. This choice implies that the
basis we construct in the following will depend on this wavelet. Proceeding this way, we cannot expect
to �nd an unique basis, independently of the choice of the wavelet.
On the other hand, to avoid the a priori choice of a wavelet, we may consider the case of a wavelet as a
perfect band-pass �lter in the same vein is in [MW96]. Unfortunately, in this case, one must to compute
the variances of each wavelet packet coe�cient, i.e. the calculation of the integral of the spectral density
of the Gegenbauer process over dyadic intervals. Because of the expression of the spectral density of the
Gegenbauer processes, it is not possible to obtain an analytic expression of this integral and the numerical
evaluation of this integral will be of a prohibitive computational burden.

We then de�ne for the wavelet packet coe�cients W 2p
j+1 and W 2p+1

j+1 , a new type of wavelet variance
denoted by V[W 2p

j+1] and V[W 2p+1
j+1 ], as follows:

V[W 2p
j+1] =

{
0 if V[W 2p

j+1] ≤ A0V[W 2p+1
j+1 ]

V[W 2p
j+1] otherwise.

(10)

V[W 2p+1
j+1 ] =

{
0 if V[W 2p+1

j+1 ] ≤ A0V[W 2p
j+1]

V[W 2p+1
j+1 ] otherwise.

(11)

where A0 is a �xed constant that will be determined later.
In the following, when we write that V[W 2p

j+1] = 0 or V[W 2p
j+1] = 0, it will mean respectively that

V[W 2p
j+1] ≤ A0V[W 2p+1

j+1 ] or V[W 2p+1
j+1 ] ≤ A0V[W 2p

j+1]. In these cases we will also use respectively the
notations,

V[W 2p
j+1] ¿ V[W 2p+1

j+1 ] and V[W 2p+1
j+1 ] ¿ V[W 2p

j+1]

Using the criterion de�ned above, algorithm (9) becomes,

Bp
j =

{
B2p

j+1 ∪ B2p+1
j+1 if V[W 2p

j+1]
2

= 0 or V[W 2p+1
j+1 ]

2

= 0,

Bp
j Otherwise.

(12)

In the following, we use this algorithm to build the best-ortho-basis for a Gegenbauer process.

3.3 The 1-factor case
It is natural to build the best basis according to the shape of the spectral density of our process. More
precisely, the basis is a function of the location of the singularities. It means that in the case of 1-
factor Gegenbauer process, the basis depends directly on the value of the Gegenbauer frequency. Using
the notations de�ned in the previous section, the recursive construction is summarized in the following
proposition,

Proposition 3.1 If (Xt)t is a stationary 1-factor Gegenbauer process, with parameters (d, ν, σ) then, at
node (j, p), if the frequency ν is in the interval Ip

j = [ p
2j , p+1

2j [, then

V[W 2p
j+1] = 0 or V[W 2p+1

j+1 ] = 0,

and consequently for algorithm (12),
Bp

j = B2p
j+1 ∪ B2p+1

j+1 .

Furthermore, if the frequency ν is in both the closure of the intervals I2p
j+1 and I2p+1

j+1 , then,

V[W 4p+1
j+2 ] = 0 and V[W 4p+2

j+2 ] = 0,

and consequently for algorithm (12),

Bp
j = B4p

j+2 ∪ B4p+1
j+2 ∪ B4p+2

j+2 ∪ B4p+3
j+2 .
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Proof: See Appendix A.

This proposition is composed of two main parts. The �rst one is related to the construction of bases in
the general case. The second part is a slight adaptation in the particular case where the Gegenbauer
frequency is a power of 1/2.

To obtain the best-ortho-basis of a 1-factor Gegenbauer process, we propose an algorithm built according
to Proposition 3.1 and the algorithm de�ned in (12):

Algorithm 1 1-factor Best-Basis Search Algorithm
Require: A Gegenbauer frequency ν and sample size N = 2J ,

Initialization
1: for j = 0, . . . , J and p = 0, . . . , 2j − 1 do
2: Tree(j, p) = 0.
3: end for

Main Loop
4: for j = 1, . . . , J do
5: for p = 0, 2, . . . , 2j − 2 do
6: if ν ∈ [p/2j , (p + 1)/2j ] then
7: Tree(j, p + 1) = 1
8: end if
9: if ν ∈ [(p + 1)/2j , (p + 2)/2j ] then

10: Tree(j, p) = 1
11: end if
12: end for
13: end for

Pruning
14: for j = 1, . . . , J do
15: for p = 0, 2, . . . , 2j − 2 do
16: if ν ∈ [p/2j , (p + 1)/2j ] and maxr=1,...,J−j−1;s=0,...,2r−1 Tree(j + r, 2rp + s) > 0 then
17: Tree(j, p) = 0
18: end if
19: end for
20: end for

This algorithm is decomposed into two mains loops. The �rst one builds a family where the best-ortho-
basis is included. The second loop is a pruning of the family to obtain the best-ortho-basis. This second
loop corresponds to the second part of Proposition 3.1.

The algorithm we propose is very fast because it does not require the calculation of variances of wavelet
packet coe�cients. To illustrate the rapidity of our algorithm we provide in the next �gure some compu-
tation time to build bases using our method and the Whitcher's method. In this example, we are only
interested in the time needed to build the basis. These bases are built to simulate Gegenbauer process
with a singularity located at 1/12 and length equal to 2J , with J = 5, . . . , 13. The black line corresponds
to the computation time of the algorithm we propose. The signs plus, times, dots and squares correspond
to the computation time to build basis using the Whitcher's method in the case of respectively Daubechies
wavelet (10), Symmlet (10), Coi�et (5) and Battle-Lemarie wavelet (5). In every case the computation
time increases with the length of the process. However this time increases always much faster for the
Whitcher method than for the method we develop (the ratio of computation times is 10 to 300 times
larger for Whitcher's method for series of length 32 to 8192). Typically, for a 8192-sample series, it takes
100 ms to our algorithm to �nd the best basis while Whitcher's algorithm requires 30 s.

Examples of bases
We give here two examples of construction of bases. Figure 2, represents the basis built to simulate a
Gegenbauer process with Gegenbauer frequency ν = 1/12 and memory parameter 0 < d < 1/2. It was
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Figure 1: Computation time (in seconds) to build basis.

built using the �rst part of the previous algorithm.
Figure 3 represent the basis built in the case of a Gegenbauer process with ν = 1/4 and 0 < d < 1/2.
This second case corresponds to the second case of Proposition 3.1. One may remark that unlike the �rst
case where the tree has at least one leaf at each scale, in this second case, because of the particular value
of the Gegenbauer frequency (ν = 2−2), there exists scale for which the tree has no leaf (see scale j = 2).
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Figure 2: Basis for a Gegenbauer process, with
ν = 1/12.
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Figure 3: Basis for a Gegenbauer process, with
ν = 1/4.

3.4 The general case
In this section we are interested in the general case: the construction of the appropriate basis to simulate
a k-factor Gegenbauer process. To achieve this goal, let's consider (X1

t )t and (X2
t )t as respectively a

(k − 1)-factor and a 1-factor Gegenbauer processes. We denote (d1, ν1, . . . , dk−1, νk−1) and (dk, νk) the
parameters of (X1

t )t and (X2
t )t. Let B1 and B2 the best-ortho-bases of (X1

t )t and (X2
t )t. We denote

respectively T1 and T2 the trees associated with the bases B1 and B2.

Let (Xt)t be a k-factor Gegenbauer process with parameters (d1, ν1, . . . , dk, νk). We denote B the appro-
priate basis and T the associated tree. Let B′ be the family equal to the union of the bases B1 and B2
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and let T ′ be the associated tree. We are now ready to state the following,

Proposition 3.2 Under the previous assumptions,

1. B ⊂ B′

2. Let (j, p) be node in the tree T ′ such that there exists r∗ = 1, . . . , J − j and s∗ = 0, . . . , 2r∗ − 1 such
that (j + r∗, 2r∗p + s) is also in the tree T ′. Then,

(j, p) 6∈ T and (j + r∗, 2r∗p + s) ∈ T

Proof: See Appendix A.

According to this last proposition, the best-ortho-basis of a k-factor Gegenbauer process may be build
using k well chosen best-ortho-bases of 1-factor Gegenbauer processes. The �rst part of this proposition
de�nes a family where the appropriate basis is included and the second part is a pruning of this family
to obtain the appropriate basis.

Now we propose an algorithm to build appropriate basis to simulate a k-factor Gegenbauer process. This
algorithm lies on Algorithm 1 and results given in Proposition 3.2.

Algorithm 2 k-factor Best-Basis Search Algorithm
Require: Gegenbauer frequencies νi and sample size N = 2J ,

Initialization
1: for Each Gegenbauer frequency νi, i = 1, . . . , k do
2: Construct the best-ortho-basis Bi and associated tree Treei using Algorithm 1.
3: end for
4: Tree = ∪k

i=1Treei (implemented using e.g. the logical OR operator under R or Matlab).

Pruning
5: for j = 1, . . . , J do
6: for p = 0, 2, . . . , 2j − 2 do
7: if Tree(j, p) = 1 and maxr=1,...,J−j−1;s=0,...,2r−1 Tree(j + r, 2rp + s) > 0 then
8: Tree(j, p) = 0
9: end if

10: end for
11: end for

Example We here give an example of construction of the best-ortho-basis for a 2-factor Gegenbauer
process (Xt)t with Gegenbauer frequencies 1/12 and 1/24. Figures 4.(a) and 4.(b) show the best-ortho-
bases B1 and B2 of the processes (X1

t )t and (X2
t )t (see the previous Section for construction of these

bases).
The family B∗ equal to B1∪B2 is given Figure 4.(c). This family is not a basis, the intersections between
its elements are not always empty. At depth j = 3, the elements at p = 0 and p = 1 are considered as
elements of the best-ortho-basis which create some problem. Using the methodology developed above,
we obtain an appropriate basis for the process (Xt)t. This basis is represented Figure 4.(d).

4 Analysis of decorrelation properties
One of the approximations done to simulate the Gegenbauer processes using wavelet is that the variance
of the wavelet packet coe�cients is exactly equal to the integral of the spectral density of the process
over the corresponding dyadic interval. This equality would imply the non correlation of wavelet packet
coe�cients. In reality this equality is not veri�ed which implies some correlation between wavelet packet
coe�cients. It is very interesting to evaluate this correlation to measure the error made. We give in
the next proposition the asymptotic behavior of the covariance between wavelet packet coe�cients for a
1-factor Gegenbauer process.
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Figure 4: (a) Best-ortho-basis B1. (b) Best-ortho-basis B2. (c) Union of bases B1 and B2. (d) Best-ortho-
basis for the two factor Gegenbauer process Xt.
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Proposition 4.1 If ψ has q ≥ 1 vanishing moments with support [(N1−N2 +1)/2, (N2−N1 +1)/2] and
X(t) is a stationary 1-factor Gegenbauer process with Gegenbauer frequency ν. Then the wavelet packet
coe�cients covariance Cov(W p1

j1
(k1),W

p2
j2

(k2)) decays as

• O
(|2j1k1 − 2j2k2|2d−1−Rp1−Rp2

)
, if p1 6= 0 and p2 6= 0,

• O
(|2j1k1 − 2j2k2|2d−1−Rmax(p1,p2)

)
, if p1 = 0 or p2 = 0,

• O
(|2j1k1 − 2j2k2|2d−1

)
, if p1 = p2 = 0,

for all, j1, j2, k1 and k2 such that |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2), with N∗ = max(N1, N2), and
Rp = q

∑j−1
k=0 pk for p 6= 0, and p =

(
pj−1pj−2 . . . p1p0

)
2
is the binary representation of p. In the last

case, we note that j1 = j2 = j.

Proof: See Appendix B.

This proposition generalized the results given by [Jen99] and [Jen00] for the case of the FARIMA process.
Clearly the covariance between W p1

j1
(k1) and W p2

j2
(k2) decay exponentially over time and scale space.

More precisely, the decay speed for p1 6= 0 or p2 6= 0, depends on the regularity of the used wavelet, on
the memory parameter of the process, and indirectly on the location of singularity through the frequency
indices p1 and p2. However, the larger q is, the wider the wavelet's support and the fewer are the number
of wavelet packet coe�cients that satisfy the support condition |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2).
Thus, by choosing a wavelet with a large q, the rate of decay of autocovariance function increases, but
over a subset of wavelet packet coe�cients. However, the e�ective support of a wavelet is smaller than
the provided bound (see Lemma 6.2), and we expect a rapid decay in the wavelet packet coe�cient's
covariance for translations and dilations satisfying |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2). The following
simulation study con�rms this remark.

5 Simulation results and discussion
5.1 Some simulations of Gegenbauer processes
This section is devoted to the illustration of some simulation examples of Gegenbauer processes. For
comparative purposes, two methods are tested: ours and the one proposed in [Whi01]. Gegenbauer
processes are synthesised with di�erent frequencies and long memory parameters (d, ν): (0.4, 1/12),
(0.2, 1/12), (0.3, 0.352) and (0.3, 0.016). In each case, we consider the Daubechies wavelet ′db8′ and
we simulate M = 500 time series with length N = 256. These di�erent time series allow us to compute,
for each process, the empirical mean of the autocovariance function γ̄(.) and its standard deviation σ2

γ(.),
de�ned respectively by:

γ̄(h) =
1
M

M∑

i=1

γ̂i(h) and σ2
γ(h) =

1
M

M∑

i=1

(γ̂i(h)− γ̄(h))2,

for the 64 �rst lags h = 1, . . . , 64 and where γ̂(.) is the empirical autocovariance function of the ith

simulated time series. The results are depicted in Figure 5.
As revealed by the plots of the average autocovariance function Figure 5.(b), the quality of estimation
of the autocovariance function obtained using our best-basis construction method and that of Whitcher
are very close to each other. It appears that the simulations made using both our bases and those built
with Whitcher's method tend to underestimate the autocovariance function. This underestimation seems
to be more important with our bases but the di�erence between estimations for both methods are very
small. This could be interpreted as a better performance of Whitcher's method, but the comparison in
this context is not fair. Indeed, an important drawback of Whitcher's method is that it overpartitions
the spectrum especially at �ne scales leading to less correlation between the wavelet packet coe�cients.
Additionally, the standard deviation of the estimated autocovariance functions is smaller for simulations
based on our bases than for those based Whitcher's best-bases. This implies that the synthesis method
using our bases provide more stable estimation of the autocovariance function which is a desirable property
(see in Figure 5.(b) for each di�erent couple of parameters). To conclude we say that the small loss of
quality of the estimation of autocovariance function when we use our method of construction of basis
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is compensated by a more important stability of the estimations. Another clear advantage of our best-
ortho-basis construction method will be within the framework of estimation and bootstrapping where
overpartitioning of the spectrum will have disastrous consequences. This is the direction of our current
investigations.
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Figure 5: (a) Empirical mean of the autocovariance function for lags 1, . . . , 64 for Gegenbauer processes
built using Whitcher's method (dotted line) and using the method we develop (dotted line with sign '+').
(b) Standard deviation of these estimations

5.2 Empirical analysis of the decorrelation
We now propose some simulations which allow to compare the decorrelation of the wavelet packet co-
e�cients as a function of the wavelet properties (type, number of vanishing moments) and the process
parameters (ν and d). The approximate diagonalizing capabilities of our algorithm are compared to
those of [Whi01]. We then need to consider a criterion to measure the quality of non-correlation, such as
the HS norm considered in Section 3.1, which measures the sum of squares of the o�-diagonal elements
of the covariance matrix in the best-ortho-basis. As exlained above, the method of [Whi01] tends to
overpartition the spectral axis yielding to too many packets. Hence, to penalize such con�gurations and
make the comparison fair, we propose the following penalized criterion,

S(B) = ‖Γ [B]− Γ0‖2HS + λ#(B) (13)

where Γ [B] is the correlation matrix of the process expressed in the basis B, Γ0 is the correlation matrix
of a white noise, i.e. the identity matrix and λ is a weight parameter that we discuss latter. #(B) stands
for the number of wavelet packets (spectral axis partitions) in the basis. In other words, the basis B

11



Figure 6: Correlation matrix of a Gegenbauer process with parameters d = 0.4 and ν = 1/12.

that we use to simulate the Gegenbauer process is optimal, in the sense that this basis is the one for
which the norm ‖Γ [B] − Γ0‖2HS is su�ciently good with the smallest number of partitions to penalize
overpartitioned bases.

To determine the value of the constant λ, assume that we want to study the decorrelation of the 2J × 2J

covariance matrix of a Gegenbauer process. We consider two extreme cases. In the one hand let BS be the
Shannon basis. We can assume that the decorrelation of the covariance matrix of the Gegenbauer process
in this basis is perfect; thus S(BS) = 2Jλ. The tree associated to this basis has too many leaves and then
this kind of basis is not interesting. On the other hand we consider the basis B0 composed with only one
leaf. In this case there isn't any decorrelation of the covariance matrix, that is S(B0) = ‖Γ−Γ0‖2HS , with
Γ the correlation matrix of the Gegenbauer process.

We consider that for this two extreme cases the statistic S(.) has the same value, then

S(B0) = S(BS)
⇔ ‖Γ− Γ0‖2HS + λ = 2Jλ

⇔ λ =
‖Γ− Γ0‖2HS

2J − 1
.

We compute the value of the statistic S(.), for di�erent covariance matrix of long memory processes (see
[And86] for details about the calculation of the exact autocovariance function of Gegenbauer processes)
and di�erent wavelets. To asses the quality of our best-ortho-basis, we systematically compare it to the
ones obtained by the method of [Whi01]. For each process and each wavelet we give both the value of
the criterion S and the value of the constant λ.

The values of the criterion S for each process and each wavelet are given in Table 1. The basis we propose
gives at least better results than the basis given by Whitcher. One can remark that for a given process
when the number of vanishing moments increase the criteria tend to be the same. Actually when the
number of vanishing moments of a wavelet increases the basis proposed by Whitcher tends towards the
basis we propose.

6 Conclusion
In this article, we provided a new method to build approximate diagonalizing bases for k-factor Gegen-
bauer processes. Exploiting the intuitive fact that a wavelet packets library contains the basis where a
Gegenbauer process could be (almost) whitened, our best-ortho-basis search algorithm was formulated
in the case of 1-factor process and the fast search algorithm of Coifman-Wickerhauser was adapted to
�nd this best basis. Using this framework, our methodology was posed in a well principled way and the
uniqueness of the basis was guaranteed. Furtheremore, unlike Whitcher's approach, it is very fast (see
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d = 0.4, ν = 1/12, λ = 20.7084 d = 0.2, ν = 1/12, λ = 0.7428 d = 0.3, ν = 0.352, λ = 2.8274

q
Whitcher
basis Our basis

Daubechies
2 2728.6 1494.5
4 1116.7 686.2
6 750.4 441.8
8 632.7 352.4
10 421.7 308.2

Symmlet
4 2211.0 677.0
5 1713.1 533.8
6 1371.0 444.7
7 1182.4 385.8
8 980.4 341.7
9 807.7 313.8
10 693.1 297.3

Coi�et
2 2697.3 1081.1
4 1449.4 638.4
6 841.1 412.7
8 703.2 327.8
10 581.2 287.7

Battle-Lemarié
2 3415.1 657.3
4 1303.6 267.5
6 667.9 247.8

q
Whitcher
basis Our basis

Daubechies
2 105.1 52.3
4 47.3 31.1
6 31.9 23.3
8 28.9 20.2
10 21.9 18.4

Symmlet
4 86.4 30.8
5 67.2 26.1
6 54.2 23.4
7 46.8 21.7
8 39.1 20.1
9 32.4 18.7
10 28.2 18.2

Coi�et
2 106.0 42.3
4 58.9 29.6
6 35.0 22.4
8 29.0 19.5
10 26.6 17.6

Battle-Lemarié
2 127.2 29.4
4 49.0 16.1
6 25.9 14.4

q
Whitcher
basis Our basis

Daubechies
2 356.3 297.2
4 169.1 158.2
6 128.5 109.1
8 101.2 87.5
10 96.8 76.5

Symmlet
4 288.8 157.1
5 236.4 128.2
6 191.9 109.4
7 155.8 97.6
8 131.7 87.8
9 128.7 80.8
10 112.8 75.9

Coi�et
2 362.2 231.3
4 210.9 149.4
6 139.2 103.7
8 116.2 83.9
10 111.2 72.2

Battle-Lemarié
2 442.0 148.1
4 172.3 59.7
6 101.1 48.2

d = 0.3, ν = 0.016, λ = 10.0526 ARFIMA d = 0.4, λ = 24.8313

q
Whitcher
basis Our basis

Daubechies
2 230.6 141.4
4 188.0 124.7
6 141.8 116.7
8 144.0 118.8
10 140.3 115.0

Symmlet
4 214.4 120.9
5 212.7 119.1
6 210.4 116.2
7 211.4 117.4
8 178.6 114.7
9 138.7 113.4
10 138.8 113.5

Coi�et
2 224.8 132.7
4 215.2 121.0
6 141.2 116.1
8 140.1 114.9
10 138.6 113.2

Battle-Lemarié
2 294.1 121.3
4 206.8 111.8
6 136.0 110.7

q
Whitcher
basis Our basis

Daubechies
2 259.1 234.3
4 231.9 231.9
6 230.3 230.3
8 231.6 231.6
10 229.4 229.4

Symmlet
4 255.4 230.9
5 231.3 231.3
6 230.1 230.1
7 230.1 230.1
8 230.1 230.1
9 229.0 229.0
10 229.6 229.6

Coi�et
2 257.1 232.4
4 231.5 231.5
6 230.3 230.3
8 230.1 230.1
10 229.5 229.5

Battle-Lemarié
2 304.7 230.7
4 229.1 229.1
6 228.9 228.9

Table 1: S score as a function of the number of vanishing moments for each wavelet family.
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Figure 7: Correlation matrix Γ [B] of the wavelet packet coe�cients in the best-ortho-basis obtained from
a Gegenbauer process with parameters d = 0.4 and ν = 1/12 using ′db10′ �lter.

Figure 8: Correlation matrix Γ [B] of the wavelet packet coe�cients in the best-ortho-basis obtained from
a Gegenbauer process with parameters d = 0.4 and ν = 1/12 using ′sym10′ �lter.

Figure 9: Correlation matrix Γ [B] of the wavelet packet coe�cients in the best-ortho-basis obtained from
a Gegenbauer process with parameters d = 0.4 and ν = 1/12 using ′coif5′ �lter.
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Figure 10: Correlation matrix Γ [B] of the wavelet packet coe�cients in the best-ortho-basis obtained
from a Gegenbauer process with parameters d = 0.4 and ν = 1/12 using ′bat6′ �lter.

simulations), does not depend on the wavelet choice, and is not very sensitive to the length of the time
series. As the method construction of the best basis for simulation of k-factor Gegenbauer processes relies
on the 1-factor construction method, the same conclusions hold.
Then, we studied the error of diagonalization in the best-ortho-basis. Towards this goal, we established
the decay speed of the correlation between two wavelet packet coe�cients. These results generalize the
work of [Jen99] and [Jen00] provided in the case of FARIMA processes. A small empirical study shows how
we improve, in the sense of the chosen criterion, the decorrelation of the process when it is decomposed in
the provided basis. The comparison criterion we propose measures both the quality of the decorrelation
and penalizes over-partitioned con�gurations. Owing to these nice theoretical and empirical properties,
and given the simplicity of programming and running, we feel the general practitioner will be attracted
to our simulator.
This new method of simulating Gegenbauer processes gives a new perspective for analyzing processes
whose spectral density singularities occurs at any frequency in the Nyquist interval. In such analysis
task, we have the basis by knowing the process parameters (ν in particular). Our method has a direct
application for bootstrap-based inference in the presence of Gegenbauer noise.
A remaining important open problem is how could we extend this work if the question of interest be-
comes: what are the parameters of a k-factor Gegenbauer given one or more sample paths of this process.
This is an estimation problem that can be accomplished in a maximum likelihood framework once the
diagonalizing basis is found. In this case, the best-ortho-basis cannot be found by a naive straightforward
application of Algorithm 2. Nevertheless, we here give pointers to several promising directions that are
now under investigation. First, in the 1-factor case, one can exploit the result of Proposition 3.1 by
comparing the variance of the wavelet packet coe�cients and only partition the packet whose variance
is the largest. This �rst approach is simple but is not easy to generalize to a k-factor process. Alter-
natively, if we are given several time series of the Gegenbauer process, one could use a best-ortho-basis
search procedure in the same vein as that proposed in [MZP98] and [DMvS98] for locally stationary
processes. Additional research is still required and our current work is now directed towards extension of
our methodology to estimation.
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Appendix A
Proof of Proposition 3.1:

• We consider the node (j, p). We compute the variance of the wavelet packet coe�cients at the two
children of this node: (j + 1, 2p) and (j + 1, 2p + 1). We assume that the frequency ν is in the
the interval I2p

j+1 = [ 2p
2j+1 , 2p+1

2j+1 ]. Then a good approximation of the variance of the wavelet packet
coe�cient is given by the integral over the interval I2p

j+1 of the spectral density. On this interval we
approximate the spectral density of the process fX(λ) = σ2

2π |2(cos 2πλ−cos 2πν)|−2d by C0|λ−ν|−2d

with C0 a positive constant.

V[W 2p
j+1] =

∫ 2p+1
2j+1

2p

2j+1

σ2

2π
|2(cos 2πλ− cos 2πν)|−2ddλ

=
∫ 2p+1

2j+1

2p

2j+1

C0|λ− ν|−2ddλ

= C0

∫ ν

2p

2j+1

(ν − λ)−2ddλ + C0

∫ 2p+1
2j+1

ν

(λ− ν)−2ddλ

=
C0

1− 2d

((
ν − 2p

2j+1

)1−2d

+
(

2p + 1
2j+1

− ν

)1−2d
)

=
C0

1− 2d

((
2p + 1
2j+1

− ν − 1
2j+1

)1−2d

+
(

2p + 1
2j+1

− ν

)1−2d
)

= C0

(
2p+1
2j+1 − ν

)1−2d

1− 2d


1 +

(
1− 1

2j+1
(

2p+1
2j+1 − ν

)
)1−2d




= C0

(
2p+1
2j+1 − ν

)1−2d

1− 2d

(
2− 1− 2d

2j+1
(

2p+1
2j+1 − ν

) + O

(
1

(
2j+1

(
2p+1
2j+1 − ν

))2

))

∼ C0

(
2p+1
2j+1 − ν

)1−2d

1− 2d

(
2− 1− 2d

2j+1
(

2p+1
2j+1 − ν

)
)

= C0

(
2p+1
2j+1 − ν

)1−2d

(1− 2d)2j+1
(

2p+1
2j+1 − ν

)
(

2j+2

(
2p + 1
2j+1

− ν

)
− 1 + 2d

)

∼ C0

2j+1

(
2p + 1
2j+1

− ν

)−2d 1 + 2d

1− 2d
,

To compute the variance of W 2p+1
j+1 we denote λ∗ the location of the maxima of the spectral density

fX over the interval I2p+1
j+1 .

V[W 2p+1
j+1 ] =

∫ 2p+2
2j+1

2p+1
2j

σ2

2π
|2(cos 2πλ− cos 2πν)|−2ddλ

≤ σ2

2π2j+1
|2(cos 2πλ∗ − cos 2πν)|−2d.

As previously we use an approximation of the spectral density. As λ∗ = 2p+1
2j+1 , we obtain that

V[W 2p+1
j+1 ] ≤ C0

2j+1

(
2p + 1
2j+1

− ν

)−2d

.
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Then we have that
V[W 2p+1

j+1 ] ≤ 1 + 2d

1− 2d
V[W 2p

j+1].

In this case we write that
V[W 2p+1

j+1 ] ¿ V[W 2p
j+1],

and using the criterion de�ned in section 3.1 we obtain

V[W 2p+1
j+1 ] = 0.

Finally, at the node (j, p), the algorithm (12) give us that,
Bp

j = B2p
j+1 ∪ B2p+1

j+1 .

• In the case where the frequency ν is in the closure of the intervals I2p
j+1 and I2p+1

j+1 , we have not
relationship as

V[W 2p
j+1] = 0 or V[W 2p+1

j+1 ] = 0,

and so it is not possible to conclude. However, at the depth j + 2, we have

V[W 4p+1
j+2 ] = 0 and V[W 4p+2

j+2 ] = 0.

Then easily we obtain that for the algorithm (12),
Bp

j = B4p
j+2 ∪ B4p+1

j+2 ∪ B4p+2
j+2 ∪ B4p+3

j+2 .

Proof of Proposition 3.2:
1. Let (j, p) be a node. We assume that this node is not in the tree T ′. It means that this node is not

in the tree T1 and neither in the tree T2 and in terms of threshold, we have

V[W 2p
j+1(1)] = 0 or V[W 2p+1

j+1 (1)] = 0
and

V[W 2p
j+1(2)] = 0 or V[W 2p+1

j+1 (2)] = 0.

As the tree T2 is associated to the best-ortho-basis of a 1-factor Gegenbauer process, the fact that
the node (j, p) is node in the tree T2 means that the frequency νk is not in the interval Ip

j = [ p
2j , p+1

2j ].
Then in this interval, the function |2(cos 2πλ − cos 2πνk)|−2dk is bounded and has a maximum at
frequency λ∗ ∈ Ip

j .

Then,

V[W 2p
j+1] =

σ2

2π

∫ 2p+1
2j+1

2p

2j+1

|2(cos 2πλ− cos 2πνk)|−2dk

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

≤ σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|−2dk

∫ 2p+1
2j+1

2p

2j+1

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

=
σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|−2dkV[W 2p

j+1(1)].

and

V[W 2p+1
j+1 ] =

σ2

2π

∫ 2p+2
2j+1

2p

2j+1

|2(cos 2πλ− cos 2πνk)|−2dk

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

≤ σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|−2dk

∫ 2p+2
2j+1

2p+1
2j+1

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

=
σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|−2dkV[W 2p+1

j+1 (1)].
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Finally, as V[W 2p
j+1(1)] = 0 or V[W 2p+1

j+1 (1)] = 0, we have

V[W 2p
j+1] À V[W 2p+1

j+1 ] or V[W 2p
j+1] À V[W 2rp+1

j+1 ],

it means,
V[W 2p

j+1] = 0 or V[W 2p+1
j+1 ] = 0.

Then,
Bp

j = B2p
j+1 ∪ B2p+1

j+1

and so the node (j, p) is not in the tree T . Finally,

B ⊂ B′.

2. Here (j, p) and (j + r∗, 2r∗p + s∗) (for s∗ = 0, . . . , 2r∗ − 1) are in the tree T ′. We denote r the
minimum value of r∗

r = min
r=1,...,J−j−1

r∗, (14)

for which there exists a s (s = 0, . . . , 2r − 1) such that the node (j + r, 2rp + s) is in the tree T ′.

Then the fact that the nodes (j, p) and (j +r, 2rp+s) are in the tree T ′ means that (j, p) is in T1 or
in T2 and (j+r, 2rp+s) is in T2 or in T1 (it is important to remark that both (j, p) and (j+r, 2rp+s)
cannot be in T1 or in T2). Without loss of generality, we assume that (j, p) is in T2 and (j+r, 2∗p+s)
is in T1. All the calculations made in the following remain valid if we consider that (j, p) is in T1 and
(j+r, 2rp+s) is in T2. To simplify the notations, we assume also that there exists a s which is even.

We denote W p
j (1) and W p

j (2), for j = 0, . . . , J and p = 0, 2j − 1, the wavelet packet coe�cients
of respectively the processes (X1

t )t and (X2
t )t. From these sub-processes, we have that for the

algorithm CW,

• for the tree T1:
B2r−1p+ s

2
j+r−1 (1) = B2rp+s

j+r (1) ∪ B2rp+s+1
j+r (1)

because V[W 2rp+s
j+r (1)] = 0 or V[W 2rp+s+1

j+r (1)] = 0,

• for the tree T2:
Bp

j (2) = Bp
j (2)

because V[W 2p
j+1(2)] = V[W 2p

j+1(2)] and V[W 2p+1
j+1 (2)] = V[W 2p+1

j+1 (2)],

We consider the intervals I2rp+s
j+r = [ 2

rp+s
2j+r , 2rp+s+1

2j+r ] and I2rp+s+1
j+r = [ 2

rp+s+1
2j+r , 2rp+s+2

2j+r ]. As the
node (j, p) is in the tree T2, and as T2 the tree of a basis, the frequency νk is not in the interval
I2rp+s
j+r ∪ I2rp+s+1

j+r .

We denote λ∗ the location of the maximum of |2(cos 2πλ− cos 2πνk)|−2dk in the interval I
2r−1p+s/2
j+r−1

(Note that the maximum is bounded). We have for the process (Xt)t,

V[W 2rp+s
j+r ] =

σ2

2π

∫ 2rp+s+1
2j+r

2rp+s

2j+r

|2(cos 2πλ− cos 2πνk)|−2dk

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

≤ σ2|2(cos 2πλ∗ − cos 2πνk)|−2dk

2π

∫ 2rp+s+1
2j+r

2rp+s

2j+r

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

=
σ2|2(cos 2πλ∗ − cos 2πνk)|−2dk

2π
V[W 2rp+s

j+r (1)],
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V[W 2rp+s+1
j+r ] =

σ2

2π

∫ 2rp+s+2
2j+r

2rp+s+1
2j+r

|2(cos 2πλ− cos 2πνk)|−2dk

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

≤ σ2|2(cos 2πλ∗ − cos 2πνk)|−2dk

2π

∫ 2rp+s+2
2j+r

2rp+s+1
2j+r

k−1∏

i=1

|2(cos 2πλ− cos 2πνi)|−2didλ

=
σ2|2(cos 2πλ∗ − cos 2πνk)|−2dk

2π
V[W 2rp+s+1

j+r (1)].

Then, as V[W 2rp+s
j+r (1)] = 0 or V[W 2rp+s+1

j+r (1)] = 0,

V[W 2rp+s
j+r ] À V[W 2rp+s+1

j+r ] or V[W 2rp+s
j+r ] À V[W 2rp+s+1

j+r ],

it means,
V[W 2rp+s

j+r ] = 0 or V[W 2rp+s+1
j+r ] = 0.

Then,

Bp
j =

2r−1⋃

i=0

B2rp+i
j+r ,

because the choice of r is particular (see (14)). Finally, the node (j, p) is not in the tree T .

However, the fact that the node (j + r, 2rp + s) is in the tree T1 means that,

V[W 2r+1p+2s
j+r+1 (1)] = W 2r+1p+2s

j+r+1 (1) and V[W 2r+1p+2s+1
j+r+1 (1)] = W 2r+1p+2s+1

j+r+1 (1).

As the frequency νk is not in the interval I2rp+s
j+r , we obtain easily that

V[W 2r+1p+2s
j+r+1 ] = W 2r+1p+2s

j+r+1 and V[W 2r+1p+2s+1
j+r+1 ] = W 2r+1p+2s+1

j+r+1 .

Finally, the node (j + r, 2rp + s) is in the tree T . Using the argument, we show that the node
(j + r∗, 2r∗p + s∗) is in the tree T .

Appendix B
Lemma 6.1 Let ψ be a wavelet with q vanishing moments, and the associated high-pass QMF �lter
factorized as:

ĝ(ω) = (1− e−iω)qP (eiω) (15)
where P (.) is a trigonometric polynomial bounded around ω = 0. Then, for all j and p = 0, . . . , 2j − 1,
the moments of the wavelet packet function ψj

p are such that:

Mj,p(r) =
∫

R
trψp

j (t)dt = δ(r)δ(p), for 0 ≤ r < Rp (16)

where R0 = 1 and Rp = q
∑j−1

k=0 pk for p 6= 0, and p = (pj−1pj−2 . . . p1p0)2 is the binary representation
of p.

Proof of Lemma 6.1:
Note that for p = 1 (wavelet basis), our result specializes to the traditional relation Mj,1(r) = 0 for
0 ≤ r < q. The lemma can be proved eigther by induction in the original domain, or using explicit proof
in the Fourier domain. We shall proceed according to the latter. Recall �rst that the Fourier transforms
of ψ2p

j+1(t) and ψ2p+1
j+1 (t) can be recursively written as:

ψ̂2p
j+1(ω) = ĥ(2jω)ψ̂p

j (ω) (17)
ψ̂2p+1

j+1 (ω) = ĝ(2jω)ψ̂p
j (ω) (18)
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Calculating ψ̂p
j (ω) amounts to iterating the actions of the QMF �lters h or g, from the root of the binary

tree, to extract the appropriate range of frequencies. Thus, one can write that:

ψ̂p
j (ω) =

[
j−1∏

k=0

Fpk−1(2
−kω)√

2

]
φ̂(2−jω) (19)

or equivalently ψ̂p
j (ω) =

[
j−1∏

k=0

Fpj−k−1(2
kω)

]
φ̂(ω) (20)

where the sequence of �lters Fpk
is chosen according to p :

Fpk
=

{
ĥ if pk = 0
ĝ if pk = 1

(21)

where p = 2j−1pj−1 + 2j−2pj−2 + . . . + 2p1 + p0, and φ̂(0) 6= 0. We point out that similar expres-
sions as above can be deduced using the convolution-decimation operators associated with h and g (see
Wickerhauser 94, Chap. 5[Wic94], Nielsen (1999)[Nie99].
Let's take compactly supported wavelets with q vanishing moments, whose associated high-pass �lters ĝ
has q − 1 zeros at ω = 0 :

ĝ(ω) =
(
1− e−iω

)q
P

(
eiω

)
(22)

where P (.) is a trigonometric polynomial bounded around ω = 0. The QMF low-pass �lter ĥ has q − 1
zeros at π. The Daubechies �lters satisfy these conditions. The number of vanishing moments of ψp

j (t)
is equivalently given by the number of vanishing derivatives of ψ̂p

j (ω) at ω = 0, that is:

Mj,p(r) =
[(

1
i
∂ω

)r

ψ̂p
j (ω)

]

ω=0

for r = 0, . . . , Rp − 1 (23)

• If p = 0, it is easy to see that ψ̂p
j (ω) is just the product of low-pass �lters, and ψ0

j (t) = φj(t) the
scaling function at depth j. Then, Mj,0(r) = φ̂j(0), which is non-zero with R0 = 1. It is worth
noting that if additional constraints are imposed on the wavelet choice (e.g. Coi�ets), Mj,0(r)
might be zero for 1 ≤ r < q.

• If p 6= 0, from (20) we can write:

ψ̂p
j (ω) =

∏

k|pj−k−1=1

(
1− e−i2kω

)q

Q(ω) (24)

where Q(.) is again bounded around ω = 0. The number of vanishing moments is then given by the
number of zeros at ω = 0 which is Rp = q

∑
k pk. The lemma follows.

Lemma 6.2 If the QMF h has a support in [N1, N2], then the support of the wavelet packet function
ψp

j (t) at each node (j, p) in the WP binary tree is always included in
[−2j (N∗ + 1) , 2j (N∗ + 1)

]
, with

N∗ = max (|N1|, |N2|).

Proof of Lemma 6.2:
This is proved by induction. We begin by proving it at the �rst scale, where it is easy to show (see
e.g. Mallat (1998)[Mal98], Proposition 7.2) that ψ0 will be supported in the interval [N1, N2] and ψ1 in[

N1−N2+1
2 , N2−N1+1

2

]
. The support inclusion statement is obviously true for ψ0. For ψ1, we �rst assume

that there exists a �nite strictly positive integer L such that L = |N1 −N2| ≥ 1. Then, for all L even or
odd: ∣∣∣∣

N1 −N2 + 1
2

∣∣∣∣ ≤
⌊

L

2

⌋
+ 1

≤
⌊ |N1|+ |N2|

2

⌋
+ 1

≤ max (|N1|, |N2|) + 1 (25)
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which proves the support inclusion for ψ1.
Assume now that Supp ψp

j ⊆
[−2j (N∗ + 1) , 2j (N∗ + 1)

]
. Then, using the recursive de�nition of the

children functions ψ2p
j+1 and ψ2p+1

j+1 ,

Supp ψ2p
j+1 ⊆

[−2j (N∗ + 1) + 2jN1, 2j (N∗ + 1) + 2jN2

]
(26)

Supp ψ2p+1
j+1 ⊆ [−2j (N∗ + 1) + 2j (1−N2) , 2j (N∗ + 1) + 2j (1−N1)

]
(27)

where the support properties of the QMF �lters h and g were also used. It follows that:
∣∣2j (N∗ + 1) + 2jNl

∣∣ ≤ 2j (N∗ + 1) + 2j max
l=1,2

|Nl|

≤ 2j (N∗ + 1) + 2j + 2jN∗

≤ 2j+1 (N∗ + 1) (28)∣∣2j (N∗ + 1) + 2j (1−Nl)
∣∣ ≤ 2j (N∗ + 1) + 2j + 2j max

l=1,2
|Nl|

≤ 2j+1 (N∗ + 1) (29)

for l = 1, 2. This completes the proof.

Lemma 6.3 Let I be a collection of disjoint dyadic intervals Ij
p whose union is the positive half line, and

B = {ψp
j (t− 2jk) : 0 ≤ k < 2J−j , Ip

j ∈ I} is the associated orthonormal basis. Let h and g the QMFs as
de�ned in Eq.22. The vanishing moments Mp1,p2

j1,j2
(m) of the intercorrelation function Λp1,p2

j1,j2
(h) of ψp1

j1
(t)

and ψp2
j2

(t) ∈ B satisfy:

1. p1 6= 0 and p2 6= 0:
Mp1,p2

j1,j2
(m) = 0, for 0 ≤ m < Rp1 + Rp2 . (30)

2. p1 6= 0 or p2 6= 0:
Mp1,p2

j1,j2
(m) = 0, for 0 ≤ m < Rmax(p1,p2). (31)

3. p1 = p2 = 0:
Mp1,p2

j1,j2
(m) = 0, for 1 ≤ m < 2q. (32)

Furthermore, the support of Λp1,p2
j1,j2

(h) is included in
[− (N∗ + 1)

(
2j1 + 2j2

)
, (N∗ + 1)

(
2j1 + 2j2

)]
.

Proof of Lemma 6.3:
By de�nition of the intercorrelation function, we have:

Λp1,p2
j1,j2

(h) =
∫

ψp1
j1

(t)ψp2
j2

(t− h)dt (33)

Given the fact that these wavelet packet functions belong to the orthonormal basis B, we immediately
obtain that at integer lags:

Λp1,p2
j1,j2

(n) = δ (j1 − j2) δ (p1 − p2) δ (n) (34)
As far as the support is concerned, it is not a di�cult matter to see, using Lemma 6.2, that Λp1,p2

j1,j2
(h) is

supported in
[− (N∗ + 1)

(
2j1 + 2j2

)
, (N∗ + 1)

(
2j1 + 2j2

)]
.

Let's now turn to the moments of Λp1,p2
j1,j2

(h).

1. p1 6= 0 and p2 6= 0:
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In this case, we know from Lemma 6.1 that ψp1
j1

and ψp2
j2

have respectively Rp1 =
∑j1−1

k=0 pk
1 and

Rp2 =
∑j2−1

k=0 pk
2 vanishing moments. Then, Λp1,p2

j1,j2
(h) will have Rp1 +Rp2 vanishing moments since,

∫
hmΛp1,p2

j1,j2
(h)dh =

∫ ∫
hmψp1

j1
(t)ψp2

j2
(t− h)dtdh

= −
∫ ∫

(v − u)mψp1
j1

(v)ψp2
j2

(u)dudv

= −
m∑

n=0

(−1)n

(
m

n

) ∫
vm−nψp1

j1
(v)dv

∫
unψp2

j2
(u)du

= 0, for 0 ≤ m < Rp1 + Rp2 . (35)

where we used uniform convergence and continuity to invert the order of summation and integration.
Note that the Fubini theorem allows us to invert the order of integrals.

2. p1 6= 0 or p2 6= 0:
Without loss of generality, assume that p1 6= 0 and p2 = 0. The same reasoning as above can be
adopted to conclude that:

∫
hmΛp1,0

j1,j2
(h)dh = −

m∑
n=0

(−1)n

(
m

n

) ∫
vm−nψp1

j1
(v)dv

∫
unφj2(u)du

= 0, for 0 ≤ m < Rp1 . (36)

3. p1 = p2 = 0:
In an orthonormal basis of wavelet packets, this situation is not possible unless j1 = j2 = j. Thus,

∫
hmΛ0,0

j,j (h)dh = 2−j

∫ ∫
hmφ

(
2−jt

)
φ

(
2−j (t− h)

)
dtdh

= 2j(m+1)

∫ ∫
umφ(v)φ(v − u)dudv

= 0, for 1 ≤ m < 2q. (37)

where the latter result is proved in [Bey92].

Proof of Proposition 4.1:
Here we are interested in the covariance between the wavelet packet coe�cients W p1

j1
(k1) and W p2

j2
(k2).

We have

Cov
[
W p1

j1
(k1),W

p2
j2

(k2)
]

=
∫ ∫

E[X(t)X(s)]ψp1
j1

(t− 2j1k1)ψ
p2
j2

(s− 2j2k2)dtds (38)

=
∫ ∫

cos (ν(t− s)) |t− s|2d−1ψp1
j1

(t− 2j1k1)ψ
p2
j2

(s− 2j2k2)dtds (39)

With a change of variables, u = t− 2j1k1 and v = s− 2j2k2,

Cov
[
W p1

j1
(k1),W

p2
j2

(k2)
]

=
∫ ∫

cos(ν(u+2j1k1− v−2j2k2))|u+2j1k1− v−2j2k2|2d−1ψp1
j1

(u)ψp2
j2

(v)dudv

With an other change of variables, u = t and v = t− h

Cov
[
W p1

j1
(k1),W

p2
j2

(k2)
]

=
∫ ∫

cos(ν(h + 2j1(k1 − 2j2−j1k2)))|h + 2j1(k1 − 2j2−j1k2)|2d−1ψp1
j1

(t)ψp2
j2

(t− h)dtdh(40)

=
∫

cos(ν(h + 2j1(k1 − 2j2−j1k2)))|h + 2j1(k1 − 2j2−j1k2)|2d−1Λp1,p2
j1,j2

(h)dh, (41)

where Λp1,p2
j1,j2

(h) =
∫

ψp1
j1

(t)ψp2
j2

(t− h)dt.
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Denoting α = 2j1(k1 − 2j2−j1k2), we obtain,

Cov
[
W p1

j1
(k1),W

p2
j2

(k2)
]

=
∫

cos(ν(h + α))|h + α|2d−1Λp1,p2
j1,j2

(h)dh. (42)

According to the support of ψ, from Lemma 6.2 we know that that the support of Λp1,p2
j1,j2

(h) is included
in [−(2j1 + 2j2)(N∗ + 1), (2j1 + 2j2)(N∗ + 1)]. As h is in the support of Λp1p2

j1j2
and by assumption

α > (N∗ + 1)(2j1 + 2j2), we have h/α < 1. Then,

• if we denote f(h + α) = |h + α|2d−1, we have

f(h + α) = |h + α|2d−1 = |α|2d−1

∣∣∣∣1 +
h

α

∣∣∣∣
2d−1

= |α|2d−1

{
1 +

∞∑

i=1

(
2d− 1

i

)(
h

α

)i
}

. (43)

• when α is large, h/α tends to 0, and then,

cos(ν(α + h)) = cos
(

να

(
1 +

h

α

))
∼ cos(να). (44)

Hence, from (43)-(44), it follows that, for large α

Cov
[
W p1

j1
(k1), W

p2
j2

(k2)
] ∼ |α|2d−1 cos(να)

{∫
Λp1,p2

j1,j2
(h)dh +

∞∑

i=1

(
2d− 1

i

) ∫ (
h

α

)i

Λp1,p2
j1,j2

(h)dh

}
.

(45)
We must then provide un upper bound on the integrals inside the braces. In the following we distinguish
three di�erent cases depending on the number of vanishing moments of Λp1,p2

j1,j2
according to Lemma 6.3,

that is:

1. If p1 6= 0 and p2 6= 0, then Mj1,j2
p1,p2

(m) = 0, for 0 ≤ m < Rp1 + Rp2 . We denote q∗ = Rp1 + Rp2 .
Then, using the fact that the q∗ �rst moments of Λp1,p2

j1,j2
are null,

Cov
[
W p1

j1
(k1),W

p2
j2

(k2)
] ∼ C1|α|2d−1−q∗ + Rq∗+1, (46)

with
C1 = cos(να)

(2d− 1)!
q∗!(2d− 1− q∗)!

∫
hq∗Λp1,p2

j1,j2
(h)dh (47)

and
Rq∗+1 = cos(να)|α|2d−1

∞∑

i=q∗+1

(
2d− 1

i

) ∫ (
h

α

)i

Λp1,p2
j1,j2

(h)dh. (48)

|Rq∗+1| ≤ |α|2d−1

(
2d− 1

q∗

) ∣∣∣∣∣∣

∞∑

i=q∗+1

∫ ∫ (
h

α

)i

ψp1
j1

(t)ψp2
j2

(t− h)dtdh

∣∣∣∣∣∣
(49)

= |α|2d−1

(
2d− 1

q∗

) ∣∣∣∣∣∣

∞∑

i=q∗+1

∫ ∫ (
t− h

α

)i

ψp1
j1

(t)ψp2
j2

(h)dtdh

∣∣∣∣∣∣
(50)

≤ |α|2d−1
∞∑

i=q∗+1

(
2d− 1

q∗

) ∫ ∫ (
sup
t,h

∣∣∣∣
t− h

α

∣∣∣∣
)i ∣∣ψp1

j1
(t)ψp2

j2
(h)

∣∣ dtdh (51)

= |α|2d−1

(
2d− 1

q∗

) ∫ ∫ ∣∣ψp1
j1

(t)ψp2
j2

(h)
∣∣ dtdh

∞∑

i=q∗+1

(
sup
t,h

∣∣∣∣
t− h

α

∣∣∣∣
)i

(52)

= C2|α|2d−1
∞∑

i=1

βq∗+i, (53)

(54)
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where
β = sup

t,h

∣∣∣∣
t− h

α

∣∣∣∣ and C2 =
(

2d− 1
q∗

) ∫
|ψp1

j1
(t)|dt

∫
|ψp2

j2
(h)|dh. (55)

Then,
|Rq∗+1| ≤ C3|α|2d−1−q∗−1, (56)

where C3 is a �nite constant. Finally,

Cov
[
W p1

j1
(k1), W

p2
j2

(k2)
]

= O
(
|2j1k1 − 2j2k2|2d−1−q∗

)
, (57)

for |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2) and q∗ = Rp1 + Rp2 .

2. If p1 6= 0 or p2 6= 0 then Mj1,j2
p1,p2

(m) = 0, for 0 ≤ m < Rmax(p1,p2). Using the same argument as
previously, we �nd that

Cov
[
W p1

j1
(k1), W

p2
j2

(k2)
]

= O
(
|2j1k1 − 2j2k2|2d−1−q∗

)
, (58)

with |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2) and q∗ = Rmax(p1,p2).

3. p1 = p2 = 0: Mj1,j2
p1,p2

(m) = 0 for 1 ≤ m < 2q. In this particular case, we have necessary j1 = j2 = j.
We then upper-bound the covariance as follows,

Cov
[
W 0

j (k1),W 0
j (k2)

] ∼ |α|2d−1

{∫
cos(ν(α + h))Λ0,0

j,j (h)dh + cos(να)
∞∑

i=1

(
2d− 1

i

) ∫ (
h

α

)i

Λ0,0
j,j (h)dh

}
.

(59)
Then,

Cov
[
W 0

j (k1),W 0
j (k2)

] ∼ C0|α|2d−1 + C1|α|2d−1−2q + R2q+1, (60)
where

C0 =
∫

cos(ν(h + α))Λ0,0
j,j (h)dh, C1 = cos(να)

(2d− 1)!
(2q)!(2d− 1− 2q)!

∫
h2qΛ0,0

j,j (h)dh, (61)

and

|R2q+1| ≤ | cos(να)||α|2d−1|
∞∑

i=2q+1

(
2d− 1

i

) ∫ (
h

α

)i

Λ0,0
j,j (h)dh| (62)

= O
(|α|2d−1−2q−1

)
(63)

As previously, we remark that when α is large, equation (44) holds and then,

C0 ∼ cos(να)
∫ ∫

φj(t)φj(t− h)dtdh (64)

= 2j cos(να) |Φ(0)|2 = 2j cos(να). (65)

Finally, using a similar argument as in the previous cases, we �nd that

Cov
[
W 0

j (k1),W 0
j (k2)

]
= O(|2j(k1 − k2)|2d−1). (66)

for |k1−k2| > 2(N∗+1).
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