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Abstract

In this paper we discuss different aspects of long mzmory behavior
and specify what kinds of parametric models follow them. We discuss
the confusion which can arise when empirical autocorrelation function
of a short memory process decreases in an hyperbolic way.
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1 Introduction
The possibility of confusing long memory behavior with structural changes
requires an understanding of the kind of long memory behavior concerned.
This paper attempts to be comprehensive in terms of coverage of results that
appear of direct relevance for econometricians. While long memory models
have only been used by econometricians since around 1980, and by financial
researchers since around 1995, they have played a role in physical sciences
since at least 1950, with statisticians in fields as diverse as hydrology and
climatology detecting the presence of long memory within data over both
time and space. One attraction of long memory models is that they imply
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different long run predictions and effects of shocks to conventional macroeco-
nomic approaches. On the other hand, there is substantial evidence that long
memory processes describe rather well financial data such as forward premi-
ums, interest rate differentials, inflation rates and exchanges rates. Then,
empirical works in macroeconomics and finance have witnessed a renaissance
in both the theoretical and empirical econometrics of long memory and frac-
tional integration.

But until now little attention has been given to the possibility of confusing
long memory and structural change. This is different from the problem en-
countered concerning the possible confusion between structural changes and
unit roots which is now widely appreciated, see for instance Sowell (1990),
Stock (1994) and Granger and Ding (1996). Here we will not consider this
point of view and will focus on possible interrelationships between long mem-
ory behavior and structural changes. Different classes of structural change
models which exhibit some long memory behavior have been proposed. This
long memory behavior could be an illusion generated by occasional level shifts
then inducing the observed persistence, while most shocks dissipate quickly.
In contrast, all shocks are equally persistent in a long memory model. Thus,
distinguishing between long memory and level shifts could dramatically im-
prove policy analysis and forecasting performance.

Concerning stock returns, several papers have investigated their long-run
properties and suggest that the absolute returns are characterized well by
long memory processes. Several attempts try to explain these findings such
as existence of temporal higher-order dependence and occasional structural
breaks. Thus, different classes of processes have been proposed to explain
the long memory property in the stock market, based on one hand on het-
eroscedastic long memory models and on the other on the assumption that
existence of breaks might cause the long memory property of the absolute
returns. GARCH models (Engle (1982), Bollerslev (1986)) are well known
to be short memory, but long range dependence type behavior of the sample
autocorrelation function of these models has been observed by Mikosch and
Starica (1999). They consider that statistical tools can "see things that are
not there". The sample autocorrelation function reading of long memory
behavior can be caused either by stationary long memory time series and
equally well by non-stationarity in time series. Then, the asymptotic be-
havior of sample autocorrelations has to be analysed for all the models in
discussion in this paper.

If long memory processes refer to fractional models, the breaks refer to non-

2



linearity to the data. In certain cases, we can adjust a long memory model
to nonlinear data and vice versa. We will see in the following that some non-
linear models may generate time series to which one may want to fit linear
long memory models. On the other hand, data generated from long mem-
ory models may appear to have nonlinear properties, as occasional structural
breaks. It would be interesting also to capture both features of long memory
and nonlinearity into a single time series model, in order to be able to access
their relative importance. This will done for instance with the SETAR and
STAR models with long memory dynamics. These latter models have shown
their capability in the modeling of unemployment for instance. In economy,
aggregating variables is important, in particular to build different indexes.
Granger (1980) shows that we can provide long memory behavior aggregating
dynamic equations. Now, related to the concept of fractional long memory,
there exist several notions of long memory behavior and we will specify their
interrelationships.

In this paper, we will analyse the different concepts of long memory behavior.
We will investigate the different classes of models which present some spe-
cific long memory behavior and propose some classification. It is important
to note that, throughout we do not consider continuous time series, nor time
series with infinite variance. Indeed, the notion of long memory, for con-
tinuous time series, often refers to self similarity that it is different of long
memory behavior we consider here. Now, infinite variance time series can
be very interesting from a theoretical point of view, but very few data sets,
and little financial and economic data have this characteristic. Indeed, infi-
nite variance necessitates to work with infinite samples and we always work
with finite samples. Then, we are not close to the approaches developed
by Cioczek-Georges and Mandelbrot (1995), Taqqu, Willinger and Sherman
(1997), Heyde and Yang (1997) or Chen, Hansemand and Carrasco (1999).
For a review, see Samorodnitsky and Taqqu (1994).

The paper is organized as follows: in Section two, we specify some nota-
tions and results. Section three is devoted to the different notions behind
the concept of long memory. In Section four, we present some classes of
fractional long memory processes. Section five focuses on models with jumps
and switching. In Section six, we discuss specific behavior coming from the
aggregation of series and in Section seven we question the asymptotic prop-
erties of sample covariance and periodogram in their capacity to create long
memory behavior. Section eight concludes.
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2 Some recalls on stationary processes
A characterization in terms of the spectral density function is convenient for
the concept of long memory. Thus, we need to specify when a stationary
process has a spectral density function.

Let (Xt)t represent a real-valued discrete time stationary process (in the
covariance sense). Let us assume that ∀t, E[Xt] = 0. We define the autoco-
variance function γX as,

γX(τ) = E[XtXt+τ ],∀t, ∀τ,
and γX(τ) = γX(−τ), and |γX(τ)| < ∞, for all τ , by stationarity. Con-
cerning linear time series analysis, it is usually assumed γX(τ) → 0 "fairly
rapidly" as τ → ∞. This can be represented by the following approxima-
tion: γX(τ) ≈ Crτ , |r| < 1 and C is a constant. In particular the following
condition

∑∞
−∞ |γX(τ)| < ∞ is evidently satisfied by many classical linear

processes, such the class of ARMA processes, see Box and Jenkins (1976) or
Brockwell and Davis (1996). These processes are called short memory pro-
cesses, see Cox (1984) and Guégan (2003a). By extension, it is possible that,
for some processes,

∑∞
−∞ |γX(τ)| = ∞. In that latter case, we say that they

present long memory behavior. Now, there exist different characterizations
of the concept for long memory behavior that we discuss in the next Section.
But, first of all, we need to specify the concept of the spectral density func-
tion.

By the Wiener-Khinchin theorem, a necessary and sufficient condition that
γX be the autocovariance function for some stationary process (Xt)t is that
there exists a function FX (the spectral distribution function) defined on
[−π, π] such that FX(−π) = 0, FX is non decreasing on [−π, π] and

γX(τ) =

∫ π

−π

eiλτdFX(λ).

If the function FX is absolutely continuous with respect to Lebesgue measure,
then

FX(ν) =

∫ ν

−π

fX(λ)d(λ),

and fX is called the spectral density function for the process (Xt)t. The
function fX is necessarily non negative on [−π, π], is even, and unique up to
sets of Lebesgue measure zero since, if f ∗X differs only on a null set from fX ,
f ∗X is also a spectral density function for (Xt)t.
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Moreover
γX(τ) =

∫ π

−π

eiλτfX(λ)d(λ).

Thus, the autocovariance function and the spectral density function are
equivalent specifications of second order properties for a stationary process
(Xt)t.

3 Different aspects of long memory behaviors
Traditionally long memory has been defined in the time domain in terms
of decay rates of long-lag autocorrelations, or in frequency domain in terms
of rates of explosions of low frequency spectra. The presence of explosions
in the spectrum of a process (Xt)t makes it variable. This variability is
difficult to take into account. Thus, different ways have been considered in
the literature in order to specify this variability, often linked to the presence
of long memory behavior.

3.1 Parzen long memory’s concept

We introduce first two definitions of the concept of long memory due to
Parzen (1981). The first one concerns the time domain, the second one the
frequency domain.

Definition 3.1 A stationary process (Xt)t with an autocovariance function
γX is called a long memory process, in the covariance sense, if

∑
|γX(τ)| = ∞.

Definition 3.2 A stationary process (Xt)t with a spectral density function
fX is called a long memory process in the spectral density sense if the ratio:

esssupfX(λ)

essinffX(λ)
= ∞. (1)

These two definitions, which introduce concepts of long memory in a gen-
eral context, are not equivalent. A long memory process in the covariance
sense need not be a long memory process in the spectral density sense. The
converse is also true. In the other hand, there are processes which are long
memory in both senses and also processes that are not long memory in either
sense, for instance the ARMA processes for the latter case.
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It is also possible to exhibit processes whose spectral density has the prop-
erty defined by the expression (1) and which do not exhibit long memory
behavior by construction. For instance we consider the process (ηt)t defined,
for all t, by ηt = εt − εt−1, where (εt)t is a strong white noise. Its spectral
density function is equal to fη(λ) = 4 sin2 λ

2
. Or, the process (ηt)t cannot be

considered as a long memory process.

Thus, definition 3.2 is not sufficient to characterize the long memory behavior
for a stationary process. To overcome the limitations of the two previous
definitions, other approaches have been considered in a narrow way. A more
useful definition, in terms of the spectral approach, is the following:

Definition 3.3 A stationary process (Xt)t with a spectral density function
fX is called a long memory process in a restricted spectral density sense if
fX is bounded above on [δ, π], for every δ > 0 and if

fX(λ) = ∞, as λ → 0+. (2)

Now a long memory process in the restricted spectral density sense can be a
long memory process in the covariance sense. There exist processes that are
long memory in both the covariance sense and the spectral density sense, but
not in the restricted spectral density sense. In summary, we can distinguish:

• Processes which are long memory in the covariance sense, but not in
the spectral density sense (the density spectral does not explode at the
origin).

• Processes which are long memory both in the covariance and the spec-
tral density sense.

• Processes which are long memory only in the spectral density sense (the
autocovariance function decreases quickly towards zero at the origin).

• Processes which are long memory both in the covariance and the re-
stricted spectral density sense.

Now, in the following, when we work in the spectral domain, we only consider
the long memory behavior defined in the restricted spectral density sense.

3.2 The concept of Long memory with rate of conver-
gence

It is also important to characterize the rate at which the spectral density
diverges to infinity as |λ| → 0+, see Cox (1977). We are going to specify this
rate using the following definition.
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Definition 3.4 A stationary process (Xt)t with a spectral density function
fX is called a long memory process in the spectral density sense with a power
law of order 2d, with 0 < d < 1/2, if fX is bounded above on [δ, π], for every
δ > 0 and if

limλ→0+fX(λ) = h|λ|−2d, (3)

for some 0 < h < ∞.

It is clear that a power law long memory process is just a particular type of
long memory process in the restricted spectral density sense. We can remark
also that when d ≥ 1/2, the spectral density function is not integrable finitely
and hence does not correspond to a stationary process. We do not consider
this case here. In the following Section, we will consider analytic models
whose autocovariance function and spectral density function will present be-
haviors as those proposed respectively in the definitions 3.1 and 3.4. Recall
that if the process (Xt)t is an ARMA process then limλ→0+fX(λ) = C, where
C is a constant, taken to be positive.

In the definition 3.4, we only consider the explosion of the spectral density
in a frequency close to zero. We can generalize the concept of long memory
in terms of spectral density with power law at any frequency, then we get
the following definition:

Definition 3.5 A stationary process (Xt)t with a spectral density function
fX is called a long memory process in the spectral density sense with a power
law of order 2d, with 0 < d < 1/2, if there exists a frequency λ0 ∈ [−π, π]
such that

limλ→λ0fX(λ) = h|λ|−2d, (4)

for some 0 < h < ∞.

It is also possible to give, following the definition 3.4, the equivalence in terms
of the speed towards zero of the autocovariance function, see Granger and
Joyeux (1980). Then, we get the following definition:

Definition 3.6 A stationary process (Xt)t with an autocovariance function
γX is called a long memory process in the covariance sense with a speed of
convergence of order 2d, with 0 < d < 1/2, if

γX(τ) = C(d)τ 2d−1, as τ →∞, (5)

with C(d) a constant which depends on d.
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3.3 Long memory behavior in Allan’s sense

If there exist explosions in the spectral density, those provoke variability
of the spectrum which is very difficult to take into account in practice. To
measure this variability, the first idea has been to use γX(0). But, when there
exists long memory behavior in the data, it is well known that sample variance
can severely underestimate γX(0), see Beran (1994). Allan (1966) argues that
the main problem with the sample variance is that the expectation depends
on the length T of the sample. He proposes to overcome this problem by
setting T = 2 in this classical expression of the sample variance and by
averaging the resulting quantity over all available data. Allan’s variance is a
peculiar quantity. Allan uses an estimation procedure to define a parameter
of interest, see also von Neumann (1941). The partial sums of the process
(Xt)t are given by:

ST =
T∑

t=1

Xt. (6)

Then, we get the following definition:

Definition 3.7 The Allan variance is var[ST ], with ST defined in (6).

If the process (Xt)t is stationary, then

var[ST ] = γX(0)− γX(1).

It is straightforward that if (Xt)t is a white noise process, we would have
var[ST ] = γX(0). Following Allan (1966) and Percival (1983) we get the
proposition:

Proposition 3.8 Let (Xt)t be a stationary process with a spectral density
function fX which verified the equation (3), for 0 < λ < δ, with δ > 0, then

var[ST ] =
C(d)

T 1−2d
+ O(

1

T 2
), if 0 < d < 1/2.

Here, C(d) is a constant that depends only on d.

Definition 3.9 A stationary process (Xt)t is called a long memory process in
the Allan variance’s sense if the rate of growth of the partial sums’ variances
is such that

var[ST ] = O(
1

T 1−2d
),

with 0 < d < 1/2.
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This proposition says that if a process is long memory in the spectral sense
with a power law 2d, then it is long memory in the Allan variance’s sense.
This means also that limT→∞var[ST ] = ∞. Then, we say that a process
such that

limT→∞var[ST ] = C, (7)

where C is a constant, is a short memory process, but it is not always assured
that the relationship (7) will imply that fX(0) is finite.

Since the Allan variance cannot be directly related to the process variance
(if it exists finitely) of (Xt)t, the question arises as to what the Allan vari-
ance does measure. It seems that the Allan variance is a useful measure of
variability for power law long memory process of order 2d. It can be used to
determine the exponent 2d for certain power law long memory process. We
can also try to use it to discriminate between several long memory parametric
processes. Concerning its utility to estimate d, this comes from the following
relationship, under the assumptions of the proposition 3.8:

ln var[ST ] = −(1− 2d) ln T + ln C(d) + o(1).

We can determine d by examining, on a log-log plot, the slope of var[ST ] as
a function of T , as T becomes large.

A generalization of the Allan variance has been introduced by Heyde and
Yang (1997) to capture models with infinite variance, but we do not investi-
gate it in this paper.

3.4 Long memory behavior in the prediction error vari-
ance sense

For some time, prediction error variance has been considered as a reason-
able alternative as a measure of variability for long memory processes. This
approach has been proposed by Priestley (1981). Consider the Wold repre-
sentation of the stationary process (Xt)t which is a power law long memory
process of order 2d :

Xt =
∞∑

j=0

ψjεt−j

where (εt)t is an uncorrelated, zero mean stationary sequence and (ψj)j a
fixed square summable sequence of constants. We denote σ2

ε as the variance
of the process (εt)t. We assume that the variance σ2

ε and the coefficients
ψj are known. Now, if we suppose that at time 0 we have available the
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present and the past values of Xt and that we want to predict Xt+1, then
its best predictor is a linear combination of present and all the past values
of Xt. Thus, the expected value of the squared prediction error (defined as
the difference between the observed value of Xt+1 and its predicted value) is
simply σ2

ε . This quantity is known also as the innovations’ variance. Here
we are going to equate the notion of frequency instability with the notion of
unpredictability.

Lemma 3.10 Let (Xt)t be a stationary process with a spectral density func-
tion fX which verified the expression (3), for 0 < λ < δ, with δ > 0, then

σ2
ε = exp[

1

2π

∫ π

−π

ln(2πfX(λ))dλ] < ∞.

We can remark that the process considered in Lemma 3.10 verifies also the as-
sumptions of the proposition 3.9. Here, the proposal is to let unpredictability
be the measure of variability in a long memory process: the more predictable
a process, the less variable it is declared to be. The measure of frequency
instability is just σ2

ε .

Now, if we want to compare the Allan variance and the prediction error vari-
ance, we can remark that σ2

ε < V ar[ST ]. Thus, it is very difficult to establish
clear relationship in terms of long memory behavior. Yoshimura (1978) shows
that there exists spectral density functions for which the Allan variance is
proportional to the prediction error variance when each is regarded as a func-
tion of the time t. For most of the spectral density functions this property
is not true. This means that there should not be any serious discrepancies
between the two measures.

3.5 Long memory behavior in distribution

In order to introduce the Rosenblatt approach, we first recall the mixing
conditions, see Ibragimov and Rozanov (1974). Let (Xt)t∈Z be a second
order stationary process on R. Let Fm

n denote the σ-algebra generated by
Xn, Xn+1, · · · , Xm and let Lm

n denote the closure in L2 of the vector space
spanned by Xn, Xn+1, · · · , Xm. We say that the process (Xt)t satisfies :

• the strong mixing condition if limk→+∞ α(k) = 0, where :

α(k) = sup
A∈Fn−∞
B∈F∞

n+k

|P (A ∩B)− P (A)P (B)|; (8)
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• the completely regular condition if limk→+∞ r(k) = 0, where :

r(k) = sup
ξ1,ξ2

|corr(ξ1, ξ2)|, (9)

and the random variables ξ1 and ξ2 are respectively measurable with
respect to the σ-algebras F n

−∞ and F∞
n+k;

• the completely linear regular condition if limk→+∞ ρ(k) = 0, where :

ρ(k) = sup
ξ1∈Ln−∞
ξ2∈L∞

n+k

|corr(ξ1, ξ2)|. (10)

Note that weakly dependent processes have α-mixing coefficients that de-
cay to zero exponentially, and strongly dependent processes have α-mixing
coefficients that are identically one. We have also the following relation-
ships between these coefficients : α(k) ≤ r(k) and ρ(k) ≤ r(k). Moreover,
for Gaussian processes, Kolmogorov and Rozanov (1960) have proved that
ρ(k) = r(k) and that α(k) ≤ r(k) ≤ 2πα(k). Rosenblatt (1956) defines short
range dependence in terms of a process that satisfies strong mixing condition,
so that the maximal dependence between two points of a process becomes
trivially small as the distance between these points increases. Thus, it is
natural to propose yet another definition for the concept of long memory.

Definition 3.11 A stationary process is long memory in distribution if it is
not strongly mixing.

We can also say that a process (Xt)t is "persistent" if, denoting F (., .) the
joint distribution of two random variables and F (.) the margins, we have ∀τ
and ∀t:

F (Xt+τ , Xt) 6= F (Xt+τ )F (Xt).

Thus, asymptotically the random variables Xt+τ and Xt are dependent. Oth-
erwise the process (Xt)t is said to be "not persistent". This characterization
is weaker than the one given in Definition 3.11.

Now, there exist several ways to measure the distance d(; , .) between the dis-
tributions of two random variables, as the χ2 distance, the Uniform distance,
the Kullback distance or the Hellinger distance, for instance. We denote :

D(τ) = d[F (Xt+τ , Xt), F (Xt+τ )F (Xt)]. (11)

If D(τ) → 0, as τ increases, we say that there exists no persistence. If
D(τ) → cτ−d, for d > 0 and c > 0, as τ increases, we say that we have long
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memory in distribution and the behavior is similar to the one defined by
definition 3.11. If D(τ) → e−cτ , c > 0, as τ increases, we get short memory
in distribution.

Now it is well known that, there exists a function C, under classical conditions
such that:

F (Xt+τ , Xt) = C(F−1(Xt+τ ), F
−1(Xt)). (12)

The function C is called the copula associated with F (., .), see Sklar (1959).
If we take the derivatives with respect to Xt+τ , then we get (with obvious
notations):

f(Xt+τ , Xt) = f(Xt+τ )f(Xt)c(ut+τ , ut), (13)

where c(., .) is the density copula defined on the unit box [0, 1] ⊗ [0, 1] and
ut = F (Xt). If the random variables Xt+τ and Xt are independent, then
c(ut+τ , ut) ≡ 1. Using (11) and (13) we get:

D(τ) = d[f(Xt+τ , Xt), f(Xt+τ )f(Xt)c(ut+τ , ut)]. (14)

Thus, for no persistence, we always need D(τ) → 0, as τ increases. Now,
if we specify a slow rate of convergence for D(τ), we can observe a long
memory behavior. The use of copulas can be interesting to detect long de-
pendence because we are able to estimate them from real data, see Caillault
and Guégan (2003) for details and some review. See also Granger (2003) for
a complementary approach with conditional copulas.

3.6 Comments

In this Section, we have proposed some definitions permitting the specifica-
tion of the notion of long memory behavior for a process (Xt)t. They are not
all equivalent. Some induce others. Now, from an empirical point of view, it
is difficult to detect long memory behavior in real data using some of these
definitions. Thus, we introduce now parametric models whose properties cor-
respond to some of the previous definitions. This will permit us to specify,
in an empirical way, what kind of long memory concept seems more realistic
to use in applications. We will see also that different classes of models will
produce the same long memory behavior. Then, the question is to be able to
distinguish between these different models. Until now, tests are not available
and the debate is opened.
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4 Fractional long memory processes
In this Section we recall several fractional long memory models and we specify
what kind of the previous long memory behavior they exhibit. We indicate
some possible confusion when there exists in addition some specific non sta-
tionarity. We also discuss the different models proposed in the literature for
transformations of returns. Let (Xt)t a stationary process with covariance
function γX and spectral density fX and denote B the backshift operator.

Assume that the centred process (Xt)t is described by the following recursive
scheme:

{ φ(B)
∏k

i=1(I − 2uiB + B2)diXt = θ(B)ηt

L(ηt|It) ∼ N(0, σ2
t )

σt+1 = ϕ(ηt, σt),

(15)

where the function ϕ : R2 → R≥0 is a measurable function. The polynomials
φ(z) = 1− φ1z − · · · − φpz

p and θ(z) = 1 + θ1z + · · ·+ θqz
q are respectively

the autoregressive and moving average polynomials. The shocks (ηt)t are
characterized by the conditional variance σ2

t and It is the σ-algebra generated
by the past values (ηt−1, ηt−2, · · · , ). The model (15) includes a lot of models
considered in the literature from the eighties.

• In (15), if k = 1, u = 1 and if (ηt)t is a strong white noise, we obtain
the following FARMA(p, d′, q) process (centred or not), with d′ = 2d:

φ(B)(I −B)d′Xt = θ(B)ηt. (16)

This process has been introduced by Granger and Joyeux (1980) and
Hosking (1981). Particular models of (16) can be expressed by moving
average representations such as:

Xt = {
∑t

j=0 cjεt−j

cj ∼ cj2d′−1.
(17)

This expression corresponds to a finite moving average representation
of process (16).

• If, in (15), (ηt)t is a strong white noise, we get the k-factor GARMA
process defined by:

φ(B)
k∏

i=1

(I − 2uiB + B2)diXt = θ(B)ηt. (18)
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This process has been introduced by Gray, Zhang andWoodward (1989)
for k = 1 and generalized by Giraitis and Leipus (1995) and Woodward,
Cheng and Gray (1998). If p = q = 0, we call it the k-factor Gegen-
bauer process.

• The process (15), that we call here the GIGARCH process has been in-
troduced by Guégan (2000) and (2003c). When k = 1 and u = 1, we get
the FIGARCH model introduced by Baillie, Bollerslev and Mikkelsen
(1996) and Baillie, Chung and Tieslau (1996). A generalization of this
last model, called the FIEGARCH model, has also been proposed by
Baillie, Bollerslev and Mikkelsen (1996).

We specify now the long memory behaviors of these models when they are
second order stationary.

The asymptotic behavior of the spectral density of processes (15) and (18)
is :

fX(λ) ∼ C(λ)|λ− λj|−2dj , as λ → λj, j = 1, · · · , k, (19)

where C(λ) depends only on λ. It explodes in the G-frequencies λi =
cos−1(ui). For the stationary process (16), this asymptotic behavior reduces
to f(λ) ∼ C(λ)λ−2d′ , as λ → 0+. Now, for the processes (15) and (18), the
asymptotic behavior of the autocorrelation function is

ρ(τ) ∼ τ 2d−1 cos(τλ0), (20)

when τ →∞ and λ0 is the G frequency. For the model (16) cos(τλ0) in (20)
reduces to a constant C(d′) which depends only on d′ and 2d is replaced by
2d′. Thus, all these models, when they are second order stationary, are long
memory in the covariance sense and in the spectral density sense with a rate
of convergence 2d or 2d′.

The variance γX(0) of the process (Xt)t defined by (16) is finite and positive
and:

V ar[ST ]

γX(0)
= 1− ρX(1),

with ρX(1) = −d
d+1

, where ρX(1) is the lag 1 autocorrelation for (Xt)t. Thus,
V ar[ST ]
γX(0)

approaches 0 as d′ decreases to 1/2 and V ar[ST ] = O(T 2d′−1). This
means that the FARMA process, which is long memory in the spectral sense
with a convergence rate 2d′, is also long memory in Allan’s sense. Indeed,
For the process (16), we observe the dependence on the parameter d′ of the
growth of the partial sums. The variance of the partial sums of a white noise
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process (d = 0) grows at a linear rate T because each random shock is un-
correlated with the others and only adds its own variance of the partial sum.
In the case of the FARMA process, if 0 < d′ < 1/2, the shocks are positively
correlated and the variance of the sum grows faster than the variance of a
single shock. It is in that sense that it produces long memory behavior. The
processes (15) and (18) are not long memory in the Allan variance sense
because V ar[ST ] = O(T ), but a specification in terms of a generalization
of Allan variance has been recently proposed by Collet and Guégan (2004)
which provides the same kind of behavior for these processes.

If in equations (16) and (18), the strong noise (ηt)t is a Gaussian noise, and
as soon as the variance of the processes is positive and finite, then these
models are long memory in distribution, see Guégan and Ladoucette (2001).
Actually, we cannot say that the general class of k-factor GIGARCH pro-
cesses (15) is long memory in distribution. Indeed, if these processes are not
regularly linear, the non-mixing property is not proved.

Now, the long memory behavior described by the previous models can be
amplified and misinterpreted, in a non-stationary setting. For instance, let
us consider the FARMA process (16).

• If (ηt)t is a centered white noise then, E[Xt] = 0, and

V ar[Xt] = {
c t →∞ 0 < d′ < 1/2

→ c ln t d′ = 1/2
→ ct2d′−1 d′ > 1/2.

(21)

Then this process is non-stationary in variance for d′ ≥ 1/2 and also in
covariance sense.

• If (ηt)t is a non-centred white noise with mean m then, E[Xt] = mtd
′ ,

and this process is non-stationary in mean as soon as m 6= 0 but it is
also long memory in the covariance and spectral senses with the rate
2d′. Thus, it appears difficult to distinguish these two characteristics,
from real data.

• Let (Xt)t an ARIMA(0,1,1) process and (Yt)t the process defined, ∀t,
by Yt = Xt −Xt−1. Its spectral density function is equal to

fY (λ) = h(1− θ2 − 2θ cos λ),

with |θ| < 1, the moving average parameter and h a constant, 0 <
h < ∞. The process (Yt)t is a power law long memory process of
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order d = −1. It has an improper density function. Hence, fY obeys
a power law in the limit of order d = −1, which is quite different
from what spectral analysis indicates that it should be. Nonetheless
an ARIMA(0,1,1) model captures the main feature of a long memory
process such as (16), namely a spectral density function that diverges
to infinity as |λ| → 0. Thus, it is a long memory process in the spectral
sense.

• It is also possible to consider transformations of processes such that
(16) which keep long memory behavior, which can add some confusion
in identification theory. For FARMA processes, Dittman and Granger
(2002) use Hermite polynomial developments and consider the trans-
formation g(.) defined by

g(x) = g0 +
k∑

j=J

gjHj(x), 1 < J < k < ∞, gj 6= 0. (22)

The polynomial Hj(x) are Hermite polynomials. If (Xt)t is defined by
(16), with 0 < d′ < 1/2, then the process (g(Xt))t, is a long memory
process such that its autocorrelation function decreases hyperbolically

γg(X)(τ) =
Γ(1− d′)

Γ(d′)
τ 2d′−1, for large τ. (23)

Now, if −1 < d′ < 0, then the process (g(Xt))t, is a short memory
process. We do not observe in that latter case antipersistence like with
the FARMA process, when −1 < d′ < 0 in (16). In theory the property
of long memory is theoretically lost by nonlinear transformation, but
in practice this long memory effect is observed and can be larger with
even functions g(.) than for odd functions.

In a lot of empirical studies, the presence of strong dependence between
transformations of returns have been observed although the returns are gen-
erally considered short memory with presence of heteroscedasticity. It is well
known that the GARCH model (Engle (1982), Bollerslev (1986)) does not
take into account some persistence observed via the autocorrelations func-
tion of the returns. In a first step the persistence has been modelled using
the IGARCH process. Historically two reasons exist to reject this model.
The first is because the second moment of the theoretical IGARCH model is
infinite or, in practice, the data have no infinite variance, see Mikosch and
Starica (1998). The second is because the modelling of IGARCH process
induces non-stationarity in the time series which creates switches. Thus, it
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appears necessary to consider other models to explain the existence of per-
sistence in variance, i.e., the degree to which past volatility explains current
volatility in order to model significant correlation between the present volatil-
ity and remote past volatilities. Empirically, it appeared that the effect of
shocks on the conditional variance was very persistent though eventually ab-
sorbed with time. That is, sample autocorrelations in square returns tend
to decline very slowly in contrast to the fast exponential decay implied by
standard GARCH-type models.

This is, in turn consistent with the notions of long memory described in the
previous Section when theoretical covariances are not summable, or when,
alternatively, the power spectrum is unbounded at zero frequency. For these
reasons, several processes have appeared with both heteroscedasticity and
long memory characteristics, like the model (15). This last model permits
one to take into account such behaviors as soon as we use, for the random
variables Xt, any transformation of the returns (square, powers of absolute
value). With this latter model, we begin to identify or estimate long memory
behavior and then we take into account the short memory behavior. This
way seems natural in the sense that, as soon as long memory exists in data,
it is impossible to separate the characteristics of short memory from those of
long memory looking at the autocorrelation function.

In a different way Ding, Granger and Engle (1993) suggest to use the following
model for the returns Xt:

Xt = σtηt, (24)

where
σt = (I − (I −B)d)|Xt|, (25)

with 0 < d < 1/2. Then, the spectral density of the process (|Xt|)t has the
property (3) whereas the spectral density of the process (Xt)t is bounded.
The function γ|Xt|(τ) remains strictly positive for many values of τ . It can
be shown, that if one defines γ|Xt|δ(τ), then, for a wide range of δ values, the
series (|Xt|δ)t is long memory too. We refer, for more details, to Granger and
Ding (1995) and Avouyi-Dovi, Guégan and Ladoucette (2002), for instance.
This means that long memory effects are more important empirically than
the variance. In a certain sense, it seems that if the process (Xt)t presents a
long memory behavior in the covariance sense with rate of convergence, then
the volatility process (σt)t will present the same behavior. Now, if we assume
that E[ηt] = m , then V ar[|Xt|] ∼ mtd and the variance of the volatility will
have a trend. This can be confused with the long memory behavior in co-
variance.
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Following this work, several attempts have been made to construct long mem-
ory models taking into account, at the same time, heteroscedaticity and long
memory behavior. We will focus on the ARCH (∞) model which has been
largely documented and which includes a lot of heteroscedastic models. We
assume here that the returns (Xt)t are explained by the equation (24) with

σ2
t = a +

∞∑
j=1

bjX
2
t−j (26)

where a ≥ 0, bj ≥ 0, j = 1, 2, · · · . We consider the square of σt and Xt,
but we can consider any transformation as σδ

t or |Xt|δ, δ > 0. The interest
of the model defined by (24) and (26) lies on the behavior of its covariance
structure which can be quite rich. The behavior of the covariance function
will depend on the rate of decay of the sequence (bj)j which controls its
asymptotic behavior. The exponential decay of (bj)j implies the exponential
decay of the covariance function of the sequence (X2

t )t. Now if the weights
bj satisfy

bj ∼ cjd−1, 0 < d < 1/2, (27)

for some c > 0, then the covariance function of (X2
t )t also decays hyperboli-

cally (we do not get this result if we use σt and Xt in (26)). This means that
the covariance structure is close to long memory in structure. Now, there
exists some contradiction between the conditions which assure the existence
of a stationary solution for the model defined by (24) and (26) and its pos-
sible long memory behavior, see Giraitis, Robinson and Surgailis (1999) and
Giraitis, Kokoszka, Leipus and Teyssière (2000). They show that a sufficient
condition for covariance stationarity of the X2

t rules out long memory. This
result is strengthened by Zaffaroni (2004) who shows that covariance sta-
tionarity of the Xt precludes long memory in the X2

t . This means that if
we want to model both long memory and heteroscedasticity, we need to be
careful. Thus, it seems preferable to use the LM(q)-ARCH model proposed
by Ding and Granger (1996), as soon as the conditions on the coefficients are
modified, or the martingale representation of the ARCH models proposed
by Giraitis, Kokoszka and Leipus (2000) or the model (15) under restrictive
conditions. On the other hand, the strong dependence in the conditional vari-
ance has also been modelled by the long memory stochastic volatility model,
see for instance Breidt, Crato and de Lima (1998) and Robinson (2001). All
these models are long memory in the covariance sense. Finally, Starica and
Granger (2003), studying the absolute value of log returns of SP 500 on a
very long period, using a step function to explain the variance dynamics of
the data. They say that this approach seem sufficient to explain most of the
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dependence structure present in the sample autocorrelation function of long
absolute returns.

We can summarize the results presented in this Section saying that most of
the models which include fractional dynamics in their expression provide long
memory behavior in the covariance and in the spectral senses with rate of
convergence. Some exhibit long memory behavior in Allan’s sense and few in
distribution sense. Very few exhibit all these behaviors. The presence of non
stationarity can add confusion and heteroscedatic behavior is very complex
to analyse jointly with long memory dynamics.

5 Models with infrequent shocks or switches
There is plenty of evidence throughout economics of structural changes, time
varying parameters or regime switches, so it is interesting to ask if such
changes occur with long memory models and what are the effects. The re-
sults presented in this section suggest that, asymptotically, models with few
structural changes can exhibit specific long memory behavior.

A latent question concerning the structural models is to know if the under-
lying shocks remain transitory or not. Then it is possible to create models
in which the long run impact of the shock is time varying and stochastic,
and not only transient or permanent. Indeed, the concept of varying the per-
manent impact of shocks is linked to the familiar topic of structural change.
Whatever the impact of a shock, it is possible to interpret it as a specific
type of structural break. We can also formalize this question asking if each
permanent shock occurs every period with small variance or if it occurs infre-
quently with random arrival and large variance. For instance, the stationary
ARMA processes have no breaks and the random walk can present a break
every period. The SETAR processes introduced by Tong and Lim (1980)
seems to have no breaks. In these last models, the parameters change values,
which causes the innovations to decay at different rate, but nonetheless they
remain transitory unless a great percentage of close points stays in a regime.
Some authors claim that long memory and structural changes can be easily
confused. We will specify, in the following, that it depends on the notion of
long memory we consider.

To create breaks and then persistence, a device is to oblige some parameters
in the model, such as mixture probabilities, vary with the sample size T .
The easiest model that we can build is the Bernouilli (vt)t process defined in
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the following way:

vt = { 0 wp 1− p
wt wp p

(28)

where (wt)t is a strong Gaussian white noise N(0, σ2
w). From equation (28),

we get:
T∑

t=1

vt = { 0 wp 1− p∑T
t=1 wt wp p,

(29)

and

var[
T∑

t=1

vt] = pTσ2
w = O(T ). (30)

Thus, the Allan variance of this process increases with the sample size T . In
that case, this process does not exhibit long memory behavior. Now, assume
that p is not constant but changes appropriately with sample size. We define:

(H0) : p = O(T 2d−1), with 0 < d < 1. (31)

Then under the assumption (H0), the expression (30) becomes:

var[
∑

t=1T

vt] = O(T (2d−1)+1), (32)

and in that latter case, the partial sum’s variance grows consistently with
parameter d and the process (vt)t has long memory behavior in the Allan’s
sense. This does not mean that it has long memory in the covariance sense.

Following the above key idea to let the parameter p - which represents the
probability to be in a specific state - to decrease with sample size for creating
few breaks in the series and then long memory behavior, we can consider the
following general class of models. Let (Xt)t be a process whose recursive
scheme is

Xt = µst + εt, (33)

where (µst)t is a process we specify below and (εt)t a strong white noise,
independent to (µst)t. We can distinguish two cases:

1. If µst = µt then we assume that this process depends on a probability
p.

2. If µst depends on an hidden ergodic Markov chain (st)t, it is character-
ized by the transition matrix P of (st)t, whose elements are the fixed
transition probabilities pij

P [st = j|st−1 = i] = pij 0 ≤ pij ≤ 1, (34)
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with
1∑

j=0

pij = 1, i = 0, 1 (here, we assume the existence of two states).

Then, the transition matrix which characterizes the model (33) is,

P =

(
p00 1− p00

1− p11 p11

)
. (35)

The mean stationary switching model defined by (33) - (35) has been intro-
duced, first, by Quandt (1958) then reconsidered by Neftçi (1982, 1984) and
popularized later in economics by Hamilton in 1988. This model involves
multiple structures that can characterize the time series behaviors in differ-
ent regimes. By permitting switching between these structures, the model is
able to capture complex dynamic patterns, observed in various economic and
financial data sets. Different applications have been considered in financial
domain to detect existence of low and high volatilities periods.

The first class of models considered above includes "models with breaks"
and the second one "models with switches". SETAR models are built in a
different way as previous ones but can also create switching and, in certain
cases, long memory behavior. We now characterize these three classes of
models with respect to their different long memory behavior.

5.1 Models with breaks

In this subsection, first we consider models which create some permanent
breaks by their own structure, then we introduce models which need specific
assumptions to transform their "natural" short memory behavior in long
memory behavior. These models have been introduced first by Balke and
Fomby (1991) then investigated by Diebold and Inoue (2001) and Breidt and
Hsu (2002).

We assume that the process (Xt)t is defined by,

Xt = µt + εt, (36)

and we introduce several dynamics for the process (µt)t which appears in
(36):

• The Binomial model. The dynamics for the process (µt)t are, ∀t:

µt = µ0 +
t∑

j=1

qjηj, (37)
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with
qj = { 0 wp 1− p

1 wp p,
(38)

where (εt)t, (ηt)t and (qt)t are independent sequences. This model im-
plies sudden changes only inside the process (Xt)t. Structural changes
may occur gradually. If we denote σ2

η the variance of the process (ηt)t,
then the covariance of the process (Xt)t is equal to, ∀t:

γX(τ) = tpσ2
η. (39)

Granger and Hyung (1999) show that - with respect to the value of p -
the process defined by (36) - (38) presents asymptotically short memory
behavior (p → 0) or some kind of persistency (p > 0). The observed
long memory depends on p and can be long memory in covariance sense.

• The mean-plus-noise model. The process (µt)t is such that, ∀t:

µt = (1− p)µt−1 +
√

pηt, (40)

where (εt)t and (ηt)t are independent noise. The parameter p denotes
the persistence of the level component µt. If p is small, then the level
varies slowly. To prevent the variance of µt from blowing up as p goes
to zero, the innovation is scaled by √p. This process with small p is
highly dependent mean-reverting process and it exhibits persistence,
see Chen and Tiao (1990). A generalization of this model is discussed
in Breidt and Hsu (2002) and Smith (2003).

• The random walk model with a Bernouilli process. The dynamics of
(µt)t is the following, ∀t:

µt = µt−1 + vt, (41)

where the process (vt)t is the Bernouilli process defined by the equation
(28). If the probability p in (28) verifies the assumption (H0), then the
partial sums’ variance of the process defined by (36) and (41) is equal
to (32) and the process (Xt)t exhibits long memory behavior in the
Allan’s sense.

• The stop-Break process. The process (µt)t in (36), is such that, ∀t:

µt = µt−1 +
ε2

t−1

γT + ε2
t−1

.εt. (42)
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This model has been first introduced by Engle and Smith (1999). In
their paper, they are mainly interested by the effect of a permanent
shift and not by the long memory behavior. Now as one can show that
the covariance γX is such that γX = O(T δ), δ > 0, then the variance of
the partial sums of the process (Xt)t defined by the equations (36) and
(42) verifies also the equation (32) and this model has a long memory
behavior in the Allan’s sense, see Diebold and Inoue (2001).

• The stationary random level shift model. Here, the process (µt)t in
(36) depends on the Markov chain (st)t introduced in (34) and (35).
Then, ∀t we have:

µt = (1− kst)µt−1 + stηt, (43)

where k ∈ [0, 2) and (st)t is independent from (εt) and (ηt)t. This model
provides a framework to assess the performance of a standard time
series method on series with level shifts. If the probabilities pij, i, j =
1, 2, of the transition matrix P in (35) verify the assumption (H0),
then this process has long memory behavior in the spectral sense with
a rate equal to 2d, see Chen and Tiao (1990), Liu (2000), Breidt and
Hsu (2002) and Smith (2003).

5.2 Models with switches

Here, we assume that the process (Xt)t follows the model (33). A process de-
fined by (33) is a short memory process. Its autocovariance function decreases
fairly rapidly towards zero, see for instance Andel (1993). Nevertheless it is
possible to show empirically that this process has long memory behavior in
the spectral sense with a rate of convergence 0 < d < 1/2, see Guégan and
Rioublanc (2003). This means that we can adjust simulated data based from
(33) models such that (18) holds. Now, we present two models with switches
which exhibit some kind of long memory behavior.

• Diebold and Inoue (2001) consider a process (Xt)t defined by (33) with
a Markov chain whose transition’s probabilities satisfy the following
assumption:

(H1) : p00 = 1− c0T
−δ0 , p11 = 1− c1T

−δ1 ,

where δ0 and δ1 are positive. They show that, under this assumption,

var[
T∑

t=1

Xt] = O(Tmax(min(δ0,δ1)−|δ0,δ1|+1,1)), (44)
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thus the process defined by (33) has a long memory behavior in Allan’s
sense.

• Another model with switches which does not use a hidden Markov chain
- and which creates breaks - is the sign’s model introduced in 1999 by
Granger and Terasvirta, see also Granger, Spear and Ding (2000). it is
defined, ∀t, by

Xt = sign(Xt−1) + εt, (45)

where (εt)t is a strong white noise N(0, σ2). The sign function is given
by sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0 and sgn(x) = −1 if
x < 0. The process (Xt)t defined by (45) is Markovian with mean zero
and autocorrelation function ρX(τ) = (1 − 2p)τ , where p = P [εt <
−1] = P [εt > 1]. Thus, this process appears as a short memory pro-
cess. It produces switches in the mean, as a classical switching model,
as soon as, p is small. Now the authors have remarked that the plots of
ln ρ̂X(τ)

ln τ
increase with τ , where ρ̂X represents the empirical autocorrela-

tion function of (Xt)t. This means that, empirically, this process has a
behavior close to long memory behavior in the covariance sense. This
phenomenon seems amplified for small values of p. The same behavior
occurs even if the process (45) is not generated by a Gaussian noise.

5.3 Models with thresholds

SETAR models can also create jumps from one state to another one even
if their structure is completely different from the previous models. Tong
and Lim (1980), see also Tong (1990), introduced the famous SETAR model
which allows shifts from one state to another one thanks to the existence of a
threshold based on the internal structure of the process itself. In that case the
shifts in regime are assumed to be directly observable. In the SETAR model
the shift from one state to another one is based on the use of a discontinuous
function and Terasvirta and Anderson (1992) suggest to use a continuous
function. Then, the SETAR model became STAR models, see also van Dijk,
Franses and Paap (2002) for a recent review on this last class of models.
Several variants of the SETAR model to fit specific dynamics have also be
developed. We can cite the SETAR-ARCH model, introduced by Zakoian
(1994) and Li and Li (1996) which allows heteroscedastic behavior on each
state, the Threshold Stochastic Volatility model (SVM) introduced by So, Li
and Lam (2002) which permits SVM on each state and the SETAR model
with long memory dynamics on the states introduced by Dufrénot, Guégan
and Peguin-Feissolle (2003), for instance. The introduction of a threshold on
the conditional heteroscedasticity which characterizes some of the previous
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models has been proposed by Pfann, Schotman and Tchernig (1996).

Consider the process (Xt)t defined by the following general form:
{

Xt = f(Xt−1, · · · )(1−G(Xt−d, γ, c))
+ g(Xt−1, · · · )G(Xt−d, γ, c) + εt,

(46)

where the functions f and g can be any linear or non-linear functions of the
past values of Xt or εt. The process (εt)t is a strong white noise and G an
indicator function or some continuous function. For a given threshold c and
the position of the random variable Xt−d with respect to this threshold c,
the process (Xt)t follows different models. In its formulation, the model (46)
necessitates, for instance:

1. The stationary SETAR(2,2,1) process when G is the indicator func-
tion IXt−d>c

, defined as IA = 1 if A is true and IA = 0 otherwise,
f(Xt−1, · · · ) = φ0,1 + φ1,1Xt−1 and g(Xt−1, · · · ) = φ0,2 + φ1,2Xt−1. This
model has been introduced by Tong and Lim (1980). On each state,
it is possible to propose more complex models like ARMA(p, q) pro-
cesses (Brockwell and Davis, 1888), bilinear models (Guégan, 1994) or
GARCH(p, q) processes (Bollerslev, 1986). Changes on the variance
can be also considered, see Pfann, Schotman and Tchernig (1996).

2. The STAR model is obtained using for G a continuous function like the
logistic,

G(Xt−d, γ, c) =
1

1 + exp(−γ(Xt−d − c))
. (47)

Note that the transition function G is bounded between 0 and 1. For
this model, we consider the same functions f and g as before. The pa-
rameter c can be interpreted as the threshold between the two regimes
in the sense that the logistic function changes monotonically from 0 to
1 with respect to the value of the lagged endogenous variable Xt−d. The
parameter γ determines the smoothness of the change in the value of
the logistic function, and thus, the smoothness of the transition of one
regime to the other. As γ becomes very large, the logistic function (47)
approaches the indicator function IXt−d>c

. Consequently, the change of
G(Xt−d, γ, c) from 0 to 1 becomes instantaneous at Xt−d = c. Then
we find the SETAR model as a particular case of this STAR model.
When γ → 0, the logistic function approaches a constant (equal to 0.5)
and when γ = 0, the STAR model reduces to a linear AR model. This
STAR model has been described by Terasvirta and Anderson (1992),
see also van Dijk, Franses and Paap (2002). We can use also time
varying coefficients, see Lundbergh, Terasvirta and van Dijk (2003).
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3. The SETAR process with long memory dynamics. The equation (46)
becomes:

(I −B)dXt = (φ0,1 + φ1,1Xt−1)(1−G(Xt−d, γ, c)) (48)
+ (φ0,2 + φ1,2Xt−1)G(Yt−d, γ, c) + εt. (49)

When G is a continuous function this model has been introduced by
van Dijk, Franses and Paap (2002) and when G = It−d>c and it has
been investigated by Dufrénot, Guégan and Peiguin-Feissolle (2003).

The second order stationary model (46) is short memory as soon as the func-
tions f and g correspond to short memory processes. The long memory
behavior is present as soon as a long memory process appears in one state
like in the process (48). Now to get long memory behavior when short mem-
ory processes characterize each state, we need to investigate the conditions
established to obtain the stationarity of the model. For instance, for the SE-
TAR(2,2,1) described previously, stationarity is achieved under the following
conditions, see Chan (1993).

1. A sufficient condition for stationarity is: max |φ1,1|, |φ1,2| < 1.

2. Necessary and sufficient conditions for stationarity are:

• φ1,1 < 1, φ1,2 < 1, φ1,1φ1,2 < 1,

• φ1,1 = 1, φ1,2 < 1, φ0,1 > 0,

• φ1,1 < 1, φ1,2 = 1, φ0,2 > 0,

• φ1,1 = 1, φ1,2 = 1, φ0,2 < 0 < φ0,1,

• φ1,1φ1,2 = 1, φ1,1 < 0, φ0,2 + φ1,2φ0,1 > 0.

We can remark that these conditions concern mainly the autoregressive pa-
rameters. In another hand, we can observe that, even if the process is globally
stationary, non-stationary behavior can appear on one regime which can be
confused with some long memory behavior.

Now, we consider a particular case of the process (48) defined ∀t, by

Xt = (1−B)−dε
(1)
t It(Xt−d ≤ c) + ε

(2)
t [1− It(Xt−d ≤ c)] . (50)

For this model, the autocovariance function and the spectrum density depend
on the regime-shift variable. The ”mixture” of a white noise process and of a
fractional white noise process produces a memory structure that is function
of the distribution function of the variable Xt−d across the two regimes at
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different dates. If regime 2 is more frequently visited by the observations
than regime 1, then this will imply some difficulties to find long-memory dy-
namics. In that case, the autocovariance and spectrum will exhibit a shape
resembling that of a short-memory process. In the opposite case, the auto-
covariance function and the spectrum exhibit the usual properties of long-
memory processes : a slow decay and high values at frequencies near zero.
The key parameter here is the threshold c that determines the distribution
function of the observations across the two regimes.

Asymptotically, long-memory behavior dominates: the spectrum fX becomes
infinite at the zero frequency and the autocovariance function γX is not
summable, then:

γX(τ) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
τ 2d−1, as τ → +∞ (51)

and
fX(λ) ∼ Cλ−2d+, as λ → 0, (52)

where C is a positive constant. This model is then long memory in the
covariance and the spectral senses with a rate of convergence 2d.

5.4 Some comments

The previous analysis concerning some specific models with structural breaks
suggests that, under certain conditions (more or less plausible), on "small"
amounts of structural change, long memory and structural change may be
confused. The device proposed in Diebold and Inoue (2001) and Breidt and
Hsu (2002) to put certain parameters, such as mixture probabilities, vary
with T is a thought experiment to build long memory behavior. The theory
suggests that confusion with long memory behavior in Allan’s variance will
result when only a small amount of breakages occurs, and therefore that the
larger is T , the smaller must be the break probability. Thus, the long mem-
ory behavior appears asymptotically. In finite samples, short memory break
models may be very difficult to distinguish from true long memory models.
When the breaks occur each period (this means with a fixed probability),
then it seems impossible to confuse this behavior with long memory behav-
ior.

Looking at subsection 5.2, we see that, under specific conditions on the tran-
sition matrix, the switching model exhibits long memory in Allan’s sense.
But long memory is observed empirically, independently of the null assump-
tion (H0) introduced in (31). In another hand a very simple short memory
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model like the sign model exhibits empirically long memory in covariance
sense. The models introduced in Subsection 5.3 can exhibit long memory
behavior in the covariance sense if we have non-stationarity on one regime or
long memory dynamics. In any case the percentage of points in those regimes
need to be high to distinguish this behavior, specifically in the non-stationary
case.

6 Aggregation of dynamic equations
In 1980 Granger was probably one of the first, in economy, who points out
the specific properties obtained by aggregating dynamic equations. Indeed,
if these models are found to arise in practice, they have proved useful in
improving long run forecasts in economics and also in finding stronger dis-
tributed lag relationships between economic variables. We consider here two
specific aggregations which produce long memory behavior in the covariance
sense.

• The aggregate beta AR(1) process. This model proposed by Granger
(1980)rests on the fact that many of the important macroeconomic
variables are aggregates of a very large number of micro-variables: total
personal income, unemployment, consumption of non-durable goods,
inventories and profits, as just a few examples. If we denote (Xjt)t,
these different series, then we consider the aggregate series (Xt)t defined
as:

Xt =
n∑

j=1

Xjt, (53)

where, for example, each (Xjt)t is generated by an AR(1) model, such
that

Xjt = φjXj(t−1) + εjt. (54)

Now, if we assume that the parameters φj follow a beta distribution on
the range (0, 1) whose density is defined by:

f(y) =
2

B(p, q)
y2p−1(1− y2)q−1, 0 ≤ y ≤ 1, (55)

and f(y) = 0 elsewhere, then the asymptotic behavior of the autoco-
variance function for the process (53) - (55) is such that:

γX(τ) = Cτ 1− q
2 , q > 1, τ →∞. (56)
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Then, this aggregate process (Xt)t has a long memory behavior in the
sense of Parzen with a rate 1 − q

2
if q > 1. This property can be

extended to model (53) when the parameters φj are drawn from the
probability density function f(x) = cx(1−x2), x ∈ [0, 1], see Lin (1991).
Other examples of distribution functions which permit this long mem-
ory behavior can be found in Lukacs (1970). Ding and Granger (1996)
generalize the process (53) - (55) using an ARCH or a GARCH on each
component (54) instead of a AR(1) model. They exhibit the same long
memory behavior for such model (Xt)t.

• The aggregate long memory switching model. Granger and Ding (1996)
propose to make switches on the long memory parameter d. They
consider two processes (X1t) and (X2t) assuming that they follow the
recursive scheme

(I −B)diXit = εit, i = 1, 2. (57)

Then, they define the process (Xt)t such that:

Xt = stX1t + (1− st)X2t, (58)

where (st)t is the Markov chain introduced in (34) and (35). Now if
pτ

ij = P [st = i|st+τ = j], i, j = 0, 1, we get:

E[Xt+τXt] =
1∑

j=0

pτ
jjE[Xit+τXit] +

∑

i,j=0,1,i6=j

pijE[Xit+τXjt].

Then the autocovariance function of the process (Xt)t, is just a weighted
average of the autocovariance of the series in the two regimes. Clearly, a
variety of correlogram shapes can arise, producing different long mem-
ory processes, in the covariance sense.

7 The use of statistical tools to create long mem-
ory

The previous study questions the way to identify or estimate all these long
memory behaviors. Are they really long memory behavior or "spurious" long
memory behavior? When data come from a fractional stationary model such
as (15), then methods are available to estimate this long memory behavior,
see Ferrara and Guégan (2001), and Diongue and Guégan (2003) and a lot of
references therein. But, the field of long memory detection and estimation is
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particularly (in)famous for the numerous statistical instruments that behave
similarly under the assumptions of large range dependence and stationarity,
or under weak dependence affected by some type of non-stationarity. Dif-
ferent statistics used in the detection and estimation of long memory are
characterized by their lack of power to discriminate between possible scenar-
ios, in particular presence or not of true long memory behavior. The first
one is the R/S statistic, which has the same kind of asymptotic behavior
when applied to a stationary long memory time series or a short time series
perturbated by a small monotonic trend that even converges to 0 as time
goes to infinity, see Bhattacharya, Gupta and Waymire (1983). The second
one deals with the sample variance of the time series at various levels of
aggregation. Here, we define it as

Xm
t =

1

m

km∑

i=(k−1)m+1

Xi, m ≥ 1, k = 1, · · · , [n/m]. (59)

Teverovsky and Taqqu (1997), see also Bisaglia and Guégan (1997), showed
that this estimator performs similarly when applied to a long memory sta-
tionary time series or to a stationary short memory one that was perturbed
by shifts in the mean or small trends. This could make cause confusion in
detecting existence of long range dependence in the data when in reality a
jump or a trend is added to a series with no long range dependence. Some
methods to estimate d lead to bias estimators. It is the case for the Geweke-
Porter-Hudak method in certain cases. For instance, Smith (2003) shows
that if a process is generated by a random level shift model defined by (41)
and estimated as a long memory FARMA process, the estimate for d, using
the classical Geweke-Porter-Hudak (GPH) method is biased and thus we es-
timate some kind of "spurious" long memory behavior. This GPH estimate
often erroneously indicates the presence of long memory. Finally, we refer
to some kinds of tests which detect long memory inside data even if they
are simulated with known short memory processes, see de Lima and Crato
(1994) for examples.

Now the question is: even if the theoretical model does not present long range
dependence and as soon as we observe presence of long range dependence in
the reality, what about forecasts?

The detection of long range dependence effects is based on statistics of the
underlying time series, such as the sample autocorrelation function, the pe-
riodogram and as mentioned before the R/S statistic, the sample variance
for aggregated time series, etc. The assumptions that the data are station-
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ary and long range dependence imply a certain characteristic behavior of
these statistics. The detection of long range dependence is reported when
the statistics seem to behave in the way prescribed by the theory. However,
as mentioned above, the same behavior can be observed for short memory
time series perturbed by some kind of non stationarity. Mikosch and Starica
(1999) show for instance that - if the expectations of subsequences (Xj

t )t of
the process (Xt)t are different - the sample autocorrelation function, for suf-
ficiently large τ , approaches a positive constant. Then, they show that the
periodogram becomes arbitrarily large for Fourier frequencies close to zero.
Then, this behavior can mislead one in inference on long range dependence
when in fact one analyses a non-stationary time series with subsamples that
have different unconditional moments.

Then, a general result is the following: Consider a strict stationary pro-
cess (Xt)t and for a sample size T , consider r subsamples (X1

t )t, (X2
t )t, · · · ,

(Xr
t )t. The ith-subsample comes from an stationary ergodic model with 2nd

moment and spectral density fXi . Clearly, if the subsamples have different
marginal distributions, the resulting sample (X1, · · · , XT ) is non-stationary.
Now if we associate with each subsample (Xj

t )t a positive number pj, such
that

∑r
j=1 pj = 1, then if the expectations differ in the subsequences (Xj

t )t

and if the autocovariances γXj
t
(τ) decay to zero exponentially as τ →∞, the

empirical autocovariance γ̂Xj
t
(τ) for sufficiently large τ is close to a strictly

positive constant given by pipj(E[Xj
t ]−E[X i

t ])
2 , for 1 ≤ i < j ≤ r. Then, we

can show that the periodogram becomes arbitrarily large for various small
values of the frequencies as T → ∞. This kind of result can apply on
GARCH(1,1) process. Then, it seems that the non-stationarity of the un-
conditional variance is a possible source of both the slow decay of the sample
autocorrelation function and the high persistence in the volatility in long log-
return time series as measured by ARCH type models. Now, we conjecture
that the same phenomenon arises with switching models and some SETAR
processes, which empirically exhibit long memory behavior although they
are theoretically short memory. This behavior is related to the non stability
of the invariant distribution of the underlying process or its heavy tailness
behavior.

8 Conclusion
In this paper, we have reviewed different ways to characterize the concept of
long memory behavior. We have shown that these concepts are not equiva-
lent. They are all defined in a non parametric context and then can be dif-
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ficult to use directly on real data. Then, we have presented different classes
of models known to present long memory behavior. We have specified what
kind of long memory behavior they exhibit. Some of these models are long
memory in covariance or in spectral senses, other in Allan’s sense and some
in distribution. As these definitions are not equivalent, care is necessary to
decide what model we want to use in order to identify long memory behavior.

Some models are used in a lot in applications when one wants to detect long
memory. They correspond to the class of GIGARCH processes and derived
models from this general class. Other models are theoretically short memory
but empirically their autocovariance function decreases in an hyperbolic way.
This fact includes the SETAR, the switching and the sign models. For the
first one the empirical behavior is close to non-stationary behavior. For the
switching and the sign models the empirical covariance function need to be
investigated in more detail.

Now, some other models - whose states depend on different probabilities p
- with respect to the properties of this probability and of the sample size,
are able to create some long run. But this long memory behavior is not the
same as the one discussed for the previous models. In that context, Diebold
and Inoue (2001) introduce some artificial assumptions on p, which appear
drastic, and we question their interest from a economical point of view. It
could be interesting to make forecasts using a FARMA(0,d,0) model on data
simulated from the model defined in (36) and (41). It seems that this model
is not identifiable. If we use Diebold and Inoue’s simulations (2001) we have
to test 0 < d < 1, but not d = 1, because this case corresponds to a non
stationary behavior and not to a long memory behavior, (see P. 148 and
examples before in their paper). Now, the paper of Rydén, Terasvirta and
Asbrink (1998) present some counter examples at the approach developed by
Diebold and Inoue (2001) showing that long memory is not always observed
for the Diebold and Inoue’s models.

In another context, other structural change models have also been proposed
in the literature, but no work has been done concerning their possible long
memory behavior in the previous senses proposed in Section 3. We think for
instance to the works of Kim and Kon (1999). In their paper, they introduce
a model based on a sequential mixture of Gaussian distributions to model
the discrete change points in the series.

One of the points which seems the more important is that some models
empirically exhibit long memory even if this one does not exist theoretically.
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Thus, emphasis on statistical properties of empirical samples need to be more
investigated, mainly the assumptions used to get the robustness of any esti-
mates.

For instance, the presence of long memory behavior in the covariance sense
can be easily detected, but as soon as we have heteroscedasticity or some
non stationarity, the only use of the empirical covariance or the periodogram
(which is the estimate of the spectral density) become problematic. In par-
ticular, if the variance of the data is finite, but the 4th moment is not, it has
no sense to look at the sample autocorrelation function of the square of the
data. Now, heavy-tailedness of models would be also a possible explanation
for the slow decay of the autocorrelation function. Thus, the long memory
type of behavior observed in the sample autocorrelation function of absolute
values and squares of the returns would not be in contradiction to the short
memory property of the GARCH process. Hence, a careful investigation of
the empirical facts given by data sets has to be done.

For most of the models we have discussed, their long memory is in covariance
sense or in Allan sense, few are in distribution. For instance, we do not know
if breaks in distribution (as those introduced in sign process for instance) will
produce long memory behavior in distribution. To get this kind of result,
it is necessary to investigate the possibility of mixing or non mixing prop-
erty for the models with infrequent breaks or which capture switch like the
switching models and SETAR models. Nevertheless, sparsely results exist:
Francq and Zakoian (2001), prove mixing for specific switching models and
Chan (1993) for specific SETAR models. Then, those models are not long
memory in distribution.

This work, which is mainly an exploratory work shows the complexity behind
the notion of long memory behavior and the carefulness which is necessary
for the use of these models on real data.
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