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Abstract 
 
This paper revisits some of the issues involved in the comparison of alternative computational 
procedures within the context of a dynamic stochastic general equilibrium model. The 
framework in question is a more general one, in which a “standard” or relatively simple model is 
nested as a special case.  Results of numerical experiments suggest that different computational 
methods may be used interchangeably in the case of the standard model, but not in the case of 
the more general model.  Varying a preference parameter allows us to compare what happens to 
solutions using alternative procedures as one moves away from the special case to the more 
general framework.  On the basis of the numerical experiments conducted, we find that not only 
do differences in solutions become larger, but answers to several economic issues of interest can 
yield qualitatively different answers depending on the solution method used.  Examples of such 
issues include how second moment features change as one varies the parameters of a model, and 
the relative contribution of different types of stochastic shocks to fluctuations in variables. 
 
 
1. Introduction 
 
There are several methods of approximating the numerical solution to dynamic stochastic general 
equilibrium models.  Depending on the type of approximation used these methods yield different 
types of approximation error. Some methods, in principle, allow for reduction in this error by 
means of refining the solution.  However, the process of refinement is typically associated with a 
decline in computational convenience.  The literature on computational methods has therefore 
often focused on the extent to which the trade off between computational convenience and 
accuracy is significant. 
 
The focus of this paper is on one of the extant approaches to assessing this significance.  This 
approach involves comparing the solutions to a model using two different computational 
methods; one which allows for improvement in accuracy via refinement and another which is 
associated with computational simplicity but not amenable to refinement.  The works of 
Danathine, Donaldson and Mehra (1989) and Christiano (1990) suggest that the level of accuracy 
is not compromised by using computationally inexpensive methods.  For example, Danathine, 
Donaldson and Mehra (1989) compare the solution obtained by using a quadratic approximation 
of the return function around the steady state, to the solution obtained by using standard value 
iteration in which continuous variables are discretised by using a grid.  They find the solutions to 
be very similar, and that the process of refining the solution by increasing the fineness of the grid 
does not yield significant gains in accuracy.  However, as the authors suggest, their results are 
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subject to the caveat that the model in question is a fairly standard one and a similar comparison 
using a more complicated model is likely to yield a different answer.  Other literature involving 
comparisons of this kind, such as Taylor and Uhlig (1990) also concludes that it is advisable for 
researchers to perform a “check” on their solutions using alternative computational procedures. 
 
One of the outcomes of the exercise conducted in this paper is essentially an “accuracy check” of 
the type conducted in Danathine, Donaldson and Mehra(1989), applied to a more complex 
dynamic stochastic general equilibrium framework.  However, the framework we consider 
allows us to address another interesting issue, which is the focus of this paper.  Here, we are able 
to examine what happens to the differences in solutions using alternative procedures as one 
moves away from a simple to a more general and complex framework.  To be specific, the 
framework we consider nests a relatively “standard” framework as a special case, and varying a 
preference parameter allows us to look at shifts in the difference alternative computational 
procedures as we move away from the special case to the more general model.  
 
The procedures considered in this paper are the linear approximation method of King, Plosser, 
and Rebelo (1988), and the method of parameterized expectations due to Den Haan and Marcet 
(1990).  The latter method involves a polynomial approximation, and allows for refinement of 
the solution by increasing the degree of the polynomial.  The model these methods are applied to 
is the dynamic stochastic general equilibrium model studied in Lahiri (2002), which includes 
monetary and technological shocks and a variable or endogenous rate of time preference.  Time 
preference is endogenous in the sense that the representative agent’s discount factor depends on 
current utility.  As mentioned above, a standard fixed time preference model is nested as a 
special case.  To elaborate, when the value of a parameterτ , to be described later, is set equal to 
zero, the endogenous time preference model coincides with the fixed time preference case. 
 
As expected, the results here confirm that the interchangeability of the two methods depends on 
the model.  Specifically, the two solution methods yield almost identical results when applied to 
the nested constant time preference model but significant differences emerge as one increases the 
variability in the rate of time preference.  Also, an interesting feature of these experiments is the 
way in which results using the alternative procedures change as one moves away from the fixed 
time preference model to the endogenous time preference case, which involves increasing the 
value of the parameter τ in the interval (0,1).  For example, if we are interested in how the 
second moment features of economic variables changes as we increase τ , the two procedures 
can yield very different answers.  The reason underlying the differences is related to how the two 
procedures estimate the relative significance of the monetary and technological shocks, and their 
income and substitution effects.  
 
In particular, the feature described above is of interest because it provides an example of a case 
in which computational issues become important in a qualitative sense; answers to how 
economic variables respond to the model’s parameters or stochastic shocks would depend on the 
solution method used, especially in situations where the model had significant non-linearities in 
preferences or technology.  In this case the presence of an endogenous discount factor changes 
the magnitude of income effects of technology and monetary shocks.  For a range of values of τ , 
particularly in the case of technology shocks, the income effects cancel out the substitution 
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effects, and this tends to weaken the relative significance of technology shocks1.  However, the 
range of values for which this happens is different for the two procedures considered here.  This 
is because increasing τ seems to increase the variability in the rate of time preference at a faster 
rate in the case of the parameterized expectations approach. 
 
In what follows, Section 2 outlines the model, which is the same as that of Lahiri (2002).  
Section 3 outlines the solution methods, which are described in greater detail in King, Plosser, 
and Rebelo (1988) and Den Haan and Marcet (1990).  Section 4 compares the results of both 
methods in the fixed and variable time preference cases.  Section 5 concludes. 

2.  The Model 
 
The economy described below is the monetary business cycle model used in Lahiri(2002), which 
is a variant of the Cooley and Hansen (1989) cash-in-advance framework, with endogenous time 
preference introduced via a discount factor that depends on utility.  Preferences of the continuum 
of identical infinitely lived households are formulated in accordance with Epstein’s (1983) 
concept of stationary cardinal utility.  The representative household in this economy therefore 
desires to maximize expected lifetime utility given by 
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where ( ))1,( tt hcu −β  must be of the form ( ))1,( tt hcue −−φ  and )1,( tt hcu −  represents the households 
period-t momentary utility, defined over consumption, tc , and leisure th−1 .  The function u must 
be negative, strictly increasing with )ln( u−  convex in the composite consumption-leisure good.  It 
is also required that φ  is positive, increasing, strictly concave and that )(ueu φ′  is nonincreasing2.  
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endogenous impatience that characterizes this framework: an increase in current period utility 
causes the household to discount future periods more heavily. 
 
In particular, the functional forms for the period utility and discount functions used here are 
described as follows: 
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1  This was one of the key motivations underlying the model used in Lahiri (2002); an endogenous rate of time preference 

allowed for a larger contribution of monetary shocks in business cycles, in addition to preserving the models ability to match 
features of the data. 

2  These conditions ensure the existence, stability, and uniqueness of a steady state distribution for the state variables.  Other 
implications of these conditions, as shown in Epstein (1983), is that the composite consumption-leisure good, and that 
deviations from the fixed time preference set up are not too great.  Other equilibrium models that use such preferences are the 
studies of Gomme and Greenwood (1995), Dolmas and Wynne (1994), and Mendoza (1991). 
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where work effort enters the period utility function in a manner consistent with the "indivisible 
labor" assumption of Hansen (1985), and nests the Cooley and Hansen (1989) log utility 
specification as the case in which 1=σ . 
 
In period t households possess nominal money balances 1−tm , carried over from the previous 
period, which are, in addition, augmented by a lump-sum transfer from the government.  This 
transfer is equal to the increase in money supply, where the aggregate money supply, tM , is 
determined according the following rule3: 
                                                )4(.1−= ttt MgM  
 
Here, the growth rate of money, tg , evolves according to: 
    
                                          )5(.)log()log( 11 ++ += ttt gg ξα  
 

1+tξ  is i.i.d normal with mean )log()1( gα−  and variance 2
ξσ , and )log(g  represents the 

unconditional mean of  )log( tg .   
 
Thus the total amount of money balances held by a household, at the beginning of period t, 
including the monetary transfer from the government, is the amount 
                                                          )6(.)1( 11 −− −+ ttt Mgm  
 
There is a cash in advance constraint on the purchase of the non-storable consumption good, 
which ensures that money will be valued in equilibrium.  Expenditure on the consumption good, 
therefore cannot exceed the total money balances available to the household, i.e., 
                                     

                   )7(.)1( 11 −− −+≤ ttttt Mgmcp  
 
The representative firm in the economy hires labor and capital from the households to produce a 
composite consumption-investment good.  There is a standard neoclassical aggregate production 
function of the Cobb-Douglas form, which combines capital )( tK  and labor input )( tH  to yield 
output )( tY : 
                                                  )8(,1 θθ −= tt

z
t HKeY t  

 
where θ  is the factor income share of capital and tze  represents a shock to technology in period t.  
The random variable tz  follows the process: 
                                                     )9(,11 ++ += ttt zz εγ  
 
where 

1+tε  is an i.i.d. random variable with mean zero and variance 2
εσ . 

 
The competitive firm maximizes profit, which is given by ttttt KrHwY −− . The variables tw  and tr  
represent the wage and rental rates paid for the use of labor and capital services of the 

                                                           
3  Capital letters denote aggregate economy wide per capita variables which an individual household regards as being outside its 

sphere of influence, while lower case letters denote variables specific to the household. 
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households.  The first order conditions for the firm’s profit maximization problem imply that tw  
and tr  are given by: 
 
                                                    )10(;)1( θθθ −−= tt

z
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                                                       )11(.11 θθθ −−= tt
z
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In every period t, household expenditures consist of consumption )( tc , investment )( ti , and the 
amount of money balances ( )

t

t

p
m  that are to be carried over to the next period.  These expenditures 

must not exceed total household income, which is the sum of income earned from labor and 
capital services, money balances carried over from the previous period, and the lump-sum 
monetary transfer from the government.  Households therefore maximize expected lifetime 
utility subject to (7) and a sequence of budget constraints of  the following form: 
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where household investment expenditure in period-t is given by 
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In equation (13) tk  is the household’s capital stock in period-t and δ  is the rate at which the 
capital stock depreciates. 
 
For a value of g greater than one, both tM  and tp  will grow without bound.  In order to make the 
household’s problem stationary, some of the variables need to be transformed.  To that end, we 
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In addition, the representative household’s decisions must be consistent with the laws of motion 
for the aggregate state variables, given by 
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                                                    )17(,)1(1 ttt XKK +−=+ δ  
                                                            )18(,11 ++ += ttt zz εγ  
                                                  )19(,)log()log( 11 ++ += ttt gg ξα  
 
as well as the economy-wide aggregate decision rules perceived by the households: 
 
                                                        ,),,( tttt KgzHH =  
                                                        ,),,( tttt KgzXX =  
and                                                   
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In equilibrium, aggregate per capita quantities turn out to be equal to the choices of the 
representative household.  In particular, it must be the case that tt Hh = , tt Kk = , tt Xx = , and 

1ˆˆ 1 ==− tt mm .  Since the cash in advance constraint is assumed to be binding in equilibrium, we 

also have 
t

t
P

c ˆ
1

=  . 

 
3.   Computational Procedures 
 
A.  The Linear Approximation Method 
 
Due to the presence of money, equilibrium allocations in this economy are not necessarily Pareto 
optimal.  Consequently, the competitive equilibrium for this economy cannot be computed 
indirectly by solving a social planner’s problem.  The approach followed here is essentially that 
of King, Plosser and Rebelo (1988b), which involves a linear approximation around steady state 
of the optimization conditions for the household’s problem. Henceforth, we will refer to this 
approximation method as the KPR approach.  Before forming this approximation, however, 
certain market clearing conditions for the economy need to be imposed.  Another modification to 
the standard procedure involved here is that, to begin with, the household’s problem is set up as a 
dynamic programming problem, as described in Section 2.  The resulting optimization conditions 
are then transformed into a system that is suitable for linearization, in a manner suggested by 
Dolmas and Wynne (1994). 
 
The first order conditions for the dynamic programming problem are then given by the following 
set of equations:   
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where t1λ  and 

t2λ  are the Lagrange multipliers associated with the period-t budget constraint and 
cash-in-advance constraint respectively. 
 
Again, noting that in equilibrium aggregate per capita quantities coincide with the choices of the 
representative household, we make the substitutions ,tt Hh =  ,tt Kk =  and 1ˆˆ 1 ==− tt mm .  The first 
order conditions above can then be transformed into the economy’s equilibrium characterization. 
In addition, define )1( += tVE

ttµ .  Then the system of equations (21)-(26) is transformed into the 
following:  
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Furthermore, the Bellman equation implies the following law of motion for the variable tµ : 
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Transversality conditions are given by: 
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Equations (27)-(32) represent a system that can be solved using the technique described in King, 
Plosser, and Rebelo (1988a,b) and their Technical Appendix.  The first step is to obtain a linear 
approximation of the above system around the steady state.  Each of the above conditions is 
expressed in terms of percentage deviations of variables from their steady state values.  Let x̂  
denote the percentage deviation of variable x from its steady state value.  Then (27) and (28) can 
be written as: 
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where ijξ  is interpreted as the elasticity of marginal utility of i with respect to j ; HCji −= 1,, .  We 
also have, 
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so that linearising (29)-(32) yields: 
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The linearised first order conditions can then be combined to yield the fundamental difference 
equation: 
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where W is a 4 4×  matrix, and R and Q are 4 2×  matrices.  The procedure to compute the 
solution to this difference equation is the same as that outlined in King, Plosser and Rebelo 
(1988a). 
 
B.  The Method of Parameterized Expectations 
 
The approach followed here is essentially a variation of Den Haan and Marcet (1990), which 
involves a polynomial approximation of the expectations part of the stochastic Euler equations of 
the household’s problem.    We will refer to this method as the PE approach. To see how the 
method is applied, consider the following version of the equations (27)-(31): 
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Here t1λ and t2λ are the Lagrangian multipliers associated with the household budget and cash-in-
advance constraints respectively.  To solve the model, we need to form an approximation for the 
terms involving expectations in equations (34), (35), (36) and (37).  To that end, we let the term 
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βτ  be approximated by );,,( µψ Kgz , and the terms 
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);,,( πν Kgz respectively.  The functions ,,ξψ andν are polynomials in z, g, and K, while ,,ωµ and 
π represent the respective vectors of polynomial coefficients.  As is conventional, we choose the 
degree of the polynomial by examining how the results change by increasing the degree of the 
polynomial.  That is, if the solution does not change much between an thn  and thn )1( +  degree 
polynomial, then the thn  degree polynomial is considered a good approximation.  It turns out 
that for the model in question a second degree polynomial is a good one.  The procedure for 
forming the approximation is as follows.  Starting with an initial guess for the vectors ,,ωµ and 
π , say ,, 00 ωµ and 0π , we can solve the first order conditions above to construct a time series for 
consumption, hours and the capital stock, for a given series of monetary and technology shocks.  
Specifically, we can solve for tC  by dividing equation (36) by equation (37).  Given 0K and 0z , 
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we can use (35) and (37) to solve for tH , and then use (38) to solve for 1+tK .  Once a series has 
been constructed, it can be used is to run three nonlinear least squares regressions to estimate a 
new set of coefficients ,, 11 ωµ and 1π .  For example we get an estimate for 1µ  by running a 
nonlinear regression of the series )1()( +tVuτβ on the function ψ .  (For details on the procedure 
used for the nonlinear regressions, see Den Haan and Marcet (1990), and Pindyck and Rubinfeld 
(1987)).  The next step is to construct a new series using a linear combination of the coefficients 

0µ  and 1µ .  The new series is used to run another regression to compute 2µ , and so on, until 
estimates from successive iterations have converged.  However, in this case, we need 
convergence in all of the three polynomial coefficients ,,ωµ and π . 
 
4.  Results 
 
In this section we compare the second moment features of the model using the two procedures 
described in Section 3.  In order to shed light on the differences in the second moment features 
using the two methods, we also look at the relative contribution of monetary shocks in the two 
cases.  Values of the preference and technology parameters are assigned following the 
convention of choosing parameters based on observed features of the data.  As in Lahiri (2002), 
and Cooley and Hansen (1989), we set ,36.0=θ  ,86.2=B  ,48.0=α  ,95.0=γ  ,1=σ  ,00721.0=εσ  
and 009.=ξσ .  The parameter η  is set to ensure that the steady state value of the discount 
function coincides with the fixed discount factor β  where 99.0=β . 
 
Next, we need to choose the range of values for τ for which we want to compare the two solution 
methods.  Stability conditions require a choice in the range 10 ≤≤τ , where 0=τ  coincides with 
the special case of fixed time preference.  However, it is important to restrict the range of 
comparison a bit further.  The results for Lahiri (2002) suggest that the interval [0,.026] is 
appropriate for comparison, as in this range the endogenous time preference models provide a 
reasonable match to the data4.  Here, from the point of view of providing more information, we 
look at a larger range of values, namely [ ]3.0,0∈τ . 
 
Figure 1 presents the percentage standard deviations of variables in the range 3.00 ≤≤τ  , using 
the two methods described above.  Figure 2 presents the correlations of variable with output.  
The unbroken line represents the second moments computed using the PE approach, and the 
dashed line represents the corresponding moments for the KPR approach5.  In the case of 
percentage standard deviations the differences seem to get larger as τ increases over this range, 
while in the case of correlations with output the biggest differences, with the exception of 
consumption, emerge in an intermediate range of values.  In particular, even if we consider the 
“empirically plausible” range of 026.00 ≤≤τ , there are some significant differences in the second 
moment features of some of the variables.  Specifically, the volatility of consumption increases 
with more variability in time preference if computed using the PE approach, while it decreases if 
computed using the KPR approach.  There are also differences in volatilities of other variables, 

                                                           
4  The choice of this range was based on results using the PE approach, the computational method used for that paper.   
5   As mentioned in the previous section, a second degree polynomial was found to be a good approximation in the parameterized 

expectations case.  However, as far as the second moment features of the model are concerned, there is no difference, in a 
graphical sense, using simulations based on a first degree or second degree polynomial approximation.  The figures are 
therefore based on a first degree polynomial approximation, as this was computationally more convenient. 
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but these are not as striking as in the case of consumption.  However, it is intuitively surprising 
that there are any differences at all given that the difference in the volatility of the discount factor 
is not very significant.  Of course, the differences get magnified as τ  increases over a larger 
range but the comparison for higher values of τ is not very meaningful.  As mentioned before, 
the model does not match the data very well in those ranges. 
 
Likewise, in the range of ]3.0,0[∈τ there are differences in the computation of correlations with 
output of other variables, which are presented in Figure 2.  In the “empirically plausible” range 
of [0,0.026], the striking differences are with respect to consumption, and to some extent, work 
effort and capital.  Again, the differences become more dramatic for a larger range of values of 
τ . 
 
The reason for such striking differences may be related to the fact that the model in question 
consists of two types of stochastic shocks, and the two methods estimate their relative 
contribution differently.  As discussed in Lahiri (2002), the percentage contribution of monetary 
shocks changes as τ increases.  This is relevant here in the sense that the two methods yield a 
different level of contribution of the monetary shock.  Consequently the cyclical features change 
in a different manner as τ  increases. Briefly, the presence of endogenous time preference leads 
to the magnification of income effects of technology shocks.  For a range of values of τ , the 
income effects of the technology cancel out its substitution effects leading to a weak response of 
variables to these shocks.  This causes the relative contribution of monetary shocks to increase6. 
Of course, this feature is observed regardless of which computational technique is used.  
However, the magnitudes of income and substitution effects change at a different rate in each 
case; consequently, the relative contribution changes in a different way. 
 
The relative contribution of monetary shocks for different values of τ is presented in Table 1.  
Here, our focus will again be on the subset of values in [0,0.026], for reasons described above.  
Comparing the way in which the relative contribution of shocks changes, with the way in which 
second moment features change, provides a partial explanation of the differences using the two 
approaches.  Consider, for example, the standard deviation of consumption and its correlation 
with output.  For the range we are looking at, the second moments move in the PE case move in 
the opposite direction to the KPR case.  Specifically, in the PE case, the standard deviation and 
the correlation with output increases as τ increases in [0, 0.026], while the corresponding 
moments in the KPR case decrease as τ increases in [0, 0.026].  Looking at the corresponding 
range of values in Table 1, for the case of consumption, we see that the percentage contribution 
of monetary shocks (and consequently technology shocks) moves in opposite directions when 
computed using the alternative approaches.  In the case of other variable, second moment 
features and the underlying patterns for the relative contributions of shocks is quite similar for 
the range in question.   
 
Why differences arise in the case of consumption and not particularly in the case of other 
variables is also related with the way in which money enters the model and how monetary shocks 
impact on the discount factor.  The largest impact of monetary shocks, in terms of percentage 
contribution to fluctuations, is on consumption; the presence of a cash-in-advance constraint on 
                                                           
6   Here, we wish to focus primarily on computational issues; for further details on the economic aspects of the model see Lahiri 

(2002). 
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consumption is the obvious reason.  Loosely speaking, the impact on consumption in turn affects 
the endogenous discount factor via the impact of consumption on utility.  Now the presence of 
endogenous time preference is the very feature that makes the model more complex, by means of 
introducing an additional non-linearity in the preferences of the representative individual.  The 
estimation of the impact on the discount factor is, of course, likely to be very different not only 
for the computational procedures being examined here but for all types of procedures.  The 
effects of different types of stochastic shocks would then translate into different outcomes for the 
variables of the model.  Here, there are only two shocks, and the differences are likely to be the 
most significant with respect to consumption because of the “first-order” impact of the monetary 
shock via the cash-in-advance constraint. 
 
While the inferences drawn above are based on a specific example, there are some obvious 
implications of a generic kind.  As models are made more complex by means of incorporating 
either more types of stochastic shocks or additional non-linearities in preferences or technology, 
answers to economic issues of interest are likely to hinge critically on the type of approximation 
method used.  Furthermore the diversity in conclusions is not likely to be merely of a 
quantitative type, but of a qualitative type.  For example, it is conceivable that varying 
parameters of a model could lead to variation of cyclical features of a completely different 
nature, depending on the type of approximation used.  As noted earlier, researchers have 
sometimes recommended the use of methods in which the solution is amenable to refinement.  
However, there is usually a limit to the degree of refinement, and there is also the question of 
possible differences in results when the comparison is made vis-à-vis procedures that allow for 
refinement.  It would therefore be advisable for researchers to check their results using several 
rather than a few alternative procedures. 
 
5.  Concluding Remarks 
 
This paper re-examined some of the issues involved in the comparison of alternative 
computational procedures within the context of a dynamic stochastic general equilibrium model.   
The framework studied was a more general one, in which a “standard” or relatively simple model 
was nested as a special case.  Results of numerical experiments suggested that different 
computational methods could be used interchangeably in the case of the standard model, but not 
in the case of the more general model.  Varying a preference parameter allowed us to compare 
what happened to solutions using alternative procedures as one moved away from the special 
case to the more general framework.  On the basis of the numerical experiments conducted, we 
found that not only did differences in solutions become larger, but answers to several economic 
issues of interest could yield qualitatively different answers depending on the solution method 
used.  Examples of such issues include how second moment features change as one varies the 
parameters of a model, and the relative contribution of different types of stochastic shocks to 
fluctuations in variables. 
 
While these conclusions were based on a specific example, they apply in a more general sense. 
The results seem to suggest that addition of more parameters, a larger number of stochastic 
shocks, incorporation of features that add to the non-linearities in technology or preferences 
contribute to the emergence of larger differences in solutions using alternative methods.  Not 
only could the effect of these features estimated differently, but their interaction could also be 
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estimated subject to different types of approximation error.  I such situations, it would be 
advisable for researchers to check their solutions using several alternative approaches. 
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Figure 1.  Percentage Standard Deviations Of Variables for 3.00 ≤≤τ , 

 PE Approach 

---  KPR Approach 



 15

 

 
Figure 2.  Correlations of Variables with Output for 3.00 ≤≤τ , 

 PE Approach 

---  KPR Approach 
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Table 1: Percentage Contribution of the Monetary Shock to Fluctuations in Variables 

τ  

 0 0.01 0.02 0.026 0.03 0.04 

Output 

PE Method 2.7 2.6 3.3 3.6 4.8 6.6 

KPR Method 1.6 1.9 2.8 3.6 4.3 6.8 

Consumption 

PE Method 62.1 58.6 54.0 51.3 49.6 45.5 

KPR Method 63.7 64.4 74.8 78.5 80.1 85.1 

Investment 

PE Method 10.1 21.5 24.9 28.1 31.0 42.1 

KPR Method 19.2 22.3 26.5 30.2 32.6 41.9 

Capital Stock 

PE Method 12.2 13.9 16.1 18.2 20.1 28.0 

KPR Method 11.3 13.3 15.9 17.9 20.0 26.5 

Hours 

PE Method 5.1 5.4 5.6 9.9 12.3 24.3 

KPR Method 3.5 6.0 11.8 18.5 24.6 24.9 

Productivity 

PE Method 5.7 5.6 5.8 5.9 6.0 5.9 

KPR Method 6.0 5.5 5.2 5.1 5.0 4.9 

Discount Factor 

PE Method 0.0 54.2 63.6 66.9 64.8 51.3 

KPR Method 0.0 59.6 68.8 71.3 68.3 58.5 

 


