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Optimal Forward-Looking Policy Rules in the Quarterly Projection Model of the

Czech National Bank

Jan Stráský∗

Abstract

This paper analyses the performance of the inflation forecast-based (IFB) monetary policy
rules in the quarterly projection model of the Czech National Bank. The paper begins by
reviewing the model and its parametrization, including the variance-covariance matrix of
disturbances employed in simulations. The main part of the paper presents the results of
an extensive grid search over various targeting horizons and coefficient values for a simple
IFB rule with optimized coefficients, and suggests three possibilities for improvement: a
shorter targeting horizon, a higher relative weight placed on inflation gap stabilization,
and a lower coefficient on partial interest rate adjustment. These results are supported by
an analysis of the impact of individual shocks on the optimal coefficients of the IFB rule.
The last section of the paper argues for inclusion of the real exchange rate stabilization
objective in the policy maker’s loss function and repeats the grid search for an optimal
rule allowing for the real exchange rate feedback term. The previous results are not dra-
matically altered and we conclude that the stabilization properties of the extended rules
are comparable with the those of the original optimized IFB rules.
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1. Introduction

This paper analyzes results from simulations of the quarterly projection model of the Czech
National Bank. Its aim is to determine the optimal forecast horizon for the class of inflation
forecast-based (IFB) policy rules that are currently employed by the bank. The contribution
of the paper is a grid search over a wide range of parameter values, which produces a simple
optimal rule often discussed in the literature; see Söderlind (1999) and Dennis (2004). The
robustness of our findings is then checked by the analysis of how the results based upon the his-
torical variance-covariance matrix of model shocks change when we consider individual shocks
separately. Finally, we consider the possibility of extending the policy rule for a feedback term
in the real exchange rate. The search for the optimal inflation forecast-based rule is repeated
with the new objective and the results compared with our previous findings.

The paper assesses the ways in which the baseline policy rule currently used by the Bank differs
from the optimal simple rule and presents calculations of loss functions for optimal simple rules
at various targeting horizons. We argue that there is room for improvement in the baseline policy
rule and discuss some reasons why these improvements may be difficult to implement.

The paper is organized as follows. The next section presents an overview of the quarterly pro-
jection model and its parametrization, including the shock structure. Section three discusses the
specification of the loss function and the technique employed in the calculation of unconditional
variances. The next three sections provide the main results of the paper. Section four reports
the results from a grid search based on the historical shock structure. Section five analyses the
impact of individual shocks on the optimal inflation forecast-based rule coefficients. The next
section discusses the role of real exchange rate stabilization and reports the results of calcu-
lations based on the extended version of the loss function. Section seven discusses the main
findings and concludes.

2. The Quarterly Projection Model

The Czech National Bank’s quarterly projection model is similar to the small open economy
models of Svensson (1998), Batini and Haldane (1999), and Rudebusch and Svensson (1999).
The model is formulated in ”gap” form with the model variables entering as deviations from
their long-run trends. The evolution of the gaps is motivated by standard macroeconomic theory
and reflects all the transmission channels usually present in small open-economy models. In
addition to the ”gap” dynamics, the past trends for output, the real exchange rate and the interest
rate are estimated simultaneously using a multivariate Kalman filter; see Beneš and N’Diaye
(2003). This technique considerably improves the results obtained from a simple Hodrick-
Prescott filter, especially the real-time updating properties of the filter. The basic inputs to the
calculation are, however, made on the basis of past developments and current trends. The trend
real appreciation is set to 1.26% p.a., which is the average value in the 1994 to 2004 sample,
and the growth rate of potential output is assumed to be 3.5% p.a. These two values determine
the results of the filtering exercise, although some provisions are made for co-movement and
compatibility of the detrended variables. As far as model projections are concerned, the data
are extrapolated to the future using expert judgement.1

1 Since the projections will inevitably include some judgement about future developments, this is not a problem as
such. It is the issue of the steady state equilibrium and the consistency of the long-run trend values that is of some
concern here.
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The model has been described in the literature before, see Beneš et al. (2002) and Coats et al.
(2003) for a detailed exposition. The presentation here is very concise and aims at presenting
the model and its basic mechanics to an unfamiliar reader. The core equations of the model can
be written as

zt = st + pt − p∗t (2.1)

πcoret = a0(π4MexE
t + ∆4z eqt) + a1E

P
t π4t+1 + (1− a0 − a1)πcoret−1+

a2ygapt−1 + επ
t (2.2)

ygapt = d0ygapt−1 − d1rc gapt−1 − d2r4 gapt−1 − d3r4 gap∗t−1+

− d4z gapt + d5ygap∗t + εygap
t (2.3)

st = g0Etst+1 + (1− g0)[st−1 − 2(EP
t πt+1 − EP

t π∗t+1)/4 + 2∆z eqt]+

+ (i4t − i4∗t )/4 + εs
t (2.4)

i eqt = r eqt + Etπ4t+4 (2.5)

r4 eqt = r4 eq∗t −∆4z eqt (2.6)

i4t = m0 + m1(
∑3

j=0
Etit+j) + (1−m1)it + εi

t (2.7)

rct = i4t + p1Etygapt+4 + εic
t (2.8)

πMexE
t = k1(π

∗
t −∆st) + (1− k1)π

MexE
t−1 − k2(p

MexE
t−1 − p∗t−1 + st−1 + k0) + εMexE

t (2.9)

πME
t = h1(π

oil
t − 4∆st) + (1− h1)π

ME
t−1 − h2(p

ME
t−1 − poil

t−1 + st−1 + h0) + εME
t (2.10)

πEN
t = n0π4ME

t + n1E
P
t π4t + (1− n0 − n1)π

EN
t−1 − n2ygapt−1 + εME

t (2.11)

Equation (2.2) is the model’s reduced-form equation for the dynamics of inflation. Equation
(2.3) describes the dynamics of the output gap. Equation (2.4) is the model version of the
uncovered interest rate parity condition, and equation (2.7) is the term-structure relationship
linking the short-term and long-term interest rates. Equations (2.9) to (2.11) define components
of inflation in the price of imported goods, while the rest of listed equations contain definitions
of important model variables.

The variables describing the long-run trend position of the economy have the suffix ” eq”. All
other variables are in deviations from their long-run trends (the ”gap” form). Apart from inter-
est rates they are all in logarithms; inflation rates are defined as logarithmic differences. The
variables z and s denote the real and nominal exchange rates respectively; p is the CPI price
level, ygap is the output gap; i and i4 are the short-term (3-months) and long-term (1-year)
nominal interest rates respectively, and r4 and rc are their respective real counterparts; πME

t

is imported energy inflation and πoil
t is (exogenous) oil price inflation, while pME

t−1 and poil
t−1 are

the imported energy prices and oil prices respectively; πMexE
t is imported inflation excluding

energy inflation, πcoret is core inflation (defined as a change in CPI adjusted for changes in
energy and administered prices); and πt is CPI inflation.

For all measures of inflation, π4 denotes the annualized change (fourth difference), while π is
the change between quarters (first difference). The expectations of the private sector at time t
of variable X are modelled as a weighted average of forward-looking model consistent expec-
tations and backward-looking adaptive expectations

EP
t Xt+1 = b0EtXt+1 + (1− b0)Xt−1.
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Table 2.1: Parametrization of the quarterly prediction model

Parameter Value Parameter Value
a0 0.248 m0 0.25
a1 0.33 m1 0.5
a2 0.5 p1 0.3
d0 0.9 k0 0.1
d1 0.062 k1 0.58
d2 0.125 k2 0.52
d3 0.062 h1 0.9
d4 0.15 h2 0.67
d5 0.4 n0 0.28
b0 0.1 n1 0.5
g0 0.5 n2 0.25

where b0 = 0.1. Asterisked variables denote foreign counterparts and are proxied by German
aggregates. The model is parametrized using econometric estimates from single-equation esti-
mation on the Czech data.2 The parameters of the model and their values are reported in Table
2.1.

The model is closed by an inflation forecast-based rule similar to those used in Clarida et al.
(1997) and Woodford (2000)

it = ρit−1 + (1− ρ){i eq + 1.6[b(Etπ4t+j − πtar) + (1− b)ygapt]} (2.12)

where ρ is the interest rate smoothing parameter, i eqt is the equilibrium short-term nominal
interest rate defined above, Etπ4t+4 − πtar is the inflation gap, and b is the coefficient of the
relative weight on inflation stabilization. The baseline policy rule currently used by the Czech
National Bank sets the policy horizon j = 4, ρ = 0.75, and b = 0.75. The rule includes a
relatively high degree of interest rate smoothing, and, since the policy rate reacts to both the
inflation and output gaps, it is an example of a flexible inflation targeting rule; see Svensson
(1997) and Svensson (1999).

The term (1−b)ygapt in the rule (2.12) is strictly speaking redundant, even if we assume that the
policy maker does care about the level of output. It can be shown that an inflation forecast-based
rule of the type

it = ρit−1 + (1− ρ){i eq + b̃(Etπ4t+j − πtar)} (2.13)

reacts due to its forecast form to all the state-space variables of the model including the output
gap. It does so to the extent that the output gap and other model variables are important for
stabilizing inflation at the given targeting horizon t + j. The inclusion of the output gap sta-
bilization objective into the policy maker’s objective function can be simply accommodated by
making appropriate changes in the values of ρ, b̃ and j, although it is often written in a form
such as (2.12) that introduces a separate output gap term; see Batini and Haldane (1999) for an
early exposition of this point.

2 The estimated values are in some cases slightly corrected by expert judgement. Details of the model parametriza-
tion can be found in Coats et al. (2003).
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Table 2.2: Variance of model shocks: per cent

Variable Variance
Imported energy price inflation 620.01
Imported food price inflation 53.29
Rest of import price inflation 17.64
Total energy price inflation 453.69
Total food price inflation 14.44
Core inflation excluding food 3.24
Output gap 0.49
Nominal exchange rate 2.25

Table 2.3: Inflation, output and interest rate variability under the baseline policy rule: per
cent

Baseline rule
Horizon stdev(i) stdev(π) stdev(y)
CPI+1 3.3473 2.3671 3.5118
CPI+2 2.9322 2.2329 2.9711
CPI+3 2.9053 2.3761 2.721
CPI+4 3.0588 2.6703 2.5798
CPI+5 3.2458 2.9386 2.4935
CPI+6 3.4576 3.2090 2.4341
CPI+7 3.6852 3.48 2.3894
CPI+8 3.9061 3.7318 2.3515
CPI+9 4.1161 3.9643 2.3201

This point illustrates the relative importance and precedence of the loss function in the deter-
mination of policy. In the class of inflation forecast-based rules, there seems to be no use in
including a variable in the policy rule unless there is a reason to include it also in the policy
maker’s objective function. Even if the latter is true and an economic variable figures in the
policy maker’s loss function, it is not necessary for it to appear in the policy rule. The rule
(2.13) under a loss function penalizing output gap would stabilize the economy just as well as
the rule (2.12). We will return to these considerations in the last section where we make a case
for a possible extending of the policy rule.

In the simulations reported below the model is perturbed using a variance-covariance matrix of
historical shocks. The disturbances are independent normally distributed random variables with
zero mean and variance E[νν ′] = Ω summarized in Table 2.2. The shocks are assumed to be
uncorrelated, E[νiν

′
j] = 0 for i 6= j, although this assumption is relaxed later.

A preliminary insight into the issue of the optimal horizon for inflation targeting can be derived
from a simple monetary policy frontier that captures inflation and output variance under the
various inflation-targeting horizons. Figure 2.1 shows the outcomes of CPI inflation targeting
for the forecast horizons from 1 to 9 quarters under the baseline policy rule (2.12). The uncon-
ditional standard deviations of inflation, the output gap and the short-term interest rate under
various horizons are summarized in Table 2.3.
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Figure 2.1: Inflation and output variability under the baseline policy rule at various targeting
horizons (standard deviation of output and inflation, per cent)
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As the policy horizon increases, we observe a similar trade-off between the inflation and output
variability, which is documented for Taylor rules under changing relative weight on inflation
in the rule; see Ball (1999) and Taylor (1993). At longer horizons the inflation variability
increases, while the output gap variability is gradually reduced. Targeting an inflation forecast
further in the future allows the policy maker to become more accommodative in stabilizing the
output gap today, even without substantially increasing the variability of the instrument. Due to
this trade-off, consistent evaluation of policy choices requires the introduction of a loss function,
to which task we now turn.

3. The Loss Function

The variability of the model variables that enter the policy maker’s loss function is measured
by unconditional variances. Since we do not explicitly solve for the optimal policy rule under
either commitment or discretion and can easily invert the model into the ”companion” form,
unconditional variance is an obvious candidate often adopted in similar models.3 The uncondi-
tional variances of the model variables depend on three factors: (i) the intertemporal dynamics
defined by the structural parameters of the model, (ii) the monetary policy rule coefficients,
and (iii) the variance of the economic shocks. In our search for the optimal targeting horizon
and the ”optimal” policy rule coefficients, we first consider the historical variance of the shocks
reported in Table 2.2. In order to analyse the effects of the shock structure on the optimal rule,

3 For example Soto (2003) and Parrado (2004). On the other hand, models that aim at deriving the optimal policy
rule by explicitly minimizing a loss function with respect to the structural equations of the model, often discount
future expected variability and optimize an intertemporal loss function; see Svensson (1998) and Hlédik (2002).
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we also present separate calculations of unconditional variances under (i) a ”cost-push” shock
(a shock to inflation), (ii) a ”demand” shock (a shock to the output gap) and (iii) an exchange
rate shock. With the exception of the output gap shock, the shocks have no persistence (i.e. they
are serially uncorrelated).

Unconditional variance provides a useful measure of the costs of macroeconomic stabilization
in the quarterly projection model, even though it does not give a clear picture of the transi-
tional dynamics. It tells us the average variance of a variable in the model which is constantly
perturbed by stochastic shocks drawn from a given variance-covariance matrix Ω.4 The cal-
culation is conducted in two steps. First, the structural model in n variables with p lags is
transformed into the ”companion” form, in which all endogenous variables (including shocks)
are expressed as a vector AR(1) process, i.e. in terms of other once-lagged endogenous vari-
ables. This step also includes solutions for the expectational variables, and the outcome can be
written as (Hamilton, 1994, p.259)

ξt = Fξt−1 + νt

where ξt is the vector of stacked endogenous variables and their lags in deviations from the
mean [yt − µ,yt−1 − µ, ...,yt−p − µ]′ and F and ν are the appropriately constructed stacked
matrices of the structural parameters and residuals.

In the second step, the unconditional variance of the variables of interest is calculated using the
recursive formula

Σ ≡ E(ξtξ
′
t) = FE(ξt−1ξ

′
t−1)F

′ + E(νtν
′
t)

where Σ is the unconditional variance, F is the ”companion matrix” of the model, and
E(νtν

′
t) ≡ Q for t = τ and 0 otherwise. The matrix Q is the stacked variance-covariance

matrix of stochastic shocks.5 In this paper, we calculate the unconditional variance recur-
sively, summing up increments of variance over 100 quarters, which is enough for all values to
converge.6

Since the quarterly projection model has no microfoundations and the decision rules of agents
are not based on optimization, the model lacks a well-defined welfare measure.7 The loss func-
tion is set by the policy maker in a way which is assumed to be consistent with the preferences
of other agents. We follow the usual assumption that the central bank has both price stability
and economic activity objectives. The former takes the form of an inflation target, while the

4 Intuitively, unconditional variance can also be viewed as the variance from the time when the model is perturbed
by shocks to the time when it returns to its equilibrium.
5 The unconditional variances of all the endogenous variables can be calculated, given Q and a set of policy rule
parameters, from the standard formula (Hamilton, 1994, p. 264-266):

vec(Σ) = [Ir2 − F ⊗ F ]−1vec(Q),

where vec() denotes matrix vectorization, Ir2 is an identity matrix with r2 rows (r = np; n is the number of
variables and p is the number of lags in the structural form of the model), and ⊗ denotes the Kronecker product.
6 The computations were conducted in IRIS, a suite of MATLAB codes developed at the Czech National Bank; see
Beneš (2004). A useful MATLAB code for the calculation of unconditional variabilities under different targeting
horizons has been provided by the authors of Hurnı́k and Vlček (2004).
7 This is a drawback which recent contributions to the literature particularly strive to improve upon. Models with an
explicit welfare measure derived from agents’ preferences include those in Woodford (2003), Onatski and Williams
(2004) and many more.
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latter is implemented through a non-zero weight placed on stabilization of the output gap. The
fact that the two terms explicitly enter the loss function reflects the inherent trade-off between
the two when the central bank stabilizes the ”cost-push” (inflationary) shock. Because reduc-
ing the variance of inflation requires setting the interest rate in the direction that increases the
variance of output, a preference for lower inflation variance will always imply higher variance
of the output gap. In our search for the optimal rule we thus consider the following version of
the policy maker’s loss function

Lt = wii
2
t + (1− wi)[wπ(πt − π∗)2 + wy(yt − y∗)2] (3.14)

where wj are the respective weights placed at various policy objectives in the assumed loss
function, and the quadratic terms measure the variation in the variables of interest. In what
follows we use the term ”optimal rule” to refer to the inflation forecast-based rule which results
in the lowest weighted sum of the unconditional variances of the variables of interest.

Taking unconditional expectations, the loss function (3.14) becomes

E[Lt] = wivar(it) + (1− wi)[wπvar(πt) + wyvar(ygap
t )] (3.15)

where var(.) are the unconditional variances of the variables of interest. Strictly speaking, the
loss function penalizes variation in the level of the instrument, and does not assume an interest
rate smoothing objective. Since the coefficient on the lagged short-term interest rate in the
current policy rule is rather high, we assume that the policy maker wants to limit interest rate
variability and set wi = 0.2. This parametrization we retain in all the simulations reported
below.

The values of the remaining parameters, wπ, wy sum up to one. The weight on inflation vari-
ability is varied between wπ = wy = 0.5 and wπ = 0.9, wy = 0.1 with an increment of 0.2. The
former is a loss function that places the same relative weight on inflation and output gap vari-
ability (wπ = 0.5), whereas the latter corresponds to almost strict inflation targeting (wπ = 0.9).
We assume that the policy maker is unlikely to penalize output gap variation more than inflation
variation and that, on the other hand, the central bank is unlikely to be only concerned about
minimizing inflation variability.

4. The Grid Search for the Optimal Simple Rule

So far we have restricted our analysis to a narrow class of monetary policy rules with a given
degree of interest rate smoothing and fixed coefficients on the inflation and output gaps, and
have only varied the inflation forecast horizon. However, finding a rule that is optimal also with
respect to the degree of interest rate smoothing and the relative weight placed on the inflation
and output gap would add substantially to our understanding. In this section of the paper we
therefore focus on a simple grid search over some plausible coefficient values of the remaining
monetary policy rule coefficients.

The analysis of policy rules in models with forward-looking variables has to take into account
the issue of dynamic inconsistency. There are two ways of addressing this problem: (i) the
assumption of precommitment, and (ii) explicit modelling of strategic interactions under discre-
tion. The former approach implies that the policy maker commits itself to a single optimization
and to application of the optimal policy in all subsequent periods. In the latter an equilibrium is
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found whereby the policy maker reoptimizes every period, taking the other agents’ expectations
as given. This approach involves solving for some kind of ”subgame-perfect Nash equilibrium”;
see Dennis (2003).8

The difference between the two approaches in terms of solving for optimal policies is discussed
in Svensson (1998). Under discretion, the forward-looking variables, xt, are (linear) functions
of Xt, the predetermined state variables: xt = HXt. The optimal reaction function, f , also
becomes a linear function of the predetermined variables, it = fXt. Both H and f are endoge-
nously determined. In the precommitment case, the forward-looking variables and the optimal
policy also depend on the shadow prices of the forward-looking variables, since the loss func-
tion is now minimized intertemporally (Svensson, 1998, p. 13-14).

The analysis in this paper focuses solely on simple optimal policy rules under precommitment
discussed in Levine and Currie (1987) and Söderlind (1999). By this we mean that the policy
maker is able to precommit to a simple rule which is a linear function of some state-space vari-
ables, it = −F [xt, Xt], and its coefficients, F , are based on minimization of a loss function.
Although here the minimization is only approximated by a grid search, the outcome should in
principle be the same as if the optimal values of F = F ∗ were derived from explicit minimiza-
tion (Söderlind, 1999, p. 817-818).9

The grid search is carried out in two steps. In the first step, the standard deviations of the interest
rate, inflation and output gaps are calculated for b and ρ both varying from 0.1 to 0.9. In the
second step, an optimal targeting horizon is chosen from the best attainable losses at each t + k
quarter ahead. (As previously, we consider targeting horizons from 1 to 9 quarters ahead.)

The degree of interest rate smoothing can be interpreted as a measure of the ”aggressiveness”
of the policy maker: the lower the ρ coefficient, the more aggressively the policy maker changes
the policy rate in order to stabilize the economy. Shortening the targeting horizon has a similar
effect: since the targeted inflation forecast lies closer in time, the policy maker is bound to react
by changing the policy rate more to achieve this goal.

4.1 Variability of the policy variables

We first look at the variability of the policy instrument. As discussed above, we would like
to restrict the choice to policies that produce a comparable variability of the instrument. The
policy maker is likely to accept certain instrument variability according to its preferences, but is
unlikely to change its operating procedures very often. That implies interest rates that are only
changed by increments in a certain range.

The grid search suggests that the interest rate variability decreases as the weight on the inflation
gap in the rule increases; see Figure 4.1. With the relative weight on inflation in the rule below
0.5, the instrument’s standard deviation quickly increases well over 5%. On the other hand,
under short targeting horizons the need to stabilize the inflation forecast quickly produces higher
variability of the instrument, even with a high relative weight on the inflation gap. For most

8 The ”timeless perspective” analysis developed by Woodford is a recent alternative to the precommitment ap-
proach; see the discussion in Dennis (2003) and the references therein.
9 Explicit minimization usually requires a solution using a non-linear optimization algorithm. It is also contingent
on the initial state of the economy and the variance-covariance matrix of the shocks; see Söderlind (1999) and
Dennis (2004).
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Figure 4.1: Interest rate variability (standard deviation, per cent) for various degrees of
interest rate smoothing (r)
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parameter values, however, we get the intuitively expected result: the higher the weight on
partial adjustment, the higher the instrument variability.

Inflation variability is graphed in Figure 4.2. As before, the variability increases considerably
for targeting horizons over 5 quarters and a relative weight on inflation in the rule below 0.5.
Since the inflation variability is as much as twice that of the output gap, the resulting optimal
policy rule is likely to be one that delivers a low standard deviation of inflation. Higher ρ again
does not seem to have much impact on the inflation variability; the difference is especially small
for partial adjustment coefficients between 0.25 and 0.5.

Figure 4.3 graphs the output gap variability which is much smaller than the values calculated
for interest rates and inflation. The output gap variability increases as the weight on the output
gap in the rule decreases. The graph, however, also shows that the cost of decreasing the weight
of the output gap in the rule is more costly at shorter horizons. Reducing interest rate smoothing
seems to reduce output gap variability at its extremes, i.e. under short targeting horizons and
high relative weights on inflation in the rule.

4.2 Optimized Taylor rules

Using the policy rule (2.12) nine variability surfaces were calculated for targeting horizons from
1 to 9 quarters ahead. The loss under various policy rules is driven by inflation variability; this
is true even when the same relative weight of 0.5 is put on both output and inflation variability,
and is even more the case as the weight on inflation variability increases; see Figure 4.4. The
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Figure 4.2: Inflation variability (standard deviation, per cent) for various degrees of interest
rate smoothing (r)
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Figure 4.3: Output gap variability (standard deviation, per cent) for various degrees of inter-
est rate smoothing (r)
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Figure 4.4: Loss functions for different relative weights on inflation stabilization in the policy
rule
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loss function has a minimum at the t + 3 targeting horizon and a relative weight on the inflation
gap in the rule of 0.8.

We have also varied the coefficients on the interest rate smoothing term from 0.1 to 0.9. Since
the general shape of the loss function does not change, the graphs for these values of ρ are not
reported. This allowed us to conduct a refined search for the optimal coefficients under the three
different loss functions described above.

The loss function with wπ = 0.5 is minimized at the targeting horizon of t + 3 and a relative
weight on the inflation gap in the rule of 0.8, irrespective of the value of ρ. A refined grid
search confirms that the pair (ρ∗, b∗) = (0.5, 0.8) is a minimum of the given loss function.
Figure 4.5 shows the result graphically (in terms of the negative of the loss function to facilitate
visualization). As the contours show, the increments around the minimum are negligible for ρ
between 0.35 and 0.45 and for a relative inflation coefficient between 0.7 and 0.85.

The loss function with wπ = 0.7 is again minimized at the targeting horizon of t+3, irrespective
of the other parameters chosen. The refined grid search in this case shows that the optimal
relative weight on inflation in the rule is very high, b∗ = 0.95; see Figure 4.6. The degree of
interest rate smoothing that minimizes the loss function is now ρ∗ = 0.35, well below the partial
adjustment coefficient in the current policy rule.

The optimal simple rule under the loss function with wπ = 0.9 differs from the two previous
cases, because it is a strict inflation targeting rule, as b = 1 minimizes the loss. This is most
likely due to high persistence in the output gap equation. Despite the near coincidence of
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Figure 4.5: Minimum loss under 0.5 weight on inflation in the loss function and the t + 3
targeting horizon
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Figure 4.6: Minimum loss under 0.7 weight on inflation in the loss function and the t + 3
targeting horizon
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Figure 4.7: Minimum loss under 0.9 weight on inflation in the loss function and the t + 2
and t + 3 targeting horizons
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the losses under two and three quarters ahead targeting at b = 0.9, the inclusion of higher
relative weights clearly shows that t + 3 is the optimal targeting horizon; see the negative of
the loss function graphed in Figure 4.7. The optimal degree of interest rate smoothing for this
specification of the loss function is 0.35.

4.3 Comparison with the baseline policy rule

We can now calculate the minimum losses for other targeting horizons, together with the optimal
degree of interest rate smoothing and the relative weight on the inflation gap in the policy rule.
For each assumed version of the loss function, it will be then possible to quantify how much is
the outcome under the baseline policy rule differ from a minimum loss under the optimal policy
rule.

Table 4.1 reports results for targeting horizons of one to five quarters,10 showing that the t + 3
horizon results in the smallest losses for all three loss functions considered. The optimal degree
of interest rate smoothing, ρ∗, decreases as the targeting horizon increases from t + 2, while the
optimal weight on the inflation gap in the policy rule, b∗, increases (in some cases as much as
for strict inflation targeting, as shown above).

Table 4.1 also reports the loss function values for the baseline policy rule. The results suggest
three departures of the baseline policy rule from the calculated optimal simple rules. First, the

10 The results reported here are calculations from a refined grid search with r and b running from 0.1 to 1 for the
horizon t + 3. For other horizons, the results are for m0 and b between 0.1 and 0.9 only. The unreported horizons
are those where the loss function is monotonically increasing.
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Table 4.1: Optimized IFB Taylor rule coefficients for some targeting horizons

Targeting
horizon

Loss (wπ = 0.5)
ρ∗, b∗, loss

Loss (wπ = 0.7)
ρ∗, b∗, loss

Loss (wπ = 0.9)
ρ∗, b∗, loss

t + 1 0.1 0.7 8.08 0.1 0.8 7.199 0.2 0.8 5.923
t + 2 0.3 0.8 7.851 0.4 0.8 6.849 0.4 0.9 5.576
t + 3∗ 0.4 0.8 7.301 0.35 0.95 6.516 0.35 1 5.462
t + 4 0.2 0.9 7.39 0.2 0.9 6.877 0.2 0.9 6.365
t + 5 0.1 0.9 7.64 0.1 0.9 7.355 0.1 0.9 7.07

Baseline rule
(t + 4)

0.75 0.75 8.975 −− −− 9.259 −− −− 9.542

optimal targeting horizon seems to be 3 rather than 4 quarters ahead. The difference can perhaps
be explained by the presence of an information lag in monetary policy. There is no uncertainty
in the model, while it is likely that the policy maker may need some time to recognize the shocks
as they arrive.

Second, the baseline policy rule has a substantially higher coefficient of partial adjustment and
hence it is less ”aggressive” than the optimal Taylor rule for all three formulations of the loss
function. Again, this departure from preferable policy can be viewed as a precaution against
uncertainty. There may also exist credibility concerns, which prevent the policy maker from
reversing its policy too often.

The grid search also suggests that the relative weight on the inflation gap in the rule should be
increased. This may be easier to do, since inflation can be measured more precisely and with a
smaller lag than the output gap. On the other hand, this result depends strongly on the historical
shock structure that we employed in the simulations. It is difficult to make recommendations
for the future based on the transition period experience.

Figure 4.8 summarizes the results of the grid search by plotting the two optimized policy rules
(with wπ = 0.5 and 0.9 respectively) against the baseline policy rule. As can be seen from
Table 4.1, when wπ = 0.5, and the weight on inflation and output stabilization is the same,
the optimal interest rate smoothing parameter is 0.4 and the relative weight on inflation in the
policy rule is 0.8. When the weight on inflation in the loss function increases to wπ = 0.9, the
optimal interest rate smoothing parameter becomes 0.35, and the relative weight on inflation in
the policy rule increases to 1 (i.e. the output gap term disappears from the optimal rule).

We see that the outcomes of the optimized policy rules in terms of inflation stabilization do
not change very much, while the variability of the output gap increases rapidly. As far as
the baseline policy rule is concerned, it seems that the gains from optimization lie mainly in
inflation gap stabilization and mostly at very short policy horizons.

5. Analysis of Individual Shocks

In this section we consider the effects of the demand shock, the cost-push shock, and the shock
to the nominal exchange rate separately. We assume that in each case the given shock is the only
one present in the model. This allows us to draw some conclusions about how the coefficients of
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Figure 4.8: Optimized IFB Taylor rules for two relative weights on inflation in the loss func-
tion and the baseline rule at various targeting horizons
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the optimal rule and the length of the optimal targeting horizon change when the shock structure
of the model changes.

It is clear that the outcome under the optimal rule will differ from that of the baseline policy
rule at each targeting horizon. In order to check how important the effect of the coefficient
optimization is, we report at each targeting horizon the loss values for the rule with optimized
coefficients together with the losses under the baseline policy rule that sets m0 = 0.75 and
b = 0.75. At higher targeting horizons than those reported in the tables below the loss function
is monotonically increasing and it is not optimal to use them in the policy rule. The minima of
the loss functions for both the optimized coefficient rules and the baseline rule are denoted by
an asterisk.

5.1 The demand shock

Table 5.1 shows the loss function values when the only shock present in the model is a demand
shock implemented as a 1% shock to the output gap. Under the baseline policy rule, the results
suggest that when the same weight is attached to output gap and inflation stabilization, t + 4
is the appropriate targeting horizon. For wπ = 0.7 and 0.9, the baseline policy rule produces
the smallest loss at the horizon t + 3. It is, however, possible to improve on these outcomes
by moving to the optimal rules. Under the loss function with wπ = 0.5 and 0.7, the targeting
horizon t + 2 seems optimal, and if we increase the weight placed on inflation stabilization to
0.9, the t + 1 horizon becomes optimal. In terms of the rule coefficients, the relative weight on
inflation stabilization changes from 0.7 to 0.8, which consistent with the value of 0.75 implied
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Table 5.1: Optimized IFB Taylor rule coefficients for a demand shock with zero persistence

Loss (wπ = 0.5)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.7)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.9)
ρ∗, b∗

L (LQPM)

t+1 0.1 0.6
1.126 (1.643)

0.1 0.7
0.831 (1.189)

0.1 0.8
0.511∗ (0.735)

t+2 0.1 0.7
1.123∗ (1.416)

0.1 0.8
0.829∗ (1.007)

0.4 0.8
0.512 (0.599)

t+3 0.1 0.7
1.128 (1.345)

0.25 0.8
0.841 (0.962∗)

0.5 0.8
0.526 (0.58∗)

t+4 0.1 0.7
1.142 (1.341∗)

0.3 0.7
0.859 (0.979)

0.4 0.8
0.557 (0.616)

t+5 0.1 0.6
1.165 (1.399)

0.25 0.7
0.893 (1.054)

0.4 0.7
0.607 (0.709)

t+6 0.1 0.6
1.180 (1.469)

0.1 0.7
0.921 (1.143)

0.25 0.7
0.646 (0.816)

by the baseline rule. The main difference is in the interest rate smoothing coefficient ρ∗, which
is only 0.1 under all three optimal rules.

The result is not surprising, since we consider a case where only demand shocks are present
in the model. As the shock to demand does not imply any trade-off between inflation and
output gap stabilization, and the shock has no persistence, it is reasonable for the policy maker
to stabilize the inflation gap rather ”aggressively”. This policy at the same time stabilizes the
output gap.

The historical data, however, suggest that output gap shocks are correlated, i.e. their evolution
can be described as an autoregressive process of order 1. We thus repeat our analysis of a 1%
shock to the output gap assuming that

εygap
t = αεygap

t−1 + νt

where εygap
t is the output gap shock and νt is an independent identically distributed random

variable with zero mean and the variance given in Table 2.2. Consistently with the data, we set
the autocorrelation coefficient α to 0.6. The results reported in Table 5.2 show that the outcomes
for horizons longer than t+3 are identical to those for the demand shock with zero persistence.11

The optimal targeting horizon for the rule with optimized coefficients now becomes t + 3 for
all three loss functions considered. The relative weight on the inflation gap is again comparable
to that under the baseline rule, but a much lower degree of interest smoothing seems optimal;
the coefficient values are between 0.1 and 0.5 rather than 0.75. The persistent demand shock
results in a longer optimal forecast horizon, because it is more costly to stabilize the demand
shock quickly.

11 In other words, the effects of the persistent demand shock seem to vanish after two quarters.
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Table 5.2: Optimized IFB Taylor rule coefficients for a demand shock with persistence

Loss (wπ = 0.5)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.7)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.9)
ρ∗, b∗

L (LQPM)

t+1 0.1 0.5
2.675 (4.487)

0.1 0.6
1.965 (3.135)

0.1 0.7
1.124 (1.784)

t+2 0.1 0.5
2.634 (3.894)

0.1 0.6
1.931 (2.664)

0.25 0.7
1.111 (1.435)

t+3 0.1 0.7
1.128∗ (1.345)

0.25 0.8
0.841∗ (0.962∗)

0.5 0.8
0.526∗ (0.58∗)

t+4 0.1 0.7
1.142 (1.341∗)

0.3 0.7
0.859 (0.979)

0.4 0.8
0.557 (0.616)

Table 5.3: Optimized IFB Taylor rule coefficients for a cost-push shock

Loss (wπ = 0.5)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.7)
ρ∗, b∗

L (LQPM)

Loss (wπ = 0.9)
ρ∗, b∗

L (LQPM)

t+1 0.6 0.7
0.317 (0.506)

0.6 0.7
0.339 (0.477)

0.5 0.8
0.358 (0.447)

t+2 0.6 0.8
0.316∗ (0.399∗)

0.6 0.9
0.332∗ (0.404∗)

0.6 0.9
0.344∗ (0.409∗)

t+3 0.6 0.9
0.329 (0.401)

0.6 0.9
0.352 (0.434)

0.5 0.9
0.375 (0.467)

t+4 0.6 0.9
0.371 (0.457)

0.5 0.9
0.407 (0.521)

0.4 0.9
0.437 (0.585)

5.2 The inflation shock

We model the ”cost-push” shock in the quarterly projection model as a 1% shock to all compo-
nents of CPI inflation. Although macroeconomic stabilization of the ”cost-push” shock always
requires the real interest rate to move in the direction which destabilizes the output gap, the
trade-off is swamped by the relative strength of the inflation shock. The optimal rules summa-
rized in Table 5.3 in all cases suggest a relative weight on inflation stabilization between 0.6 and
0.9. The policy horizon t + 2 minimizes all three considered loss functions under the baseline
rule. The same horizon is optimal under the three rules with optimized coefficients. If cost-push
shocks are predominant in the economy, a targeting horizon shorter than four quarters seems
advisable. The optimal horizon for cost-push shock stabilization is the same as that for the
demand shock with zero persistence. When, however, we take into account persistence, which
makes stabilization at short horizons more costly, the optimal horizon for the demand shock
becomes longer than that for the cost-push shock. This reflects the fact that the demand shock
only affects inflation with a lag, whereas the cost-push shock affects inflation directly.

5.3 The exchange rate shock

The exchange rate shock is modelled as a 1% shock to the nominal exchange rate, and we
again assume that the shock has zero persistence; see Table 5.4. The relative weight on the
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Table 5.4: Optimized IFB Taylor rule coefficients for an exchange rate shock

Loss (wπ = 0.5)
m∗

0, b∗

L (LQPM)

Loss (wπ = 0.7)
m∗

0, b∗

L (LQPM)

Loss (wπ = 0.9)
m∗

0, b∗

L (LQPM)

t+1 0.1 0.9
0.361 (0.874)

0.1 0.9
0.381 (0.862)

0.1 0.9
0.401 (0.85)

t+2 0.1 0.9
0.333∗ (0.562)

0.1 0.9
0.361∗ (0.588)

0.1 0.9
0.389∗ (0.613)

t+3 0.3 0.9
0.348 (0.508∗)

0.3 0.9
0.384 (0.551∗)

0.3 0.9
0.42 (0.594∗)

t+4 0.3 0.9
0.388 (0.562)

0.25 0.9
0.434 (0.621)

0.25 0.9
0.481 (0.681)

stabilization of inflation suggested by the rules with optimized coefficients is b = 0.9 for all
the combinations of parameters considered. The exchange rate shock seems predominantly to
affect imported inflation, and its effects on domestic output seem negligible. The secondary
importance of output gap stabilization is illustrated by the fact that the optimal policy horizon
does not change, although the relative weight on inflation in the loss function changes from
wπ = 0.5 to 0.9.

The optimal targeting horizon for rules with optimized coefficients is t + 2, while the policy
horizon of the baseline rule is t+3 for all three loss functions. This result, however, can only be
interpreted in favour of the shorter policy horizon provided that the other parameters of the rule
are brought closer to their optimized values. It seems that given the relative historical magnitude
of inflation and exchange rate shocks, both variables can be reasonably well stabilized using the
parametrization implied by the inflation shock analysis.

6. The Role of the Real Exchange Rate

In this section we present two arguments why the policy maker may want to stabilize the real
exchange rate. The first one focuses on the fact that the central bank in an open economy faces a
trade-off between controlling the interest rate and controlling the exchange rate, and the optimal
choice of policy instrument is conditional upon the shock structure. The second argument takes
on the issue of current account stabilization and the possible ways of implementing this policy
objective in the framework of the quarterly projection model.

6.1 Motivation for real exchange rate stabilization

The case for real exchange rate stabilization may be justified by the structure of the shocks
hitting the domestic economy. Parrado (2004) presents a microfounded dynamic neo-Keynesian
model of Chile which includes optimizing consumers and producers, monopolistic competition
and nominal price rigidities.12 He argues that the motivation for real exchange rate stabilization
can be traced back to the seminal analysis of Poole (1970), whose model shows that the optimal

12 This is a slightly more sophisticated framework than that of the quarterly projection model. Although micro-
founded, the model lacks the current account equation completely. The motivation for exchange rate stabilization
is restricted to the fixed versus flexible exchange rate debate.



20 Jan Stráský

policy instrument (and rule) depends on the nature of the shocks predominant in the economy.
Under real shocks the flexible exchange rate dominates the managed one, whereas the reverse
seems to be true when the shocks are predominantly nominal. The relative importance of shocks
is an empirical question which can be analysed in an empirical macroeconomic model such as
the quarterly projection model.

In the case of the Czech Republic and the other new EU members, this argument can be taken
even further, since stabilization of the nominal exchange rate is required by the ERM stage
II criteria for membership in the Eurozone. Natalucci and Ravenna (2002) and Ghironi and
Rebucci (2002) recently used similar reasoning for including an exchange rate feedback term
in the inflation forecast-based rules in microfounded models parametrized for emerging market
economies.13 Under the policy of inflation targeting, the exchange rate stabilization objective
can enter the policy rule as either a nominal or real exchange rate ”gap” term. Although a
precise quantification of the link between the exchange rate feedback term and the ERM stage
II criterion for exchange rate stability would require further calculation, it can be viewed as an
additional reason for real exchange rate stabilization.

The second argument stresses the case for current account stabilization. The usual reasoning
emphasizes the negative effect of current account deficits on a country’s risk premium and
worsening access to external financing. The Central Bank of Chile even has stability and smooth
functioning of the external payments system among its formal objectives (Medina and Valdés,
2000, p.2). In practice, this objective has been interpreted as a sustainable current account
deficit of up to 5% of GDP, reflecting the idea that an excessive deficit can result in a balance of
payments crisis.

Medina and Valdés (2000) analyse an estimated macroeconomic model of the Chilean economy
in which the variables are formulated in terms of deviations from their long-run trends. The fact
that the model has no microfoundations and is formulated in ”gap” form makes it very similar
to the Czech quarterly projection model, including the criticism about the unmodelled ”secular”
trends underlying the ”gap” variables. The central bank in this model has four policy objectives:
it strives to keep (i) inflation close to the inflation target (ii) the output gap close to zero and
(iii) the current account deficit close to its pre-announced value, formulated as a ratio to current
output, and (iv) it dislikes frequent and sudden changes in policy instrument. The current period
loss function can thus be written as

Lt = λπ(πt − π∗)2 + λca(cat − ca∗)2 + λy(yt − y∗)2 + λr(∆rt −∆r∗)2 (6.16)

where the variables with an asterisk now denote the inflation and current account targets, the
long-run average values of potential output and the short-term real interest rate respectively.14

The difference between the quarterly projection model and the approach in Medina and Valdés
(2000) is that the latter model includes an explicit current account equation. The dependent
variable is the deviation of the ratio of the current account deficit to output from its target value,

13 Natalucci and Ravenna (2002) report results from simulations of a microfounded two-sector model with op-
timizing agents calibrated on Czech data from 1994 to 2002. Their policy rules include the nominal exchange
rate stabilization required by the ERM stage II, but they do not consider inflation forecast-based rules. The likely
reason for this is that under the ERM stage II requirements, inflation, the exchange rate and all other variables of
interest must stay within the prescribed range at all times.
14 Note that the current account stabilization objective here is symmetric. It is, however, often argued that only cur-
rent account deficits are potentially dangerous for the economy and that the objective should be made asymmetric.
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which is a decreasing function of the domestic output gap, and an increasing function of foreign
output and the real exchange rate (competitiveness).15

Although explicit introduction of the current account into the quarterly projection model is
beyond the scope of this paper, the issue can be addressed indirectly. Note that the current
account variable does not feed back into any other equation of the model. The model dynamics
are not affected by the introduction of the current account, which is only a useful summarization
of the real exchange rate and output gap effects that the central bank may wish to take into
account. In other words, it is not necessary for our purposes to model the evolution of the
current account explicitly. In order to describe the effect of this additional objective on the
optimal policy horizon, it is enough to set a reasonable weight that current account stabilization
should have in the policy maker’s objective function and link this underlying objective to the
modelled variability of the determinants of the current account.

One point in our implementation remains open to criticism. In what follows we assume that
the real exchange rate is the most important determinant of the current account. We thus re-
strict our attention to the relative price and neglect the domestic and foreign income effects
on the determination of the current account. Two points can be made in defence of such a
simplification. First, the parametrization suggested below shows that the real exchange rate is
considerably more important than domestic output in determining the current account. Second,
the loss function already allows for some weight on domestic output stabilization.

6.2 Parametrization of the extended loss function

The proposed link between the current account balance and the real exchange rate has to be
quantified. Since the current account is left unmodelled, the weight placed on its stabilization
in the loss function (6.16), λca, has to be replaced by a meaningful weight placed on the real
exchange rate variability. The value of this parameter, λq, depends on the elasticity of the
current account with respect to the real exchange rate and is indeed country-specific.

Empirical evidence reviewed in Goldstein and Khan (1985) suggests that the relative price elas-
ticity of import demand for a typical country lies between −0.5 and−1, while the relative price
elasticity of export demand should lie between −1.25 and −2.50 (Goldstein and Khan, 1985,
p.1076). The Marshall-Lerner condition seems to be met. Due to their high openness to trade,
the transitional economies are, however, likely to have higher price elasticities of imports and
exports. Šmı́dková et al. (2002) report coefficients obtained from panel data estimation for five
new EU member countries and put the real exchange rate elasticity of exports at 3.15 and that
of imports at −0.62. A one per cent improvement in competitiveness should thus improve the
trade balance by roughly 2.5%. Hence, if the current account stabilization objective enters the
loss function with weight x per cent, the real exchange rate stabilization objective should enter
with a weight of 1

2.5
x = 0.4x. The current period loss function, in which the real exchange rate

stabilization objective replaces the current account stabilization objective, can thus be re-written
as a variant of the loss function (3.14), with an appropriately selected parameter wq. For the
Chilean economy, Medina and Valdés (2000) suggest a weight on the current account objective
of 0.3, which implies that the weight of the real exchange rate variability in the loss function
should be around 0.12. In the context of the Czech economy, the weights suggested for the
real exchange rate variability in Hlédik (2002) are between 0.2 and 0.4, which in the light of

15 In Medina and Valdés (2000), the estimation version of the trade balance equation proxies income effects with

the short- and long-term real interest rates, CA/Y = f(
−
r,
−
R,

+
q).



22 Jan Stráský

the previous argument seems on the high side, since the Czech National Bank does not have an
explicit current account objective.

We consider the following extension of the loss function

Lt = wii
2
t + (1− wi)[wπ(πt − π∗)2 + wy(yt − y∗)2 + wqq

2
t ] (6.17)

where we also allow for a term penalizing variation in the level of the real exchange rate. After
taking unconditional expectations we get

E[Lt] = wivar(it) + (1− wi)[wπvar(πt) + wyvar(ygap
t ) + wqvar(qt)] (6.18)

The weight put on interest rate variability is again set to 0.2. The weight on the real exchange
rate wq is set to 0.1, a value implying slightly less emphasis on current account stabilization than
the number reported for the Central Bank of Chile. We consider two possible parametrizations
of the remaining coefficients: the case of a ”dovish” real exchange rate targeter, who sets wπ =
wy = 0.45, and the case of a ”hawkish” real exchange rate targeter, who strongly emphasizes
inflation gap stabilization, wπ = 0.8 and wy = 0.1.

6.3 The monetary policy rule under the real exchange rate objective

In theory, it is not necessary to change the policy rule when the policy objective changes. Since
the inflation forecast-based rule reacts to all the state-space variables of the model, it feeds back
upon the real exchange rate as well, in a way which is consistent with the policy objectives
reflected in the loss function. When we search for the optimal coefficients of the policy rule,
the loss function values should penalize coefficient values that result in excessive real exchange
rate variability.

In practice, however, we often assume that when the exchange rate stabilization objective is
implemented, the policy maker will introduce new instrument variable(s) into her reaction func-
tion. In our case, the nominal or real exchange rate gap is the most obvious candidate. Parrado
(2004) complements a loss function of the form (6.16) with an inflation forecast-based rule of
the same structure as the one employed in the quarterly prediction model

igap
t = ρigap

t−1 + (1− ρ)[α1Etπ
gap
t+k + α2y

gap
t + α3s

gap
t ] (6.19)

where ρ = 0.7, α1 = 1.5, α2 = 0.5, and α3 = 3.34, and the ”gap” variables are per cent
deviations from the inflation target, potential output and the steady state value of the nominal
exchange rate. A similar policy rule is used in Soto (2003), where the exchange rate feed back
term is specified in terms of the real exchange rate gap, qgap

t . The coefficient values for ρ, α1

and α2 are identical, and α3 is now set to 2.5.

The coefficients of both policy rules are calibrated for the Chilean economy in the 1990s and
hence are of only partial interest as far as the Czech macroeconomic model is concerned. They
also put a relatively high weight on exchange rate stabilization. The relative weights on inflation
and the output gap in the former are 0.28 and 0.1 respectively, leaving more than 60% for
nominal exchange rate stabilization. The respective values for the latter are 0.33, 0.11 and 0.55,
which is still rather high considering that the Czech National Bank is not explicitly stabilizing
the exchange rate. We thus conduct a search for the optimal policy rule coefficients using the
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Table 6.1: Relative weights for the coefficients of the extended policy rule

απ αy αq απ αy αq

1. 0.8 0.1 0.1 5. 0.5 0.1 0.4
2. 0.6 0.1 0.3 6. 0.2 0.3
3. 0.2 0.2 7. 0.25 0.25
4. 0.3 0.1 8. 0.3 0.2

9. 0.4 0.1

Table 6.2: Optimized IFB Taylor rule coefficients under the real exchange rate objective

”Dovish” RER targeter
ρ∗ απ αy Loss

”Hawkish” RER targeter
ρ∗ απ αy Loss

t+1 0.25 0.6 0.3 8.01 0.1 0.6 0.3 6.834
t+2 0.3 0.6 0.3 7.455 0.25 0.8 0.1 6.399
t+3 0.3 0.6 0.3 7.349 0.3 0.8 0.1 6.189∗

t+4 0.1 0.8 0.1 7.282∗ 0.1 0.8 0.1 6.47
t+5 0.1 0.8 0.1 7.452 0.1 0.8 0.1 6.96
t+6 0.1 0.8 0.1 7.745 0.1 0.8 0.1 7.539

baseline formulation of the policy rule in the quarterly projection model, to which we add the
real exchange rate feedback term in the following form

it = ρit−1 + (1− ρ)(ieq + 1.6[απ(Etπ4t+k − π4∗) + αyy
gap
t + αqq

gap
t ]) (6.20)

where ρ is the coefficient on interest rate smoothing, Etπ4t+k − π4∗ is the inflation gap, and
ygap

t and qgap
t are per cent deviations of output and the real exchange rate respectively from their

long-run trends. The relative weight on the inflation gap, απ is increased from 0.5 to 0.8, with
the relative weights on the output and exchange rate gaps spanning from 0.1 to 0.4 respectively.
The full grid of the combinations (απ, αy, αq), which in all the rules sum up to one, is reported
in Table 6.1. As for the degree of interest rate smoothing, for each of the nine policy rules
considered we vary the parameter ρ from 0.1 to 0.9.

This is arguably a rather simple grid of coefficient values, and the results reported below should
be treated with caution. As before, the non-reported horizons are those where the loss function
is monotonically increasing. The minimum loss over all considered horizons is denoted by an
asterisk.

6.4 Optimal simple rule with the real exchange rate term

In the search for an extended optimized rule we return to the full variance-covariance matrix in
Table 2.2. The rules reported in Table 6.2 are thus derived under the assumption of the same
shock structure as the optimized IFB Taylor rules. The optimal policy horizon in the case of
the ”hawkish” targeter remains at t + 3, while the higher relative weight put on output gap
stabilization results in a longer optimal horizon, t + 4.

Out of the nine possible specifications of the policy rule considered in the search, only rules
(1) and (4) were found optimal. The optimal relative weight on the real exchange rate hence
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Figure 6.1: Optimized IFB rules with the real exchange rate feedback term at various target-
ing horizons (standard deviation of output and inflation, per cent)
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equals 0.1 for all the policy horizons of the two loss functions considered. The degree of interest
rate smoothing can, however, act as a substitute for the insufficient coefficient variability in the
search. The ”hawkish” targeter predominantly uses rule (1), which has a relative weight on
inflation of 0.8, while the minimum of the loss for the ”dovish” targeter is attained with rule (4),
where απ = 0.6.

The results are similar in structure to the findings from the previous grid search. The optimal
policy horizon is longer when the policy maker gives more weight to output gap stabilization.
Moreover, the loss function with the real exchange rate objective requires only a relatively low
feedback coefficient on the real exchange rate term. Figure 6.1 plots the inflation and output
variabilities of the two optimized policy rules with the real exchange rate term. Although the
coefficients ρ and απ, αy are only optimized for one of the nine targeting horizons (t + 3 and
t+4 respectively), the reduction in variability with respect to the baseline rule is clearly visible.

7. Conclusions

In this paper we have used the quarterly projection model of the Czech National Bank and a
variance-covariance matrix of historical shocks to derive a set of inflation forecast-based policy
rules with optimized coefficients. The simulation results presented in this paper suggest that
the baseline policy rule of the Czech National Bank targets CPI inflation close to the optimal
targeting horizon of three quarters. There are, however, at least two other ways in which the
performance of the rule could be improved. We have seen that the optimal simple rule under
all versions of the loss function considered in this paper suggests that a higher relative weight
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should be placed on inflation gap stabilization. Moreover, the coefficient of the partial interest
rate adjustment seems to be set too high in the current version of the policy rule. Although these
two findings seem to imply a simple way of improving upon the current rule, it should be noted
that the results were derived from a model which does not allow for uncertainty.

The results from the analysis of individual shocks show that a demand shock with zero persis-
tence shortens the optimal policy horizon even further. This finding is however not robust and
vanishes when we introduce persistent demand shocks. The optimal policy horizon under cost-
push shocks becomes shorter, since cost-push shocks feed directly in to inflation. The optimal
inflation forecast-based rule now has a similar degree of interest rate smoothing and a similar
relative weight on the inflation gap as the non-optimized baseline policy rule. It seems that a
baseline rule with a shorter policy horizon would be a good approximation of the optimized
inflation forecast-based rule when cost-push shocks dominate.

The analysis of the loss functions with a real exchange rate term does not alter the previous
results, although it provides some evidence against policy horizons shorter than three quarters.
It also suggests that the extended optimal policy rules should provide a degree of inflation and
output gap stabilization comparable with the optimal simple rules.
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Finance a úvěr, 52(4):197–231.

CLARIDA, R., GALÍ, J., AND GERTLER, M. (1997): “Monetary Policy Rules in Practice:
Some International Evidence.” European Economic Review, 42(2):1033–1067.

COATS, W., LAXTON, D., AND ROSE, D. editors (2003): The Czech National Bank’s Fore-
casting and Policy Analysis System, Prague. Czech National Bank.

DENNIS, R. (2003): “Optimal Policy Rules in Rational-Expectations Models: New Solution
Algorithms.” Working paper, Federal Reserve Bank of San Francisco, San Francisco.

DENNIS, R. (2004): “Solving for Optimal Simple Rules in Rational Expectations Models.”
Journal of Economic Dynamics and Control, 28:1635–1660.

GHIRONI, F. AND REBUCCI, A. (2002): “Monetary Policy Rules for Emerging Market
Economies.” Working Paper WP/02/34, International Monetary Fund, Washington,
D.C.

GOLDSTEIN, M. AND KHAN, M. (1985): Income and Price Effects in Foreign Trade. In
Jones, R. W. and Kenen, P. B., editors, Handbook of International Economics, chap-
ter 20, pages 1041–1105. Elsevier Science Publishers, Amsterdam.

HAMILTON, J. D. (1994): Time Series Analysis. Princeton University Press, Princeton.
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