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Abstract

We study how a behavior (an idea, buying a product, having a disease, adopting
a cultural fad or a technology) spreads among agents in an a social network that
exhibits segregation or homophily (the tendency of agents to associate with others
similar to themselves). Individuals are distinguished by their types (e.g., race, gender,
age, wealth, religion, profession, etc.) which, together with biased interaction patterns,
induce heterogeneous rates of adoption. We identify the conditions under which a
behavior diffuses and becomes persistent in the population. These conditions relate
to the level of homophily in a society, the underlying proclivities of various types
for adoption or infection, as well as how each type interacts with its own type. In
particular, we show that homophily can facilitate diffusion from a small initial seed of
adopters.
Keywords: Diffusion, Homophily, Segregation, Social Networks.
JEL Classification Numbers: D85, D83 C70, C73, L15, C45.

1 Introduction

Societies exhibit significant homophily and segregation patterns.1 How do such biases in

interactions affect the adoption of products, contagion of diseases, spread of ideas, and other

diffusion processes? For example, how does the diffusion of a new product that is more

∗The first author acknowledges support from the NSF under grant SES–0961481. The second author
acknowledges support from the Spanish Ministry of Science and Innovation (ECO2008-03883, ECO2011-
22919) as well as from the Andalusian Department of Economy, Innovation and Science (SEJ-4154, SEJ-
5980) via the “FEDER operational program for Andalusia, 2007-2013”. We thank Cody Brown and Myrna
Wooders for comments on an earlier draft.

†Stanford University, Santa Fe Institute, and CIFAR
‡Universidad Pablo de Olavide and CORE, Université catholique de Louvain.
1For background on homophily and some of its consequences, see McPherson et al. (2001) and Jackson

(2008).
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attractive to one age group depend on the interaction patterns across age groups? How does

the answer depend on the differences in preferences of such groups, their relative sociabilities,

and biases in the interactions?

We answer these questions by analyzing a general model of diffusion that incorporates

a variety of previous models as special cases, including contagion processes studied in the

epidemiology literature such as the so-called SIS model (e.g., Bailey 1975, Pastor-Satorrás

and Vespignani, 2001), as well as interactions with strategic complementarities, such as in

the game theoretic literature and network games (e.g., Galeotti et al., 2010).2 Our model

incorporates types of individuals who have different preferences or proclivities for adoption,

as well as biases in interactions across types.

In particular, we examine whether or not diffusion occurs from a very small introduction

of an activity in a heterogeneous and homophilous society. We first concentrate on the focal

situation with only two types of agents. Within this case, the most interesting scenario turns

out to be one where one type would foster diffusion and the other would not if the types

were completely segregated. In that scenario, we show that homophily actually facilitates

diffusion, so that having types biased in interactions towards their own types can enhance

diffusion to a significant fraction of both types. Having a higher rate of homophily, so that a

group is more introspective, allows the diffusion to get started within the group that would

foster diffusion on its own. This can then generate the critical mass necessary to diffuse the

behavior to the wider society. In contrast, societies exhibiting less homophily can fail to

foster diffusion from small initial seeds.

We then move to the general case of many types. Our main characterization theorem

generalizes the features from the two-agent case, showing that diffusion relates to a condition

on the largest eigenvalue of an interaction matrix which tracks the initial adoption rates of

various types of individuals, that is, their adoption rates from small initial seeds. Again, we

show that homophily can facilitate diffusion, showing that a sufficient condition is that some

type (or group of types) that would adopt on its own is sufficiently homophilous to give the

diffusion a toehold. We discuss how this extends the intuitions from the case of two types.

2 An Illustrative Example: The Heterogeneous SIS

model with Two Types

To fix ideas and preview some of the insights from the general model, we begin with a case

where there are just two types of agents and the contagion follows a simple and well-studied

process.

In particular, consider an infectious disease spreading in a population with two groups:

the young and the old. Our aim is to analyze whether or not diffusion of the disease occurs.

2For background on diffusion in networks see Newman (2002), Jackson and Yariv (2005, 2007, 2010),
López-Pintado (2006, 2008, 2010), Jackson and Rogers (2007) among others.
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That is, if we start with a small seed of infected agents, will the infection spread to a sig-

nificant fraction of both populations and become endemic? In order to answer this question

consider the following heterogeneous version of the canonical SIS model.3

Agents can be in one of two “states”: infected or susceptible. A susceptible agent becomes

infected at an independent probability ν > 0 from each interaction with an infected agent.

Conversely, with a probability δ > 0 per unit of time an infected individual recovers and

becomes susceptible again.4 The crucial parameter of the model is the relative spreading

rate, λ = ν
δ
, which measures how infectious the disease is in terms of how easy it is to

contract compared to the rate at which one recovers.

An interesting case for our analysis is one where the population is heterogeneous in terms

of the proclivities for getting infected. In particular, imagine that the older are more (or

less) vulnerable to the disease than the young. More precisely, if λ1 is the spreading rate of

the young and λ2 of the old, then we allow λ1 6= λ2.

In addition to their age, individuals are also potentially differentiated by the rates at

which they interact with other individuals, where “interact” is taken to mean that they have

a meeting with an individual which could transmit the infection if one of them is infected

and the other is susceptible. In particular, apart from his or her type, each individual is

characterized by a degree d; the number of agents the individual meets (and is potentially

infected by) every period. Let Pi(d) be the degree distribution of individuals of type i; that

is, the fraction of agents of type i that have d meetings per unit of time.

Also, for the purposes of this example, we stick with what is standard in the random

network literature, and take the meeting process to be proportionally biased by degree.

Thus, conditional on meeting an agent of type i, the probability that he or she is of degree

d is proportional to Pi(d)d
〈d〉i , where 〈d〉i is the average degree among type i agents (〈d〉i =∑

d Pi(d)d).

To capture homophily, let 0 < π < 1 be the probability that a given type i agent (old or

young) meets his or her own type, and 1 − π be the probability of meeting an agent of the

other type. For example if the populations are of even size, then having π > 1/2 means that

agents are mixing with their own type disproportionately.

We say that diffusion occurs from a small seed (with a formal definition below) if starting

from an arbitrarily small amount of infected individuals (of either type), we end up with a

nontrivial steady-state infection rate among the population.

Let π0 = 1−ed1λ1
ed2λ2ed1λ1+ ed2λ2−2 ed1λ1

ed2λ2
, where d̃i = 〈d2〉i

〈d〉i .

Theorem 1 Diffusion occurs from a small seed in the two type SIS model if and only if one

of the following holds:

1) λ1λ2 > 1ed1
ed2

or

3The so-called SIS (Susceptible-Infected-Susceptible) model is a basic one used by the epidemiology
literature to describe such situations (e.g., Bailey 1975, Pastór-Satorrás and Vespignani, 2000, 2001).

4The SIS model allows a recovered person to catch the disease again. An obvious instance is the standard
flu.
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2) λ1λ2 < 1ed1
ed2

and π > π0.

The proof of the theorem appears in the appendix, and is a special case of our more

general results below.

The condition for diffusion in the standard (homogeneous) SIS model is λ > 1ed (e.g.,

Pastor-Satorrás and Vespignani, 2001). Thus, we see how this generalizes in the above

theorem.

Theorem 1 yields the following straightforward consequences.

Corollary 1 The following statements hold for the two-type SIS model:

1) If diffusion occurs within each type when isolated (when π = 1), then it would also

occur when there is interaction among the two (when π < 1).

2) If diffusion does not occur in either of the types when isolated, then it would not occur

when there is interaction among the two.

3) If diffusion occurs among one type but not the other when isolated, then it will occur

among the whole population if the homophily is high enough.

The most interesting scenario turns out is the last one, such that one of the types would

foster diffusion if isolated, whereas the other would not (i.e., λ1 > 1ed1
and λ2 < 1ed2

). In that

scenario, homophily either plays no role (that is, when λ1λ2 > 1ed1
ed2

) so that any homophily

level will allow diffusion, or else it actually facilitates diffusion (that is, when λ1λ2 < 1ed1
ed2

in

which case π must exceed π0).

In the latter case diffusion occurs only if the two types are sufficiently biased in interac-

tions towards their own types (i.e., π is sufficiently large). The intuition for such a result

is the following. Having a higher rate of homophily, so that a group is more introspective,

allows the diffusion to get started within the group that would foster diffusion on its own.

In turn, it can then spread to the wider society.

3 The General Model

With this introduction behind us, we now describe the general model.

3.1 Types and Degrees

Each agent is characterized by his or her degree d ≥ 0 and type i ∈ T = {1, ...,m}.
Since the number of individuals of each type can differ, let n(i) be the fraction of indi-

viduals of type i.

An agent’s degree d indicates the number of other agents that the agent meets (and is

potentially influenced by) before making a decision in a given period. The meeting process

is allowed to be directional; i.e., agent h meeting (paying attention to) agent k does not

necessarily imply that k pays attention to h. So, although we use the term “meeting,” the

4
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interaction need not be reciprocal. Of course, a special case is one where the interaction is

mutual.

Different types may have different distributions in terms of how frequently they meet

other agents. In particular, let Pi(d) be the degree distribution of individuals of type i. That

is, Pi(d) is the fraction of type i individuals who have d meetings per period. Thus, there

can be heterogeneity among agents of a given type, in terms of how social they are.

An agent’s type i shapes both the agent’s relative interaction rates with other types

of agents and the agent’s preferences or proclivity for infection. In particular, πij is the

probability that an agent of type i meets an agent of type j in any given meeting. Clearly,
m∑

j=1

πij = 1. The bias in meetings across types is then summarized by the matrix

Π =

 π11 . . . π1m

... . . .
...

πm1 . . . πmm

 .

We assume that Π is a primitive matrix (so that Πt > 0 for some t). This ensures that

there is at least some possibility for an infection that starts in one group to reach any other,

as otherwise there are some groups that are completely insulated from some others.

3.2 The Random Meeting Process

In order to study this system analytically, we examine a continuum of agents, N = [0, 1].

This continuum is partitioned into agents of different types, and then within types, by

their degrees.

There are two ways in which the meeting process can be biased: by type and by degree.

In particular, as mentioned above, the relative proportion of a type i agent’s meetings

with type j is described by the term πij, which captures relative biases in meetings across

types. So, in a given period, an agent of type i with degree d expects to meet dπij agents of

type j. Those agents are randomly selected from the agents among type j.

We also allow the meeting process to be biased by degree. The probability that an agent

meets an agent of degree d out of those of type j is given by

Pj(d)wj(d),

where wj(d) is a weighting factor. If there is no weighting by degree, then an agent equally

samples all agents of type j and wj(d) = 1. This would require a directed meeting process,

such that an agent observes members of a given type uniformly at random, independently

of their meeting process or sociability. If instead, meetings are proportional to how social

the agents of type j are, then wj(d) = d/〈d〉j, where 〈d〉j is the average degree among type

j agents. This latter condition covers cases in which meetings are reciprocal.5

5For some details and references for random meeting processes on a continuum, see the appendix of
Currarini, Jackson and Pin (2009).
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Our formulation also allows for other cases. For simplicity, we assume that wj(d) > 0 for

all j and d such that Pj(d) > 0.

3.3 The Infection or Adoption Process

In each period an agent is in one of two states s ∈ {0, 1}. Either the agent has adopted the

behavior and are in state s = 1 (active, adopted, infected...), or they have not adopted the

behavior and are in state s = 0 (passive, non-adopter, susceptible...). The agents’ actions

are influenced by the actions of others, but in a stochastic manner.

Agents are heterogeneous with respect to their proclivities to adopt the behavior. A

passive agent of type i adopts the behavior at a rate described by a function fi(d, a), where

d is the agent’s degree (number of meetings per unit of time) and a is the number of agents

whom she meets who have adopted the behavior. (Details of the dynamics will be given

below.) The reverse process, by which an active agent of type i becomes passive happens at

a rate described by a function gi(d, a). The functions fi(d, a) and gi(d, a) are the primitives

of the diffusion process and are assumed to satisfy some basic conditions:

A1 fi(d, 0) = 0 for each i and d: a passive agent cannot become active unless she meets at

least one active agent.

A2 fi(d, a) is non-decreasing function in a: the adoption rate is non-decreasing in the num-

ber of active agents met.

A3 fi(d, 1) > 0 for each i and some d such that Pi(d) > 0. This condition implies that for

each type of agent there exists some degree such that the rate of adoption for agents

with such a degree is positive when they meet at least one active agent.

A4 gi(d, 0) > 0 for each i and d: it is possible to return from active to passive when all

agents met are passive.

A5 gi(d, a) is non-increasing in a: the transition rate from active to passive is non-increasing

in the number of active agents met.

This general model of diffusion admits a number of different models, including models

based on best-response dynamics of various games (with trembles) as well as epidemiological

models. Here are a few prominent examples of processes that are admitted:

• Susceptible-Infected-Susceptible (SIS diffusion process): fi(d, a) = νia and gi(d, a) =

δi, where νi ≥ 0 and δi ≥ 0.

• Myopic-best response dynamics by agents who care about the relative play of neighbors

(Relative Threshold diffusion process): fi(d, a) = νi if a
d
≥ q and fi(d, a) = 0

otherwise. Also gi(d, a) = δi if a
d

< q and gi(d, a) = 0 otherwise, where νi ≥ 0 and

δi ≥ 0 and q ∈ [0, 1].
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• Myopic-best response dynamics by agents who care about the aggregate play of neigh-

bors (Aggregate Threshold diffusion process): fi(d, a) = νi if a ≥ min[q, d] and

fi(d, a) = 0 otherwise. Also, gi(d, a) = δi if a < q and gi(d, a) = 0 otherwise, where

νi ≥ 0 and δi ≥ 0 and q ≥ 0.6

• Imitation dynamics when a neighbor is chosen uniformly at random (Imitation dif-

fusion process): fi(d, a) = νi
a
d

and gi(d, a) = δi(1− a
d
) , where νi ≥ 0 and δi ≥ 0.

3.4 Steady States and Dynamics

In order to keep track of how diffusion or infection occurs, we analyze a continuous time

dynamic, where at any given time t ≥ 0 the state of the system consists of a partition of the

set of agents in “active” and “passive.”

As is standard in the literature, we study the continuous system as an analytically

tractable alternative to the stochastic discrete system.7

Let ρi,d(t) denote the frequency of active agents at time t among those of type i with

degree d. Thus,

ρi(t) =
∑

d

Pi(d)ρi,d(t)

is the frequency of active agents at time t among those of type i, and

ρ(t) =
∑

i

n(i)ρi(t)

is the overall fraction of active agents in the population at time t.

The adoption dynamics are described as follows:

dρi,d(t)

dt
= −ρi,d(t)rate1→0

i,d (t) + (1− ρi,d(t))rate0→1
i,d (t), (1)

where rate0→1
i,d (t) is the rate at which a passive agent of type i and with degree d becomes

active, whereas rate0→1
i,d (t) stands for the reverse transition. In order to compute these

transition rates we must calculate first the probability that an agent of type i has of sampling

an active agent. Denote this probability by ρ̃i(t). It is straightforward to see that

ρ̃i(t) =
∑

j

πij

∑
d

Pj(d)wj(d)ρj,d(t). (2)

Given ρ̃i(t) then

rate0→1
i,d (t) =

d∑
a=0

fi(d, a)
(

d
a

)
ρ̃i(t)

a(1− ρ̃i(t))
(d−a)

6In order to satisfy [A3] in this case, it is necessary to have some probability of degree 1 agents for each
type, or else to have q = 1.

7See Jackson (2008) for discussion of what is known about the approximation.
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and

rate1→0
i,d (t) =

d∑
a=0

gi(d, a)
(

d
a

)
ρ̃i(t)

a(1− ρ̃i(t))
(d−a). (3)

A steady-state is when
dρi,d(t)

dt
= 0, which implies that we can write the steady state

level ρi,d(t) as being independent of time. Solving from equation (1) leads to the following

necessary condition

ρi,d =
rate0→1

i,d

rate0→1
i,d + rate1→0

i,d

. (4)

If we specify the rates ρ̃i(t) for each type i, then this determines the rates of transition

under (3). This in turn, leads to a level of ρi,d for each i, d under (4) that would have to

hold in equilibrium, which in turn determines the rates at which active agents would be

met under ρ̃i(t). Thus, replacing equation (4) in equation (2) we find that a steady state

equilibrium corresponds to a fixed point calculation as follows:

ρ̃i = Hi(ρ̃1 . . . , ρ̃n), (5)

where

Hi(ρ̃1, . . . , ρ̃n) =
∑

j

πij

∑
d

Pj(d)wj(d)
rate0→1

j,d

rate0→1
j,d + rate1→0

j,d

The previous system of equations implicitly characterizes the steady states of the dy-

namics, since by solving for ρ̃i we can easily find the fraction of adopters of each type ρi and

ultimately the overall fraction of adopters ρ.

3.5 Diffusion or Contagion from a Small Seed

We now consider the following question which is the central focus of our analysis: If we

start with a small fraction of adopters, would the behavior spread to a significant fraction

of the population(s)? In other words, we determine the conditions that lead to the diffusion

of a new behavior to a significant fraction of the population when there is a small initial

perturbation of an initial state in which nobody is infected or has adopted the behavior; so

starting from (ρ1, . . . , ρn) = (0, . . . , 0).8

Thus, in what follows we explore the behavior of the system of (5) near ρ̃ =
−→
0 ; in order

to see conditions under which it is a stable steady-state.

The system of equations described in (5) can be approximated by a linear system in the

neighborhood of ρ̃ =
−→
0 as follows:

ρ̃ = Aρ̃

8Notice that the question of moving away from all 1 is completely analogous, simply swapping notation
between 0 and 1 throughout the model.
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where

A =


∂H1

∂eρ1
|eρ=0 . . . ∂H1

∂eρm
|eρ=0

... . . .
...

∂Hm

∂eρ1
|eρ=0 . . . ∂Hm

∂eρm
|eρ=0

 .

As we show in the appendix, filling in for the expressions of ∂Hi

∂eρj
|eρ=0, we can rewrite A as

A =

 π11x1 . . . π1mxm

... . . .
...

πm1x1 . . . πmmxm


where

xi =
∑

d

Pi(d)wi(d)d
fi(d, 1)

gi(d, 0)
.

The term xi is a nicely interpretable factor. It is the relative growth in infection due to

type i, but adjusted by the relative rates at which type i’s will be met by other agents (so

weighted by degrees according to wi(d)).

Note that if when we start with some vector of ρj’s near 0 (so our approximation is

correct), but with positive entries, and then we end up with a new vector that is at least as

large as the starting vector, then it must be that 0 is an unstable solution.

Definition 1 There is diffusion from a small seed if and only if for any small ε > 0, there

exists some v such that 0 < vi < ε for all i and Av > v.

Thus, diffusion from a small seed requires that beginning any small fraction of initial

adopters the “dynamics” lead to a larger fraction of adopters.

We remark that if 0 is unstable relative to some small initial seed v > 0, then it is

unstable relative to any small initial seed ṽ > 0. That is, if Av > v, then for any ṽ > 0

there is some t such that Atṽ > ṽ. Furthermore, if there is no diffusion with a particular

small initial distribution, then there will be no diffusion with any other initial distribution.

The next Lemma formalizes such argument.9

Lemma 1 The condition for the diffusion from a small seed is independent of the distribution

across types of the initial seed. That is, if Av > v for some v > 0, then for any ṽ > 0 there

is some t such that Atṽ > ṽ.

9This result is partly an artifact of the continuous model approximation. For an analysis of the importance
of the specifics of initial adopters, see Banerjee, Chandrasekhar, Duflo and Jackson (2011).
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4 Analysis

4.1 Two Types

We begin with the analysis of two types, which is a generalization of the results in Section

2.

For now, we stick with a setting where π11 = π22 = π, so that there is a symmetry in

how introspective groups are in terms of their meetings.

Theorem 2 Let π0 = 1−x1x2

x1+x2−2x1x2
. Diffusion occurs if and only if one of the following

conditions hold:

1) x1x2 > 1 or

2) x1x2 ≤ 1 and π > π0.
10

The proof of Theorem 2 appears in the Appendix. This result generalizes what was

found for the heterogeneous SIS model presented in Section 2. The next corollary presents

straightforward consequences of it.

Corollary 2 In the two-type setting

1) If diffusion occurs within each type when isolated, then it would also occur when there

is interaction among the two.

2) If diffusion does not occur among either of the types when isolated, then it would not

occur when there is interaction among the two.

3) If diffusion would occur among only one of the types when isolated, then it would occur

among the entire population if homophily is high enough.

To see Corollary 2 first note that if there is only one type of agent in the population

then the condition for diffusion established by Theorem 2 reduces to the standard condition

of x > 1. Therefore, diffusion occuring within each type when isolated corresponds to

having x1 > 1 and x2 > 1. Those conditions in turn establish part 1) of the corollary as a

consequence of part 1) of Theorem 2. If, on the contrary, diffusion does not occur among

either of the types when isolated, then x1 < 1 and x2 < 1. Straightforward calculations

show that then the condition for diffusion stated in part 2) of Theorem 2 cannot satisfied

for any value of π ∈ (0, 1). The last part of the corollary follows vacuously if x1x2 > 1, and

otherwise diffusion occurs if π exceeds π0, establishing the claim.

4.2 The General Case with Many Types

Consider the following matrix A:

10Note that the second condition implies that either x1 > 1 or x2 > 1.
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A =

 π11x1 . . . π1mxm

... . . .
...

πm1x1 . . . πmmxm

 .

We remark that since xi > 0 for all i (under our assumptions A1-A5), and since Π is

primitive and nonnegative, it follows that A is primitive and thus At > 0 for some t.

We can now state the following result, which generalizes the two-type result to many

types.

Theorem 3 Diffusion occurs if and only if the largest eigenvalue of A (denoted by µ) is

larger than 1.

The proof of Theorem 3 appears in the appendix.

Corollary 2 generalizes to the m-type case as presented next.

Corollary 3 1) If diffusion from a small seed occurs within each type when isolated, then

it would also occur when there is interaction among types.

2) If diffusion from a small seed does not occur for any of the types when isolated, then

it would not occur when there is interaction among them.

3) If there is some type for which πiixi > 1, then there is diffusion from a small seed.

4) If there is a subset of types S ⊂ T such that
∑

j∈S πijxj > 1 for each i ∈ S, then there

is diffusion from a small seed.

We first explain why 1) holds, as 2) is a simple variation. If diffusion occurs within each

type when isolated then xi > 1 for all i and therefore

A >

 π11 . . . π1m

... . . .
...

πm1 . . . πmm

 .

It follows that the largest eigenvalue of A is larger than 1 (since the right-hand side matrix

is a stochastic matrix and thus has a largest eigenvalue of 1), and the result then follows

from Theorem 3.

Next let us explain why 3) and 4) are true, and then discuss the intuition. 3) is clearly

a special case of 4), so let us discuss why 4) is true. Given that
∑

j∈S πijxj > 1 for each

i ∈ S, it follows that for any positive vector u: [Au]i is greater than minj∈S uj for each

i ∈ S. Therefore, minj∈S[Au]j > minj∈S uj, and so it must be that if u is the eigenvector

corresponding to the maximum eigenvalue,11 then Au > u and so the eigenvalue is larger

than 1.

11Again, recall that A is primitive and thus has a strictly positive eigenvector corresponding to its largest
eigenvalue.
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1) and 2) of the corollary are fairly intuitive results. Note that in case of just one

population, then xi > 1 is the condition that characterizes instability of (diffusion from) no

activity. Thus, if all populations are such that they would experience diffusion from a small

seed if isolated, then regardless of the interaction pattern there will be diffusion; and similarly

if none of them would experience diffusion in isolation, then there cannot be diffusion when

they interact.

The less obvious cases are 3) and 4), which show that if some type or group of types

has enough interaction with itself to get diffusion going, then diffusion among the entire

population will occur. Again, these emphasize the role of homophily in enabling diffusion

(infection) from a small seed: if there is some group of types that interacts within itself in

a manner sufficient to enable diffusion among that group, then a toehold can be established

and diffusion will occur from a small seed.

Another corollary is that if populations are similar so that they have the same infection

properties near 0 (i.e., xi = xj = x for all i and j), then diffusion properties are determined

by whether this growth rate is bigger or smaller than 1.

Corollary 4 If xi = xj = x for all i and j, then there is diffusion from a small seed if

and only if x > 1.

This corollary then emphasizes that in order for the homophily and particular patterns

of interaction to matter, it must be that types are not just heterogeneous in their interaction

(the Π matrix), but also in their adoption/infection proclivities. If they all have similar

adoption/infection proclivities, then the particular details of who interacts with whom do

not affect diffusion from a small seed.

The proof of this corollary is straightforward. Note that

A = xΠ = x

 π11 . . . π1m

... . . .
...

πm1 . . . πmm

 .

It follows that the largest eigenvalue of A is larger than 1 if and only if x > 1 since Π is a

stochastic matrix and has a maximum eigenvalue of 1.

The less obvious cases are thus such that there are some types who would experience

diffusion on their own, while others would not. Then the interaction patterns really matter

and, as already illustrated for the two-type case, some subtle conditions ensue. A sufficient

condition again is that there is sufficient homophily such that infection can take hold within

some type, and then it can spread among the population, but more complicated patterns

among a number of groups can also possibly lead to diffusion from a small seed.

5 Concluding Remarks

The focus of most of the related literature has been on analyzing the effect that the degree

distribution has on diffusion in social networks (see e.g., Jackson and Rogers, 2007, López-
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Pintado, 2008, Galeotti and Goyal, 2009, Galeotti et al., 2010.). This paper, however,

focuses on the effect of homophily, something which despite its importance has received

little attention in the diffusion literature. One of the few exceptions is the paper by Golub

and Jackson (2010) which also studies the impact of homophily on some (very different)

learning and diffusion processes. There are important differences between our approach and

theirs. On the one hand, the diffusion processes analyzed are not the same; we focus on

what can be thought of as generalizations of the SIS infection model, whereas Golub and

Jackson (2010) analyze models of diffusion based either on shortest paths communication,

random walks or linear updating processes. Second, the paper by Golub and Jackson (2010)

studies the convergence time to the steady state, whereas we analyze whether there is or not

convergence to a state with a positive fraction of adopters.

As a first step to understanding the effect of homophily on diffusion, in this paper we have

concentrated on a specific question; namely the spreading of a new behavior when starting

with a small initial seed. A central insight here is that homophily can facilitate infection or

contagion.

Nevertheless, there are other issues which are left for further work. For example, one

could evaluate the size of the adoption endemic state as a function of the homophily level.

There homophily might have conflicting effects: although it can facilitate an initial infection,

it might be that an increase in homophily can also lead to a decrease in the overall infection

rate. Indeed, the eventual fraction of adopters attained in the steady state might depend on

the homophily level in complicated ways.
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Appendix

Proof of Theorem 1: The proof of Theorem 1 is a straightforward consequence of the

proof of Theorem 2 as seen by substituting the functions fi(d, a) = νia, gi(d, a) = δi and

wi(d) = d
〈d〉i and obtaining the corresponding xi’s.

Proof of Theorem 3: First, note that the system of equations described describing the

steady state is

ρ̃i = Hi(ρ̃1, ρ̃2, ..., ρ̃m), (6)
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where

Hi(ρ̃1, ρ̃2, ..., ρ̃m) =
∑

j

πij

∑
d

Pj(d)wj(d)
rate0→1

j,d

rate0→1
j,d + rate1→0

j,d

for i ∈ {1, ...,m}.
This is approximated by a linear system in the neighborhood of (ρ̃1, . . . , ρ̃n) = (0, . . . , 0)

as follows:

ρ̃ = Aρ̃

where

A =


∂H1

∂eρ1
|eρ=0 . . . ∂H1

∂eρm
|eρ=0

... . . .
...

∂Hm

∂eρ1
|eρ=0 . . . ∂Hm

∂eρm
|eρ=0


Note that

∂rate0→1
i,d

∂ρ̃i

=
d∑

a=0

fi(d, a)
(

d
a

) (
aρ̃i

a−1(1− ρ̃i)
(d−a) + (d− a)ρ̃i

a(1− ρ̃i)
(d−a−1)

)
and therefore

∂rate0→1
i,d

∂ρ̃i

|0 = fi(d, 0)
(

d
0

)
(d− 0)(1− 0)(d−1) + fi(d, 1)

(
d
1

)
(1− 0)(d−1) = d [fi(d, 1) + fi(d, 0)] .

Analogously
∂rate1→0

i,d

∂ρ̃i

|0 = d [gi(d, 1) + gi(d, 0)] .

Then

∂Hi

∂ρ̃j

|eρ=0 = πij

∑
d

Pj(d)wj(d)

∂rate0→1
j,d

∂eρj
|0rate1→0

j,d |0 − rate0→1
j,d |0

∂rate1→0
j,d

∂eρj
|0(

rate0→1
j,d + rate1→0

j,d

)2 |0
and thus,

A =

 π11x1 . . . π1mxm

... . . .
...

πm1x1 . . . πmmxm


where

xi =
∑

d

Pi(d)wi(d)d
fi(d, 1)gi(d, 0)− fi(d, 0)gi(d, 1)

(fi(d, 0) + gi(d, 0))2
.

Given A1, xi can be rewritten as

xi =
∑

Pi(d)wi(d)d
fi(d, 1)

gi(d, 0)
,

which is well defined since A4 holds.
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As mentioned in the text, A is primitive since Π is primitive and since A1 and A4 are satisfied

implying that xi > 0.12 Thus, by the Perron–Frobenius Theorem (which applies to primitive

matrices) the maximum eigenvalue, denoted µ hereafter, is positive and its corresponding

eigenvector, denoted by u hereafter, is also positive.

We show next that the condition for diffusion from a small seed, or the instability of

ρ̃ = 0, corresponds with the condition that the largest eigenvalue of A is larger than 1.

Let us first show that if µ > 1 then ρ̃ = 0 is unstable. Note that if µ > 1 then

Aδu = µδu > δu.

Thus, picking small enough δ so that δui < ε for each i, satisfies the definition of diffusion

from a small seed with δu (or instability of 0).

To see the converse, first consider the case such that µ < 1. Given ε > 0 consider any v

such that 0 < vi < ε for all i. Suppose that Av > v. It then follows A(Av) > Av > v as

A is nonnegative and has at least one positive entry in each row. Iterating, it follows that

that Atv > v for any t. However, choose δ such that δu > v. Given that A is is nonnegative

and has at least one positive entry in each row, and both vectors are positive, it follows that

Aδu > Av, and similarly that

Atδu > Atv.

Given our previous claim, this then implies that

Atδu > v

for all t. However,

Atδu = δµtu → 0

given that µ < 1, which is a contradiction.

To complete this part of the proof consider the case such that µ = 1. Consider ε > 0.

Consider any vector v such that vi < ε. Note that for any small enough δ > 0 the largest

eigenvalue of A− δI is less than 1. Thus, by the argument above, (A− δI)v is not greater

than v. Therefore, Av is not greater than v.

Proof of Theorem 2: We have already shown that ρ̃ = 0 is unstable if and only if the

largest eigenvalue of matrix A is above 1. Let us now complete the proof by examining the

eigenvalue in the two-type case. The eigenvalues of a 2 × 2 matrix are easily computed.

Writing

A =

(
a11 a12

a21 a22

)
,

the largest eigenvalue of A is13

µ =
(a11 + a22) +

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
12In fact, with two types A is a positive matrix since 0 < π < 1.
13Note that since A is primitive, its largest eigenvalue is real and positive.
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or equivalently

µ =
a11 + a22 +

√
(2− a11 − a22)2 − 4 + 4a11 + 4a22 − 4a11a22 + 4a12a21

2
.

Thus, µ is larger than 1 if and only if

a11 + a22

2
> 1 (7)

or

− 1 + a11 + a22 − a11a22 + a12a21 > 0. (8)

Given that a11 = πx1, a22 = πx2, a12 = (1 − π)x2 and a21 = (1 − π)x1 then conditions (7)

and (8) imply that diffusion (i.e., instability of ρ̃ = 0) occurs if and only if

π >
2

x1 + x2

(9)

or

π(x1 + x2 − 2x1x2) + x1x2 − 1 > 0. (10)

Case 1: x1+x2

2x1x2
> 1. In this case, condition (10) is equivalent to

π >
1− x1x2

x1 + x2 − 2x1x2

and therefore diffusion occurs in this case if and only if

π > min{ 1− x1x2

x1 + x2 − 2x1x2

,
2

x1 + x2

}. (11)

Case 2: x1+x2

2x1x2
< 1. In this case, condition (10) is equivalent to

π <
x1x2 − 1

2x1x2 − x1 − x2

and therefore diffusion occurs in this case if and only if

2

x1 + x2

< π or π <
x1x2 − 1

2x1x2 − x1 − x2

. (12)

Case 3: x1+x2

2x1x2
= 1. In this case, condition (10) simplifies to x1x2 > 1, and and therefore

diffusion occurs in this case if and only if

2

x1 + x2

< π or x1x2 > 1 (13)

Let us now show part (1) of Theorem 2.

Suppose that x1x2 > 1 holds. Then x1+x2

2x1x2
can fall into any of the cases above. If it were

greater than 1, then 1−x1x2

x1+x2−2x1x2
< 0 which in particular by Case 1 and (11) implies that
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there is diffusion for any π ∈ (0, 1). If it were equal to 1, then by Case 3, the result holds.

If instead x1+x2

2x1x2
< 1 then Case 2 applies. In that case, referring to Figure 1, (x1, x2) lies

above the upper-most curve,14 and it is clear that there would exist another profile (x̂1, x̂2)

such that x̂1 ≤ x1 and x̂2 ≤ x2 and which lies in the regions considered previously (that is,

where 1−x1x2

x1+x2−2x1x2
≤ 0). Therefore diffusion for (x̂1, x̂2) occurs for all π ∈ (0, 1), which in

particular implies that for the larger case (x1, x2) diffusion would also occur for all π ∈ (0, 1)

as the largest eigenvalue of a larger matrix is necessarily larger than the largest eigenvalue

of a smaller matrix.

1 

1 1/2 

(x1+x2)/2x1x2=1 

x1x2=1 

x1+x2=2 

+ - - + 

+ 
- 

x1 

x2 

Figure 1: The relationship between the key expressions in the proof of Theorem 2.

Next, we show part (2) of Theorem 2. Suppose that x1x2 ≤ 1. This implies that x1+x2

2x1x2
> 1

(see Figure 1) or else that x1 = x2 = 1 in which Case 3 applies and there cannot be diffusion.

Thus, let us analyze the situation where x1+x2

2x1x2
> 1 and Case 1 applies. Diffusion occurs

if and only if π > min{ 1−x1x2

x1+x2−2x1x2
, 2

x1+x2
}. Note that if x1 + x2 < 2 then 2

x1+x2
> 1 and

therefore diffusion occurs if and only if π > 1−x1x2

x1+x2−2x1x2
. If, on the contrary, x1 + x2 ≥ 2

then, it is straightforward to show that 2
x1+x2

> 1−x1x2

x1+x2−2x1x2
which also implies that diffusion

in such a case occurs if and only if π > 1−x1x2

x1+x2−2x1x2
.

Proof of Lemma 1: Given the proof of Theorem 3, it follows that if Av > v for some

v > 0 then µ > 1. Then, choose δ such that δu < v̂. It follows that Aδu < Av̂ (since A is

14The relative positions of the curves are easily checked, and note the plus and minus signs that indicate
whether one is above or below 1 for the corresponding colored expression.
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nonnegative and has at least one positive entry in each row), and similarly that

µtδu = Atδu < Atv̂,

and the first expression is growing with µt.
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