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Abstract

This paper uses a macro-…nance model to examine the ability of the gilt

market to predict ‡uctuations in macroeconomic volatility. The econometric

model is a development of the standard ‘square root’ volatility model, but unlike

the conventional term structure speci…cation it allows for separate volatility

and in‡ation trends. It …nds that although volatility and in‡ation trends move

independently in the short run, they are cointegrated. Bond yields provide

useful information about macroeconomic volatility, but a better indicator can

be developed by combining this with macroeconomic information.
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I. Introduction

Since the second world war, the world’s developed economies have experienced

marked ‡uctuations in macroeconomic volatility. These swings include the Great

In‡ation or Great Acceleration of the 1970s as well as the more recent Great Modera-

tion, which were particularly pronounced in the UK. This phenomenon has attracted

a great deal of attention from economists and policymakers, encouraging the develop-

ment of Bayesian methods for the estimation of stochastic volatility models. Recent

examples of this fast growing literature include ?, ?, ?, ? and ? for the US. ? and

? for the UK.

Instead of using this approach, this paper develops a macro-…nance (MF) model

of the UK economy and Treasury bond market to help throw light on this experience

and in particular the ? and ? conjecture that macroeconomic volatility is linked to

the underlying rate of in‡ation1 . This approach is potentially useful for analyzing

swings in macroeconomic volatility because these should in principle be re‡ected

in bond yields.2 Term structure researchers are well aware of the importance of

volatility for bond pricing. Indeed, in contrast to the MF literature, which invariably

uses homoscedastic (or constant variance) models, the mainstream …nance literature

stems from the CIR (1985) model in which the volatility of the nominal interest or

in‡ation rate driving the yield curve depends upon the square root of this rate, a

mechanism that links the …rst and second moments of the system. As ? note, this

literature ‘posits a short-rate process with a single stochastic central tendency and

volatility’. These models do not attempt to disentangle the movements in …rst and

1 Okun (1971) was the …rst to note the cross-country correlation between the level of in‡ation
and its volatility in the OECD economies. In his Nobel prize speech, Milton Friedman (1977) noted
the times series correlation between secular in‡ation and macroeconomic volatility. ?, ? and many
others look at the empirical evidence, suggesting that it is an important international as well as a
UK phenomenon. Devereux (1989), ? and ? provide possible theoretical explanations.

2 Because bond prices are convex in interest rates and other macro variables, volatility increases
the expected returns on these instruments and their prices (depressing yields) in the same way that
it increases those of derivatives that have convex payo¤ structures.
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second moments.

In this paper I begin by developing a homoskedastic benchmark MF model (M0).

This handles the unit root seen empirically in nominal variables like in‡ation and

interest rates using a common stochastic trend. A second latent variable models

‡uctuations in the equilibrium real interest rate.3 This is mean reverting, suggesting

that in‡ation, interest rates and bond yields are cointegrated. I then follow the

mainstream …nance approach by developing a model (M1) in which the stochastic

trend driving the underlying in‡ation rate also drives macroeconomic volatility, as

conjectured by Okun and Friedman. Spencer (2008) compares the performance of

these models using US data. However this paper develops two more models that

use a third latent factor to disentangle the in‡ation and volatility trends. These

models have the same general structure (known as 1() in the term structure

literature) as the model of ?, allowing me to draw upon the formulae derived there. In

model M2, volatility depends upon one factor and underlying in‡ation upon another

separate factor. Finally, M3 is an encompassing model which allows the in‡ation

rate to depend upon both the volatility factor and the third factor, which acts as

a ‘wedge’ between volatility and in‡ation. I …nd that empirically all of the other

models are rejected in favour of M3. However, the in‡ation wedge factor in M3 is

strongly mean reverting, meaning that although in‡ation, interest rates and volatility

can move independently in the short run they are cointegrated.

These latent factors are estimated by the Extended Kalman Filter (EKF) which

updates them appropriately in line with surprises in any macro or yield variables

that they a¤ect. The volatility factor can be distinguished from the in‡ation factor

because it a¤ects the level of bond yields in a heteroskedastic pricing framework,

allowing revisions in this factor to be inferred from yield curve surprises that are

3 This is a homoscedastic trend, which allows for negative real interest rates.

3



not correlated with macro surprises. Empirically, this factor also in‡uences future

macroeconomic volatility, which distinguishes it from a simple …nancial factor (or

latent variable that a¤ects the yield curve but not the macroeconomy). My model

M2 restricts M3 by assuming that the volatility trend does not a¤ect in‡ation. Con-

sequently, this trend is informed by yield but not in‡ation or other macro surprises,

providing a bond market based indicator of volatility. However M2 is also rejected

against M3, in which the volatility factor is informed by both yield and macro sur-

prises. This result suggests that although the bond market can anticipate movements

in volatility, combining this with macroeconomic information gives a better indicator.

M3 explains the rise in macroeconomic volatility seen since 2008 in terms of a rising

volatility trend associated with a rise in the underlying rate of in‡ation.

The paper is set out as follows. Section II …rst describes the preliminary econo-

metric tests used to inform the design of the macroeconomic model and its stochastic

structure. It then outlines the bond pricing framework developed in ? and used in

this study. This section is supported by the two appendices. The empirical results

are discussed in Section III, then Section IV o¤ers a brief conclusion.

II The econometric speci…cation

The model of the macroeconomy is based on the ‘central bank model’ (? and

others). This represents the behavior of the macroeconomy in terms of the output

gap, in‡ation and the short term interest rate. I represent in‡ation by the annual

percentage change in the Retail Price Index excluding mortgage interest payments

(RPIX, )
4 . The three month Treasury Bill rate is used to represent the policy (or

spot) rate (1). Both of these series were supplied by Datastream5 . The GDP

4 This was the policy objective (with a target rate of 2.5 %) between November 1992 and April
2004 when it was replaced by the Consumer Price Index (with a target rate of 2%). The CPI series
is only available since 1996.

5 These are annual rates in percentages. In the empirical model these were appropriately converted
to quarterly decimal fractions by dividing by 400.
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output gap () is the OECD measure, based on a trend …ltering approach. The bond

yield data were taken from the Bank of England’s website and are derived using the

methodology discussed in ?. Their data set starts in January 1979, which determines

the beginning of my estimation period. To represent this curve I use 1,2,3,5,7,10

and 15 year maturities, the longest one for which a continuous series is available.

The macroeconomic data dictated a quarterly time frame. These macroeconomic

variables are shown alongside the 15 year yield in Figure 3.

Table 1 shows the means, standard deviations and …rst order autocorrelation

coe¢cients of the data over the estimation period: 1979Q1-2010Q2. The table also

reports the ADF and KPSS (Kwiatowski et. al , 1992) test results. The latter

reject the hypothesis of stationarity for the levels of in‡ation and interest rates.

The signi…cance of this rejection is higher for the bond yields and tends to increase

with maturity. Additional tests show that these rates and yields are cointegrated.

Alternatively, these results could be the consequence of common structural shifts.

Indeed, it is not di¢cult to identify dates at which these could have occurred a priori.

The UK experienced two deep recessions over this period, which could be regime-

shifting events. Changes of government can have similar e¤ects. The evidence of

a change in regime following the election of the Thatcher government in May 1979

now seems overwhelming (?), ?). The UK monetary policy regime changed from

monetary to exchange rate targets during the late 1980s and then to in‡ation targets

in October 1992, culminating in the new monetary arrangements announced by the

incoming Labour government in May 1997.

Preliminary tests using the Schwarz criterion on a stand-alone heteroskedastic

macro VAR model suggested that a second order lag was appropriate. ? tests also

con…rmed that the nominal data were conditionally heteroskedastic. The …rst stage

of this test is to regress a variable such as the in‡ation or interest rate on its lagged
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values and the lagged 15 year yield, used as a proxy for the underlying in‡ation rate.

The second stage takes the squared regression residuals as a measure of volatility and

regresses them on the lagged 15 year yield. The t-statistics for the squared in‡ation

and interest rate residuals were 6.74 and 3.25 respectively. These tests o¤er prima

facie evidence of the bond market’s ability to predict macroeconomic volatility.

Finally, I conducted a series of Chow tests, looking for structural breaks in the

macro VAR model at dates when there was a change of policy regime. The shift

from monetary to exchange rate targets was hard to pinpoint a priori, but the best

results were obtained dating this as 1987Q3, consistent with the view that Mr. Law-

son began to ‘shadow’ the ERM at about that time. The initial move to in‡ation

targets was …xed at 1992Q3 (as they were announced that November). Both of these

breaks were statistically signi…cant at the 95% level. Conditional on these two shifts,

the move to Bank of England independence following the Labour election victory in

1997Q2 was not signi…cant. This gave a three regime macro model: ‘monetary tar-

gets’ 1979Q1-1987Q2; ‘exchange rate targets’ 1987Q3-1997Q2 and ‘in‡ation targets’

1992Q3-2010Q2.

The macroeconomic framework

The structure of the econometric model is a Kalman vector autoregression or

KVAR: an unrestricted di¤erence equation system including Kalman …lters and ob-

servable macro variables:

 =  + ©0 + §
¡1©¡ + (1)

where:  is an ¡vector of macroeconomic variables and  a ¡vector of latent

variables that allow for gradual changes in the equation intercepts or regression con-

stants.  is an 2 lower triangular matrix and  is an ¡vector of  orthogonal
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errors. In the general framework of model M3:  = 3  = 3  = f¤ ¤ r¤g
0

and  = f  1g
0The latent factors follow the …rst order process:

 =  + ¥¡1 +  (2)

where  = f¤  ¤  r¤g0 and ¥ = f¤  ¤  r¤g6 and  = f¤ ¤ r¤g
0

is a vector of orthogonal white noise error terms.

In model M3, ¤ is a martingale (¤ = 1). This drives macroeconomic volatil-

ity and is also linked through the cointegration coe¢cient  to the in‡ation asymptote

¤
 by the relationship: ¤

 = ¤ + ¤ + ¤
7  where ¤ is the second latent

variable (the in‡ation ‘wedge’) and ¤ is a shift constant. Thus if ¤ = 1 ¤

is a random walk and the volatility and in‡ation trends diverge. Alternatively, if

as the preliminary tests indicate in‡ation and volatility share a common trend, then

these divergences are mean reverting (j¤ j  1) and volatility and in‡ation trends

are cointegrated. The third latent variable r¤ allows for variations in the central

tendency of the real interest rate r, which is represented by r¤ + r¤ where r¤ is

another shift constant. Since ¤ and r¤ are Gaussian latent variables the e¤ects

of ¤ and r¤ cannot be distinguished from those of ¤ and r¤ and the model is

identi…ed by setting ¤ = r¤ = 0.

The central tendency of the nominal interest rate is thus ¤
1 = ¤ + ¤ +

r¤+¤ +r¤ . If both r¤ and ¤ are mean reverting, this reverts to the asymp-

tote implied by the cointegrating relationship: ¤¤
1 = ¤+¤ +r¤ . The output

gap is assumed to be a zero-mean-reverting variable: ¤
 = 0. These equilibrium

6 In this paper, fg represents a matrix with the elements of the row vector  in the main
diagonal and zeros elsewhere. 0 is the (£ 1) zero vector, 1 is the (£ 1) summation vector, 0
the (£ ) zero matrix; and  the 2 identity matrix.

7 Latent variables are scale-free but this relationship normalises the …rst two of these.
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conditions are enforced by imposing a set of restrictions on (1):

©0 = ( ¡ §
¡1©)  = ©0 (3)

where : 0 = f0 ¤  r¤g  =

2

6
6
6
6
6
6
4

 1 0

0 0 0

 1 1

3

7
7
7
7
7
7
5

to give the equilibrium relationships: ¤
 = f¤

  
¤
  

¤
1g

0 = ( ¡ §
¡1©)

¡1©0( +

) = ( + ).

Since the latent vector is not directly observable it has to be estimated using

the Extended Kalman Filter (EKF) as described in ?. The use of this …lter is now

standard practice in US MF models and Stanton (1999) argues that this performs well

compared to alternative approaches. This system can be consolidated by de…ning

 = f0
 

0
g

0;  = f0
 

0
g

0 and combining (1) and (2) to get an ¡th order di¤erence

system. This can then be arranged as a …rst order di¤erence system called the state

space form (?):

 = £ + ©¡1 + (4)

where  = f0
 

0
  

0
¡g

0 is the state vector,  = f0
 

0
 01¡¡g0 and £©

and  are de…ned in appendix A.  has dimension  =  + 

The stochastic structure

Macro-econometric models conventionally assume that the dynamic structure is

linear and the error structure is Gaussian:  » (0 §()). The variance structure

is either assumed to be homoscedastic (. with a …xed §) or to exhibit Auto-

regressive Conditional Heteroscedasticity (ARCH). However, these speci…cations are

restrictive because any speci…cation of the error probability distribution that has a

log-linear Moment Generating Function (MGF) generates a linear model, not just
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Gaussian ones (?). This paper uses the ? square root conditional heteroskedasticity

(SRCH) speci…cation with its non-central 2 distribution to generate a set of SRCH

macroeconometric models that allow the moments of the system to be linear in the

stochastic trend ¤. The conventional Gaussian speci…cation is called model M0

and is derived as a special case of the encompassing model: M3.

CIR (1985) describe the short term interest rate as a di¤usion in continuous

time and show that in discrete time, this has a non-central 2 distribution8 . I use

this distribution to model the stochastic trend. This makes its conditional MGF a

log-linear function of ¤
9 :

[exp[¤+1j¤]] = exp[
¤¤

1 ¡ 
¡ ¤ ln[1 ¡




]] (5)

provided that:    ?.  and  denote mean and variance and  the Laplace

parameter. Di¤erentiating any MGF with respect to this parameter  times and then

setting the parameter to zero gives the -th moment of the associated distribution.

Thus di¤erentiating (5) with respect to  once, twice and then setting  to zero,

returns the conditional mean and variance:

[¤+1j¤] = ¤ + ¤¤  [¤+1j¤] = 01 + 11¤; (6)

where : 01 = ¤ 11 = 2¤

Two special cases are of interest here. The …rst is the conventional MF Gaussian

model M0, which is the limit of (5) in which the scale factor (2) becomes in…nitely

8 If we normalize the time interval ( ¡ ) in their equation (18) as unity and replace  by ¤

then : ¤+1 » 2[2¤+1; 2; 2¤¤].
9 Parameters  ¤ and ¤ are related to the scale factor (2), the non-centrality parameter

(2¤¤) and the degrees of freedom (2¤ ).
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large. This gives the familiar log-linear formula for the MGF of a normal variable:

[exp[¤+1j¤]] = exp[(¤ + ¤¤) +
1

2
201] (7)

with the conditional mean [¤+1j¤] = ¤+¤¤ and variance  [¤+1j¤] =

01. In this limit 11 = 2¤ vanishes and the variance is constant. The second

is the case of a unit root, in which ¤ = 1, 01 = ¤ = 0, 11 = 2 and (6)

simpli…es to10 :

[¤+1j¤] = ¤  [¤+1j¤] = 11¤ (8)

This process is a martingale: the expectation of any future value is equal to the

current value. However, unlike the random walk model, the error variance is also

proportional to this value. All of these models can be represented in the linear form

(2).

In model M3, this stochastic trend also conditions the volatility of the other

variables. It is ordered as 1 = ¤ the …rst variable in the ( + ) vector .

The other contemporaneous variables are put into an ( +  ¡ 1) vector 2 so

that:  = f1 
0
2g

0 and conformably:  = f1 
0
2g

0 and  = f1 
0
2g

0

where 1 = ¤. Similarly, writing  = f1
0
2g

0 and partitioning £©

 conformably (see appendix A), (4) becomes:

2

6
6
4

1+1

2+1

3

7
7
5 =

2

6
6
4

1

£2

3

7
7
5 +

2

6
6
4

1 00
¡1

©21 ©22

3

7
7
5

2

6
6
4

1

2

3

7
7
5 +

2

6
6
4

1+1

2+1

3

7
7
5 (9)

where 1 = ¤  1 = ¤ and 1+1 = ¤+1. In this paper, subscripts 1 and

10 This model is studied by ? and his basic results are reported in Chapter 29 of ?. Important
results have also been obtained for this case by ?.
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2 denote partitions of  (or  + ) dimensional vectors and matrices into 1 and

( ¡ 1) = ( + ¡ 1). The stochastic structure for (9) is described in appendix A.

The distribution of 2 and 2 conditional upon 1¡1 is assumed to be Gaussian.

The conditional covariance of 2 is §0 + §11¡1 where: § = 22¢
0
22 and

¢ = ff2  (+)g 0
0
¡¡g,  = 0 1. 22 is a lower triangular and

¢;  = 0 1 are de…cient diagonal ( ¡ 1)2 matrices

The yield curve framework

Bond yields are monitored by central banks because they re‡ect the market’s

view about future developments in the economy. In this paper, an econometric

model of the yield curve is used to extract estimates of the in‡ation, volatility and

real interest rate trends. It employs the arbitrage-free pricing approach, which

assumes that riskless pro…t opportunities are eliminated but allows for risk premia

(risky pro…ts) using the risk-neutral probability measure Q. This adjusts the state

probabilities using a state-dependent utility weight +1
11 so that bond (and other

asset) prices are discounted expectations of future payo¤s under this measure:

 = exp[¡1]
Q[¡1+1j ]  = 1  (10)

where Q[¡1+1j ] = [+1¡1+1j ] is the risk neutral expectation (?,

?)12 . For the yield curve speci…cation to be linear in the state variables and error

terms the discount bond price  must be loglinear:

 = exp[¡ ¡ ª0
 ]  = 1  (11)

11 This is related to the equivalent Stochastic Discount Factor, which is exp[¡1]+1
12 The Expectations Hypothesis employed in many economic models is the special case in which

Q = 
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where  denotes maturity. It can be shown that +1 must also be loglinear:

¡+1 = ¡ ln+1 =  + 11+1 + 0
22+1 (12)

where 2+1 is a ( +  ¡ 1) £ 1 vector of (0 1)  error terms driving 2+1,

conditional upon 1 (appendix A). 1 is a scalar; 2 and is a ( +  ¡ 1) £ 1

vector. These multipliers determine the risk premia and are known as ‘price of risk’

variables. They must also be linear in the state variables (?). For example, 1

which plays an important role in this analysis, is speci…ed as:

1 = 10 + 111 (13)

If 1 = 0, then a portfolio that is constructed so that it is only exposed to shocks

in 1 (i.e. ¤) has a zero risk premium (. is expected to earn the spot rate).

If it is constant (11 = 0), then variations in this risk premium depend only upon

variations in volatility, such as those induced by ¤ in the SRCH models: (M1, M2

and M3). The associated volatility parameter 11 plays the key role in the associated

yield curves. Alternatively if 11 6= 0 then the trend can in‡uence the risk premia

thorough variations in the price of risk, even if volatility is …xed as it is in the M0:

11 plays the key role in that model.

Similarly, 2 is a vector of coe¢cients related to the prices of risk associated with

shocks to 2+1. It is speci…ed in appendix B, which also reports the relationships

de…ning the coe¢cients of (11) that are derived in appendix B of ?. It is convenient

to partition these coe¢cients conformably with (9) as ª =f1 ª
0
2g

0. These

coe¢cients are recursive in the sense that ª2 a¤ects 1 (but not vice versa) while

both a¤ect  . They are also recursive in maturity. Since ¡1 = 1 they have
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the starting values: 1 = 11 = 0, and ª21 = 2 where 2 is the selection vector

such that: 1 =  0
22. In the homoscedastic model (M0) the recursions for the

slope coe¢cients 1 and ª2 are both linear, while those for the intercepts  are

quadratic. The recursion formula for ª2 is common to all models, but the SRCH

models di¤er from M0 because the recursion 1 include log-linear terms.

The natural logarithm of the price  is denoted by  and under these as-

sumptions this is linear in  (11). Reversing sign and dividing by maturity  gives

the discount yields:  = ¡ =  + 0
, where:  =  ,  = ª

(using (11)). These slope coe¢cients  are known as ‘factor loadings’ and are given

in appendix A. In the empirical models reported in the next section, I stack the

yield equations for  = 4 8 12 20 28 40 and  = 60 quarters, to get the vector

 = {4 8 12 20 28 40 60g
0. Adding a conformable . Gaussian

measurement error vector  gives the multivariate regression model:

 = +0 +  = +0
0 + §

¡1
0
+1¡ +  (14)

where :  » (0 ¹ ); ¹ = f1 2  7g.

Special cases

This structure (M3) encompasses several important special cases. The …rst is the

conventional homoskedastic model: (M0). Volatility is constant in this speci…cation

(§1 = 0), so ¤ is redundant and eliminated from the model ( = 2). The variable

in‡ation asymptote ¤
 is just driven by ¤. The second is the conventional square

root volatility model (M1), which assumes that the volatility and in‡ation trends are

identical. In this case we eliminate instead the in‡ation ‘wedge’ factor ¤ and use

¤ to drive the in‡ation & interest rate asymptotes as well as volatility. These

two speci…cations are described in more detail in Spencer (2008).
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Another special case (M2) results if we specify separate volatility and in‡ation

trends. In this case ¤ drives volatility without a¤ecting in‡ation (or interest)

rates, which only depends upon ¤ (or ¤). This model has the same form as

the encompassing model M3 but sets the cointegrating coe¢cient  in the …rst column

of the long run response matrix R in (3) to zero, making the asymptotes of the macro

variables independent of ¤ which only in‡uences their variance structure. It is

only possible to separate volatility and in‡ation trends like this in a yield model if

they are separately priced in the bond market. In the speci…cation of this paper, the

e¤ects of the volatility factor ¤ on bond yields are shown by the …rst column of

0
0 in (14) (which contain the coe¢cients 1 in (20)). Appendix B shows that they

depend upon §1 (which shows the impact of ¤ on the volatility structure) and

10 (the price of volatility risk). In M2, revisions in the volatility factor are inferred

from surprises in the yield curve that are not explained by surprises in the other state

variables. If the bond market can sense changes in macroeconomic volatility then

these will be re‡ected in ¤ and hence future macroeconomic volatility. Otherwise

the estimation procedure would return §1 ' 0 and we would interpret ¤ as a

pure ‘…nancial factor’ that in M2 did not a¤ect the macroeconomy at all. In this

speci…cation, ¤ provides a pure bond market assessment of volatility.

In the M1 model ¤ doubles up as the volatility trend and the central tendency

of in‡ation. Consequently, the …rst …lter is then informed by both yield and macro

surprises, so it is no longer a purely yield-based measure. This is also true of

the general speci…cation M3, which allows for temporary divergences between the

trend and the central tendency of in‡ation. We now consider the di¤erences in the

empirical performance of these various models and address the various issues raised

in the introduction.

III. The empirical model

14



The empirical framework consists of three equations describing the macroeco-

nomic variables (1) and seven equations describing the representative yields (14).

These furnish the ‘measurement equations’ of the Kalman …lter used to extract the

latent variables, while the ‘transition equations’ are provided by (4). Spencer (2008)

describes the Kalman learning model and the resulting likelihood function for this

model framework as well as the quasi-maximum likelihood method used to estimate

it. These models were estimated and tested using the Nelder-Mead Simplex and

numerical gradient algorithms fminsearch and fminum on . Table 2 reports

the likelihood statistics for the various models and table 3 the parameter values for

the encompassing model: M3.

I started by estimating the homoskedastic model (M0), speci…ed in line with the

preliminary results, with three monetary policy regimes. This was estimated in two

stages, …rst as a stand-alone macro KVAR model consisting of (4) and then after

adding the yield equations (14). The macro-dynamic parameters (table 3(a)) are

largely determined at the …rst stage and they shift very little at the second stage,

which essentially …ts the yields using the variance (table 3(b)) and price of risk

(table 3(c)) parameters. The SRCH models (M1, M2 and M3) were then estimated

by adding the extra variance parameters and in the case of M2 and M3, increasing

the number of latent variables from  = 2 to 3.

The encompassing model M3 uses 105 parameters13 and has a loglikelihood

L(2)=8986.3 as shown in table 2. M2 separates the volatility and in‡ation trends,

saving one degree of freedom by setting  = 0. This speci…cation has a lower

likelihood (8970.1) than M3, indicating that although the bond market provides a

13 There are 3 sets of dynamic parameters ¤ ,r¤ ,¤ ,r¤ and ©(18) giving a total of 66. In M3
we add the cointegration coe¢cient  the variance parameters 01¢0(5), ¢1(5) and (3) and the
risk parameters 10 1(4), ¨1(3) and ¤22(16). It was found that although 22r¤r¤ was signi…cant
(table 3(c)) the remaining elements of the …rst two rows of ¤22 and ¨1 were poorly determined and
could be eliminated without signi…cantly reducing the likelihood. The structural parameters  and
 can be obtained from (6) given 1 01 and 11.
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good volatility indicator (in M2) we can improve upon this signi…cantly by informing

¤ using surprises in in‡ation and other macro variables as well as surprises in

bond yields (as in M3). Table 3(a) shows that the autoregressive coe¢cient ¤

associated with the in‡ation wedge is well below unity in all three target regimes,

suggesting that volatility, in‡ation and interest rates can move independently in the

short run in M3, but are cointegrated. Model M1 specializes M3 by assuming a

common volatility and in‡ation factor as in the mainstream term structure model,

saving 6 degrees of freedom14 . These restrictions are rejected by the data: the 2(6)

likelihood ratio test gives an acceptance value of  ' 0. M0 is also nested in M3,

employing 10 restrictions15 . However, its loglikelihood of L(0)=8601.9 is much lower

than for the SRCH models: square root volatility is very signi…cant in the UK econ-

omy. This result parallels my US …ndings (?) and the results of ? and others using

the conventional yield-factor approach to the term structure.

Finally, a single policy regime version of M3 was estimated. This saves 44 degrees

of freedom by using a single set of dynamic parameters (¤ ,r¤ ,¤ ,r¤ & ©) and

has a loglikelihood L(2)=8946.1. Comparing this with M3, the likelihood ratio test

statistic of 80.4 is higher than the 95% 2(44) critical value of 60.1, suggesting that

structural change is signi…cant in this framework. The next section discuses the

features of my preferred 3-regime model: M3.

The empirical macro-model (M3)

At the core of model M3 there is an autoregressive macro model. The novelty

here is that volatility and the in‡ation and interest rate asymptotes are variable,

driven by the stochastic trend ¤ shown in the top panel of Figure 2. In the short

term, in‡ation and interest rates are a¤ected by two additional but mean reverting

14 This model saves three parameters by reducing the dimensionality of the vectors ¢0 and ¢1

by one, and another three by eliminating the …rst column of ¤22
15 This model eliminates ¤ 01¢1(5) and the …rst column of ¤22(3)
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factors shown in the other panels. Most of the variance in this model is explained by

¤. This factor is estimated by a Kalman …lter and re‡ects cumulative residuals

in both macro and yield variables, which are largely negative until the mid 1990s

when volatility appeared to stabilize. The Kalman gain matrix (which shows the

way revisions in the latent variables respond to the forecast errors) reveals that this

is largely determined by the in‡ation, 3 and 7 year yield residuals, which depress the

volatility/in‡ation trend during the recessions of the early 1980s and early 1990s.

However, the most dramatic fall appears to have occurred in 1997-98 following the

independence of the Bank of England, pushing it close to zero.

Figures 3 to 6 show how ¤ in‡uences the variances of the system (as well as the

mean of the nominal variables). The narrowing of the con…dence intervals during the

Great Moderation is particularly marked, consistent with the relatively small shocks

experienced over this interval. However, the con…dence bands do not encompass all

of the shocks occurring at the beginning and the end of the estimation period. In

particular, Figures 4 and 5 show that the large negative output shocks that were

seen post Lehman in 2008Q3-2009Q1 and the large negative interest rate shock of

2008Q4 are outside their 95% con…dence intervals. In model M3, the volatility and

in‡ation factors can move independently in the short term, allowing it more ‡exibility

than model M2 over this period. For example the rise in in‡ation associated with

the hike in world commodity prices in 2007-08 was initially re‡ected in the in‡ation

wedge (shown in Figure 2(b)) rather than the volatility trend (2(a)), which remains

relatively low until the summer of 2009.

The impulse responses show the dynamic e¤ects of innovations in the macroeco-

nomic variables on the system. Because these innovations are correlated empirically, I

use the orthogonalized innovations obtained from the triangular factorization de…ned

in (1). The orthogonalized impulse responses show the e¤ect on the macroeconomic
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system of increasing each of these shocks by one percentage point for just one period

using the Wold representation of the system as described for example in ?. This

arrangement is a¤ected by the ordering of the macroeconomic variables in the vec-

tor , making it important to order the variables in terms of their likely degree of

exogeneity or sensitivity to contemporaneous shocks. The factors  are assumed

to re‡ect exogenous expectational in‡uences and are ordered …rst in the sequence.

Next, I follow ? and use the ordering: output, in‡ation then interest rates.

Figure 7 reports the results of this exercise. The model gives a plausible de-

scription of the macroeconomic dynamics, in line with prior expectations, in contrast

to many VAR-type results (?). Its use of Kalman …lters to pick up the e¤ect of

unobservable expectational in‡uences seems to solve the notorious price puzzle - the

tendency for increases in policy interest rates to anticipate in‡ationary developments

and apparently cause in‡ation. The …lter ¤ dictates the long run equilibrium of

the macroeconomy (and its volatility). These e¤ects are persistent, but the other

responses are transitory. The pattern of responses is broadly similar in the three

policy regimes, although interest rates appear to have been much less sensitive to in-

‡ation and output shocks in regime (b), when the UK was a targeting the exchange

rate.

The empirical yield model

The behavior of the yield curve is dictated by the factor loadings ( ). These

are depicted in Figure 8, and show the e¤ect on di¤erent maturities (expressed in

quarters) of increasing the each of the driving variables in turn by one percentage

point compared to its historical value. The left hand side panel for each target regime

shows the loadings on ¤ ,  and  while the right hand side panel shows those

on ,  and . The spot rate provides the link between the macroeconomic model and

the term structure. Since it is the 3 month yield, this variable has a unit coe¢cient
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at a maturity of one quarter and other factors have a zero loading. This variable

determines the ‘slope’ of the yield curve. Medium maturity yields are in‡uenced

by the behavior of the output gap, re‡ecting the e¤ect of the business cycle. The

loading on this factor then fades gradually over the longer maturities, allowing this

to act as a ‘curvature’ factor. In contrast, the persistence of ¤ means that its

loadings moves up towards unity over the 2 to 15 year maturity range, so that it

broadly acts as a ‘level’ factor. The other loadings are relatively small.

IV. Conclusion

The econometric model used in this paper is a development of the ‘square root

volatility model’ that was originally used by Cox et al (1985) to model the term struc-

ture of interest rates. However, the use of a MF speci…cation allows me to relate the

volatility trend indicated by the bond market to ‡uctuations in the macroeconomy.

It also allows the volatility and in‡ation trends to be distinguished, showing that

although they can move independently in the short run they share a common long

run trend, providing support for the Okun-Friedman conjecture. The linearity of

this structure allows a straightforward comparison with linear macro-…nance models

such as ? that assume a homoscedastic variance structure. This comparison pro-

vides overwhelming evidence of conditional heteroscedasticity in the UK. As in the

stochastic volatility literature cited in the introduction, I …nd that ‡uctuations in

volatility are persistent, exhibiting a unit root. Mathematically, it generates linear

structures that lend themselves not just to research on the term structure but to

optimal control and similar intertemporal optimization problems (as shown by ?).

Because it allows for square root volatility, my yield curve model resembles the

traditional latent factor term structure model. However, like any macro-…nance

model, it can use a relatively large number of parameters because these are informed

by macroeconomic as well as yield data. I …nd that the behavior of the yield curve is
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largely dictated by three factors: the in‡ation factor, the business cycle and the spot

rate. The model is consistent with the traditional three latent factor speci…cation

in this respect, but links these factors into the behavior of the macroeconomy.

Appendix A: The state-space representation of the model

Stacking (1) and (2) puts the system into state space form (4), where  =

f0
 

0
  

0
¡g

0,  = f0
 

0
 01¡¡g0 and:

£ = f0 + 0©0
0 01¡¡g0; (15)

© =

2
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6
6
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4
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0   0 0
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3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
4
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©21 ©22

3

7
7
5 

The second matrix repartitions © conformably with (9), so that ©21 is ( ¡ 1) £ 1

and ©22 is ( ¡ 1)2. Similarly:

 =

2

6
6
6
6
6
6
4

 0 0(¡¡)

©0  0(¡¡)

0(¡¡) 0(¡¡) 0(¡¡)(¡¡)

3

7
7
7
7
7
7
5

=

2

6
6
4

1 00
¡1

21 22

3

7
7
5 

where: 21 is ( ¡ 1) £ 1 and 22 is ( ¡ 1)2. Conditional on the error term in

the stochastic trend 1+1 the error structure of (9) is assumed to be Gaussian:

2+1 =211+1 +222+1 (16)

2+1 »(0¡1)
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where: 2+1 = f(0
2+1 0

0
¡¡g0,  = ff(02 + 121)

1
2   (0(+) +

1(+)1)
1
2 g 00

¡¡g,  = f10
+¡1 0

0
¡¡g so that  =  and [2+11+1] =

0(+¡1);2+1 »  [0(+¡1) (+¡1)]

Appendix B: The yield speci…cation

This appendix reports the formulae for the coe¢cients of (11) derived in ? ap-

pendix B, using the assumptions of sections 2.2 and 2.3. Since the  period bond is

the discounted expectation (under Q) of the (¡ 1) period bond in the next period,

these are generated by recursion relationships.

I also need to specify the prices of risk associated with shocks to 2+1. I follow

? and stack these in a ( ¡ 1) £ 1 de…cient vector ¤2 = [0
2 0

0
¡(+)]

0 which is

conformable with the equation system for 2+1 in (9). This is modelled as:

¤2 = 
0
22¤20 + ¡1

 ¡1
22 ¤211 + ¡1

 ¡1
22 ¤222 (17)

¤22 = f¤22g is an ( ¡1)2 matrix that has the e¤ect of adjusting ©Q
22 = ©22 ¡¤22

in (18) below to allow for the e¤ect of the 5 variables of 2 on their associated prices

of risk. ¤22 ;   = 1  5 are parameters (estimates are reported in table 3(c)) but

the other elements are zero. Similarly the …rst 5 elements in the vectors ¤0
12¤20

are parameters (table 3(c)) and the other elements are zero.

Because the shocks in (16) are Gaussian (conditional upon 1¡1) they are

common to all of the yield models M0-M3 and have a standard linear recursive

structure16 :

ª2 = (©Q
22)

0ª2¡1 + 2 (18)

= ( ¡ (©Q
22)

0)¡1( ¡ ((©Q
22)

0) )2

16 I assume that the roots of this sub-system are stable under Q, so this has the asymptote:
ª¤2 = !1ª2 = ( ¡ (©

Q
22)

0)¡12
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This gives the slope coe¢cients of the homoskedastic model M0 and is derived as

equation (16) in Spencer (2008). The intercept follows a quadratic recursion in this

case:

 = ¡1 + (£2 ¡ §0¤20)
0ª2¡1 ¡

1

2
ª0

2¡1§0ª2¡1 (19)

In the SRCH models, the response of the yields to the volatility trend is also given

by a quadratic recursion relationship:

1 =
[1¡1 + 10 + ª0

2¡121]

1 + [1¡1 + 10 + ª0
2¡121]

¡
10

1 + 10
¡ª0

2¡1¨1¡
1

2
ª0

2¡1§1ª2¡1

(20)

((18) in Spencer (2008), with B
1 ´ 1 = 1), where: ¨1 = ¤21 + §1¤20. Recall

that  = 211. As noted in section II, the e¤ect of the volatility factor on macro

volatility via ¨1 and §1 plays the key role here. If these objects are zero then the

trend does not a¤ect volatility. If ¤ does not a¤ect in‡ation (M2) then it does

not a¤ect the macroeconomy and acts as a pure …nancial factor (provided that ¤21

and 10 are non-zero so that it has an e¤ect under Q).

The intercept recursion is non-linear ((20) in Spencer (2008), where  ´ 1):

 = ¡1+(£2¡211¡§0¤20)
0ª2¡1¡

1

2
ª0

2¡1§0ª2¡1+1 ln[
 + 1¡1 + 10 + ª0

2¡121

+ 10
]

(21)
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TABLE 1
Data Summary Statistics: 1979Q1-2010Q2








  1 4 8 12 20 28 40 60
0.0119 -0.0008 0.0194 0.0189 0.0191 0.0193 0.0196 0.0198 0.0199 0.0195
0.0090 0.0062 0.0096 0.0088 0.0084 0.0082 0.0080 0.0080 0.0079 0.0074
2.1675 -0.4667 0.3350 0.1389 0.1410 0.1816 0.2358 0.2687 0.3128 0.3662
4.7207 0.2186 -0.6555 -0.8022 -0.8614 -0.8875 -0.9668 -1.0361 -1.0384 -0.9174
0.0033 -0.0173 0.0010 0.0015 0.0023 0.0035 0.0055 0.0071 0.0083 0.0096
0.0513 0.0125 0.0407 0.0374 0.0378 0.0382 0.0389 0.0386 0.0386 0.0372

 0.9429 0.9750 0.9635 0.9734 0.9717 0.9699 0.9691 0.9700 0.9702 0.9656
 0.7602 0.2668 0.9400 1.0016 1.1037 1.1269 1.1390 1.1410 1.1375 1.1161
 -3.79** -2.215 -1.849 -1.906 -2.082 -2.018 -1.957 -1.934 -1.935 -1.963

Output gap () is from OECD; RPIX in‡ation () and 3 month Treasury bill rate () are from Datastream. Yield data
are discount bond equivalent data compiled by the Bank of England and published on their website. Mean denotes
sample arithmetic mean expressed as percentage p.a.; . standard deviation and & are standard
measures of skewness (third moment) and excess kurtosis (fourth moment).  is the …rst order autocorrelation
coe¢cient  is the Kwiatowski et al (1992) statistic for the null hypothesis of level stationarity and  is
the Adjusted Dickey-Fuller statistic for the null of non-stationarity. The 5% signi…cance levels are 0.463 and (-) 2.877
respectively.



TABLE 2
Model evaluation

Model Speci…cation Parameters Loglikelihood Testing against M3
k(M) L(M) k(3)-k(M) 2x(L(3)-L(M))

M0 94 8601.9 11 768.80
19.68
0.00

M1 99 8657.2 6 658.20
12.59
0.00

M2 104 8070.1 1 32.40
3.84
0.00

M3
105 8986.3

M0 represents the standard macro …nance model. It has a unit root (1 = 1), a homoscedastic macro
model (11 = 0¢1 = 04) and Vasicek (1979)-type yield speci…cation. M1 has a unit root but allows
for square root volatility in the macro model and uses the CIR (1985)-type yield speci…cation. M2
is similar to M1 but has a separate in‡ation factor. M3 is the encompassing speci…cation.



TABLE 3a
Dynamic model structure (M3)

(asymptotic t-values in parentheses)
Parameter t-value

 1.137 2.93

Target: (i) Monetary (ii) Exchange rate (iii) In‡ation
©1

1

1

1

1

1

1

1

1

1

Parameter t-value
1.2019 10.34
0.1607 3.66
0.0007 0.01
0.0403 0.24
1.1283 8.52
0.0015 0.01
0.1306 2.22
0.0014 0.10
0.8438 12.16

Parameter t-value
1.1774 7.58
0.1657 3.48
0.0009 0.01
0.0019 0.01
1.1277 5.31
0.0000 0.00
0.0907 1.48
0.0027 0.17
0.9175 11.87

Parameter t-value
1.2228 12.92
0.1601 5.66
0.0000 0.00
0.0365 0.26
1.1544 9.79

-0.0002 0.00
0.1257 3.07
0.0012 0.31
0.8974 15.12

©2

2

2

2

2

2

2

2

2

2

-0.2071 -1.96
-0.1086 -2.22
-0.0021 -0.02
-0.0238 -0.16
-0.1860 -1.24
-0.0081 -0.06
-0.0364 -0.60
0.0408 2.50
0.1073 1.81

-0.2197 -1.46
-0.1110 -2.36
-0.0080 -0.07
-0.0151 -0.07
-0.2259 -1.12
-0.0086 -0.05
-0.0670 -1.01
0.0412 2.36
0.0199 0.28

-0.2401 -2.60
-0.1146 -3.86
-0.0056 -0.08
-0.0431 -0.31
-0.1904 -1.41
-0.0031 -0.02
-0.0590 -1.47
0.0410 8.82
0.0370 0.66

¥
(1 ¡ ¤)
(1 ¡ r¤)


¤

r¤

0.7379 6.89
0.3060 3.78

-0.0607 -0.16
-0.0566 -0.16

0.4212 5.73
0.4336 5.00

0.0120 2.21
0.0096 2.35

0.3593 6.98
0.5286 6.35

-0.0028 -0.44
0.0027 0.98



TABLE 3b
Variance structure (M3)

(asymptotic t-values in parentheses)

¢0

01

0¤

0r¤

0

0

0

Parameter t-value
(-) (-)

1.9800£10¡5 0.01
6.1088£10¡3 2.54
1.7010£10¡4 0.03
1.0001£10¡3 6.40
4.1800£10¡5 0.04

¢1

11

1¤

1r¤

1

1

1

Parameter t-value
0.0212 8.54
0.2069 1.95

-0.0756 -2.19
0.0228 9.32

-0.0171 -6.15
0.0242 9.30

G





Parameter t-value

-0.0837 -0.90
0.2922 2.85
0.3723 12.46



Table 3c: Risk adjustment structures (M3)

(asymptotic t-values in parentheses.)

H1

ηr∗

ηπ

ηg

ηr

Parameter t-value

-0.0014 -1.96

-0.0024 -4.06

0.0010 0.27

-0.0011 -9.21

Υ1

υr∗

υπ

υg

υr

Parameter t-value

(-) (-)

-0.0125 -0.18

-0.9735 -1.99

-0.1721 -4.77

Λ0

λ10

Λ1

λ10

Parameter t-value

(-) (-)

-52.3500 -4.51

Λ22

λ22,r∗π∗

λ22,ππ∗

λ22,gπ∗

λ22,rπ∗

Parameter t-value

(-) (-)

0.03174 0.6032

-0.18217 -0.3169

-0.11016 -3.4492

Λ22

λ22,r∗r∗

λ22,πr∗

λ22,gr∗

λ22,rr∗

Parameter t-value

-0.1396 -1.78

0.0048 0.10

-0.7997 -1.77

-0.0713 -2.62

Λ22

λ22,r∗π

λ22,ππ

λ22,gπ

λ22,rπ

Parameter t-value

0.0530 10.45

-0.1838 -5.71

0.0345 94.23

Λ22

λ22,r∗r

λ22,πr

λ22,gr

λ22,rr

Parameter t-value

(-) (-)

0.1213 3.78

-0.0665 -0.30

0.0465 2.35

Λ22

λ22,r∗g

λ22,πg

λ22,gg

λ22,rg

Parameter t-value

(-) (-)

-0.0696 -0.78

1.5176 2.32

0.1564 4.78



Figure 1: Macroeconomic variables and the 15 year discount yield
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Output gap () is from OECD; RPIX in‡ation () and 3 month Treasury bill rate () are from
Datastream. Yield data are discount bond equivalent data compiled by the Bank of England and
published on their website. In‡ation and interest rates are expressed as quarterly fractions.



Figure 2: Model M3 latent factors
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The volatility factor exhibits square root volatility and has a unit root. The in‡ation ‘wedge’ and real interest rate
factors have a constant variance and are stationary. In model M3 the in‡ation rate depends upon both the volatility
factor and the ‘wedge’ factor. Nominal interest rates and yields also depend upon the real interest rate factor.
Consequently, volatility trends, in‡ation and interest rates & yields have unit roots but are cointegrated.
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Fig 3(a) Inflation volatility
(Actual (x), one step ahead estimate and 95% confidence interval)
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Fig 3(b) Inflation shocks
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Fig 4(a) Output gap volatility
(Actual (x), one step ahead estimate and 95% confidence interval)
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Fig 5(a) Interest rate volatility
(Actual (x) one step ahead estimate and 95% confidence interval)
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Fig 5(b) Interest rate shocks
(One step ahead error (x) and 95% confidence interval)
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Fig 6(a) Volatility of 15 year yield
(Actual (x), one step ahead estimate and 95% confidence interval)
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Figure 7: Model M3 macroeconomic impulse responses
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Each column shows the e¤ect of a shock to one the six orthogonal innovations ( ) shown in (1) and (2). These shocks increase
the each of the …ve driving variables in turn by one percentage point compared to its historical value for just one period. Since ¤

is a martingale, the …rst shock (1) has a permanent e¤ect on in‡ation and interest rates, while other shocks are transient. The
continuous line shows the e¤ect under money supply; the broken line under exchange rate and the dot-dash line under in‡ation target
regimes. Elapsed time is measured in quarters.



Figure 8: Model M3 factor loadings
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Each column shows the e¤ect of a shock to one the six orthogonal innovations ( ) shown in (1) and (2). These shocks increase
the each of the driving variables in turn by one percentage point compared to its historical value. The loading on the spot rate is
initially unity, but then decays with maturity. Since ¤ is a martingale, its loading increases with maturity over this range. Maturity
is measured in quarters.
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