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a b s t r a c t

A generalization of the Cramér–Lundberg risk model perturbed by a diffusion is proposed. Aggregate
claims of an insurer follow a compound Poisson process and premiums are collected at a constant
rate with additional random fluctuation. The insurer is allowed to invest the surplus into a risky asset
with volatility dependent on the level of the investment, which permits the incorporation of rational
investment strategies as proposed by Berk and Green (2004). The return on investment is modulated by a
Markov processwhich generalizes previously studied settings for the evolution of the interest rate in time.
The Gerber–Shiu expected penalty–reward function is studied in this context, including ruin probabilities
(a first-passage problem) as a special case. The second order integro-differential system of equations that
characterizes the function of interest is obtained. As a closed-form solution does not exist, a numerical
procedure based on the Chebyshev polynomial approximation through a collocationmethod is proposed.
Finally, some examples illustrating the procedure are presented.

1. Introduction

The risk process presented by Gerber (1970) extends the

formulae to calculate the ruin probability and related quantities
for phase-type distributed claims.

Let us now allow the insurer to invest the reserves Ut into an

classicalmodel of risk theory introducing a Brownian diffusion. The
total claims follow a compound Poisson process {Xt , t ≥ 0} with
Lévy measure λf (x)dx, λ being the intensity of arrivals and f the
density of jumps. The collection of premiums is driven by aWiener
processW c

t independent of Xt with drift c and volatility σ , thus the
perturbed risk process with initial surplus u is given by

dRt = cdt + σdW c
t − dXt , R0 = u. (1)

This process has been considered by Dufresne and Gerber (1991)
where a defective renewal equationwas derived for the probability
of ruin ψ(u) = Pr(τ < ∞) where τ = inf{t ≥ 0 : Rt < 0}.
A review of the research on this type of process can be found
in Asmussen and Albrecher (2010), Chapter 11. Generalizations of
the model are treated in Li and Garrido (2005), Sarkar and Sen
(2005), and Morales (2007), whereas Ren (2005) gives explicit
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asset with time-dependent Markov-modulated return rate (drift)
∆t and volatility κ(Ut), that possibly depends on the amount
investedUt , driven by aWiener processW I

t independent of the risk
process Rt

dUt = (∆tdt + κ(Ut)dW I
t )Ut + dRt , U0 = R0 = u. (2)

The drift parameter ∆t is governed by a finite state homogeneous
Markov process with state space {δ1, . . . , δn}, intensity matrix
Q = (qij)n×n and initial state δi. For example, ∆t can be used to
model the risk free rate announced by a central bank that evolves
according to the Markov process by, for instance, 25 basis point
jumps. The state space would be in this case e.g.,

1.00%, 1.25%, 1.50%, 1.75%, 2.00%, . . . , 9.00%.

This environment offers considerable versatility in capturing the
evolution of interest rates since any diffusion model to forecast
the yield curve can be approximated arbitrarily well by continuous
time Markov chains; see Kushner and Dupuis (1992). Variation of
the volatility according to the size of the funds invested is justified,
for example, by Berk and Green (2004) as an implication of their
study of the performance of mutual funds and resulting rational
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capital flows. A particular shape of κ suggested in the cited paper,
σr

is also finite. Therefore, one can consider the set of functions
1 2 n
κ(u) = √

u , yields a surplus process in the form of an affine
diffusion that was studied by Avram and Usabel (2008) in this
context. Many practical ideas support a fund-dependent volatility,
for instance the possibility to obtain more efficient portfolios, due
to transaction costs, when more money is available. Model (2) is
a generalization of the process considered most frequently in the
literature where the return rate and the volatility are constant
in time, ∆t = δ, κ(·) = σr , like in Paulsen (1993), Paulsen
and Gjessing (1997), Wang (2001), Ma and Sun (2003), Gaier and
Grandits (2004), Grandits (2005), Cai and Yang (2005) and Wang
and Wu (2008).

The stochastic differential equation (2) can be arranged into

dUt = (c +∆tUt)dt +


σ 2 + κ2(Ut)U2

t dWt − dXt (3)

with initial condition (U0,∆0) = (u, δi). The expected
penalty–reward function (see Gerber and Landry (1998)) is intro-
duced

φi
t(u) = E[π(Uτ )I(τ ≤ t)+ P(Ut)I(τ > t) | U0 = u,∆0 = δi]

(4)

where τ = inf{s ≥ 0 : Us < 0}. If ruin occurs before the
time horizon t , the penalty π(Uτ ) applies to the overshoot Uτ
at the ruin. Otherwise, the reward function P(Ut) applies to the
reserves at time t . The concept of the expected penalty–reward
function presented in Gerber and Shiu (1997) and Gerber and Shiu
(1998) is a quite general framework comprising several quantities
of interest as a special case, such as the time to ruin, the amount at
and immediately prior to ruin or survival probabilities.

For further analysis the smoothed version of the function φi
t(u)

will be considered, namely its Laplace–Carson transform in time
defined as

Υ i
α(u) =

∫
∞

0
αe−αtφi

t(u)dt.

Further, lettingHα be an exponentially distributed randomvariable
with parameter α, the former expression may be viewed as a
penalty–reward functionwith an exponentially killed timehorizon
(see expression (6) in Avram and Usabel (2008))

Υ i
α(u) =

∫
∞

0
αe−αtφi

t(u)dt = E(φi
Hα (u))

= E(π(Uτ )I(τ ≤ Hα)
+ P(UHα )I(τ > Hα) | U0 = u,∆0 = δi) (5)

where the last equality comes from substituting the definition of
φi
t(u), in (4).
The function Υ i

α(u) is analytically more tractable than the
original function while, at the same time, retains a probabilistic
interpretation as a penalty–reward function considering an
exponential random time horizon Hα .

The results in this paper are organized as follows: in Section 2
an integro-differential system that characterizes the function
of interest Υ i

α(u) is derived and the existence of the solution
discussed. In Section 3 a numerical method to approximate the
solution of the system via Chebyshev polynomials is considered
and Section 4 offers some numerical illustrations.

2. Integro-differential system

This section presents further treatment of the transformed
expected penalty–reward function defined by (5). The function
Υ i
α(u) is dependent on the initial reserves U0 = u and the

starting return rate ∆0 = δi. Since the process driving the return
rate ∆t has a finite state space, the number of initial conditions
Υα(u) = (Υα (u),Υα (u), . . . ,Υα (u)), each corresponding to
different starting return rate from the state space {δ1, . . . , δn}.
Below, a Volterra integro-differential system of equations for
the functions Υ 1

α (u),Υ
2
α (u), . . . ,Υ

n
α (u) is derived and, applying

the result of Le and Pascali (2009), sufficient conditions for the
existence of the solution are established.

Theorem 2.1. For all α ≥ 0, functions Υ i
α : [0,∞) → R defined

in (5) satisfy the following system of integro-differential equations
For i = 1, . . . , n

1
2
(σ 2

+ u2κ2(u))
d2

du2
Υ i
α(u)+ (c + δiu)

d
du
Υ i
α(u)

+

n−
j=1

qijΥ j
α(u)− (α + λ)Υ i

α(u)

+ λ

∫ u

0
Υ i
α(u − x) f (x) dx

+αP(u)+ λ

∫
∞

u
π(u − x) f (x) dx = 0. (6)

Given that limu→∞ P(u) exists, σ > 0 and assuming positive security
loading for the reserve process (2), the boundary conditions of the
system are

Υ i
α(0) = π(0−) (7)

lim
u→∞

Υ i
α(u) = lim

u→∞
P(u) ≡ P(∞).

Moreover, if f ∈ C2
[0,∞), P(u) and κ(u) are continuous for u ≥ 0

and π(u) integrable, then the system of Eq. (6) has a solution Υ i
α ∈

C2
[0,∞), i = 1, . . . , n.

Proof. First, a straightforward application of Ito’s lemma yields
the infinitesimal generator of the process Ut , which applied to the
functions φi

t(u), i = 1, . . . , n defined by (4), yields

Aφi
t(u) =

1
2
(σ 2

+ u2κ2(u))
d2

du2
φi
t(u)

+ (c + δiu)
d
du
φi
t(u)+

n−
j=1

qijφ
j
t(u)

+ λ

∫
∞

0
(φi

t(u − x) − φi
t(u))f (x) dx.

Functions φi
t(u) satisfy the Fokker–Planck equation (see e.g. Risken

(1996))

Aφi
t(u)−

∂φi
t(u)
∂t

= 0 (8)

with boundary conditions

φi
0(u) = P(u) u > 0 (9a)

φi
t(u) = π(u) u < 0 and t ≥ 0 (9b)

for each i = 1, 2, . . . , n. Using (9b) the following holds∫
∞

0
φi
t(u − x)f (x) dx =

∫ u

0
φi
t(u − x)f (x) dx

+

∫
∞

u
π(u − x) f (x) dx. (10)

Substituting the infinitesimal generator and (10) into the Fokker–
Planck equation yields

1
2
(σ 2

+ u2κ2(u))
d2

du2
φi
t(u)+ (c + δiu)

d
du
φi
t(u)
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n−
j i

∫ u
i The existence of the solution Γ i

α ∈ C2
[0, 1] is guaranteed by
+

j=1

qijφt(u)− λφt(u)+ λ
0
φt(u − x)f (x) dx

+ λ

∫
∞

u
π(u − x) f (x) dx −

∂φi
t(u)
∂t

= 0.

The system (6) is obtained taking the Laplace–Carson transform
with respect to t on both sides and expanding the last term
integrating by parts∫

∞

0
αe−αt ∂φ

i
t(u)
∂t

dt = −αP(u)+ α

∫
∞

0
αe−αtφi

t(u)dt

= −αP(u)+ αΥ i
α(u)

where the first boundary condition (9a) of the Fokker–Planck
equation was used.

Concerning the boundary conditions of the integro-differential
system, when the initial reserves are 0 and σ > 0, the presence
of the Wiener fluctuation in premiums causes immediate crossing
of 0 level; see for example the proof of Theorem 2.1 in Paulsen
and Gjessing (1997). The second condition is the asymptotic case
u → ∞ when under the assumption of positive security loading
limu→∞ Υ i

α(u) = limu→∞ P(u) < ∞.
To prove the existence of the solution, an equivalent system

will be considered. A change of variable is now introduced in the
System (6), h(v) = u, where h : [0, 1] → [0,∞) is an arbitrary
strictly monotone, twice continuously differentiable function. The
system can now be written in terms of the functions Γ i

α(v) =

Υ i
α(h(v)).
For i = 1, . . . , n

A(v)
d2

dv2
Γ i
α(v)+ Bi(v)

d
dv
Γ i
α(v)+

n−
j=1

qijΓ j
α(v)

−(α + λ)Γ i
α(v)+ λ

∫ v

0
Γ i
α(y)f (h(v)− h(y))h′(y)dy

+λS(v)+ αP(h(v)) = 0 (11)

where

A(v) =
σ 2

+ h2(v)κ2(h(v))
2[h′(v)]2

Bi(v) =
c + δih(v)

h′(v)
−

[σ 2
+ h2(v)κ2(h(v))]h′′(v)

2[h′(v)]3

S(v) =

∫ 1

v

π(h(v)− h(y))f (h(y))h′(y)dy

with boundary conditions

Γ i
α(0) = π(0−) (12)

Γ i
α(1) = lim

u→∞
P(u).

Here h′ and h′′ denote the first and the secondderivative of function
h. Finally, by integration

Γ i
α(s) = Γ i

α(0)+

∫ s

0

h′(v)

Bi(v)

[
H(v)− λ

∫ v

0
f (h(v)

− h(y))
h′(y)
h′(v)

Γ i
α(y)dy

]
dv

H(v) =
−1
h′(v)


A(v)

d2

dv2
Γ i
α(v)+

n−
j=1

qijΓ i
α(v)

− (α + λ)Γ i
α(v)+ αP(h(v))+ λS(v)


.

Theorem2 in Le andPascali (2009), asH(v) is a continuous function
and f (h(v)−h(y)) h

′(y)
h′(v)

is integrable. The integrability is immediate

as f is a density function and h′(y)
h′(v)

is a bounded function of y on
[0, v] for all v. This implies that Υ i

α(u) = Γ i
α(h

−1(u)), a solution to
(6), exists and Υ i

α ∈ C2
[0,∞). �

3. Numerical solution

The second order system of integro-differential equation (6)
that characterizes the Laplace–Carson transform of the expected
penalty–reward function (5) does not have an explicit solution.
In Akyuz-Dascioglu and Sezer (2005) and Akyuz-Dascioglu (2007)
a numerical method was proposed for fairly general families of
Fredholm–Volterra integro-differential systems of higher order
which include the system treated in this article as a special case.
The authors approximate the solution to the system by shifted
Chebyshevpolynomials on the interval [0, 1]. A collocationmethod
is used to fit the Chebyshev expansion of the solution. In order
to adapt the procedure to system (6), we need to transform the
domain of the unknown functions Υ i

α , as was done in the proof of
Theorem 2.1, from the interval [0,∞) to [0, 1]. First, the solution
Γ i
α of the transformed system is found and then, applying the

inverse transform, the functions of interest Υ i
α are recovered. The

convergence of the method is treated in the original article along
with the illustrative examples that compare the approximation
and the exact solutions showing outstanding performance. The
following section describes the method adapted to the setting of
this article to keep it self-contained. The presentation follows the
development in Akyuz-Dascioglu and Sezer (2005).

3.1. Approximation by Chebyshev polynomials

In matrix notation the transformed system is given by

P2(v)
d2

dv2
0α(v)+ P1(v)

d
dv

0α(v)+ P0(v)0α(v)

= g(v)+

∫ v

0
K(v, y)0α(y)dy (13)

where 0α(v) is the column vector of unknown functions 0α(v) =

(Γ 1
α (v),Γ

2
α (v), . . . ,Γ

n
α (v))

⊤. Coefficient matrices are as
follows

P2(v) =
A(v)
h′(v)

· In

P1(v) = h′(v)−1diag(Bi(v))

P0(v) = h′(v)−1
[Q − (α + λ) · In]

K(v, y) = −λf (h(v)− h(y))
h′(y)
h′(v)

· In

g(v) = −h′(v)−1
[αP(h(v))+ λS(v)] · 1n

S(v) =

∫ 1

v

π(h(v)− h(y))f (h(y))h′(y)dy,

where In is the identity matrix of order n × n and 1n is the column
vector of ones of order n × 1. The transform is performed with
an arbitrary strictly monotone, twice continuously differentiable
function h : [0, 1] → [0,∞).

The aim of the method is to approximate the solution by a
truncated Chebyshev expansion

Γ i
α(v) =

N−
r=0

a∗

irT
∗

r (v) i = 1, . . . , n

3



on the interval [0, 1], where T ∗
r (v) are shifted Chebyshev

∗

can be computed as shown in Akyuz-Dascioglu (2007), where

polynomials of the first kind (see, for example, Boyd (2001)) and air
are the unknown coefficients to be determined. In matrix notation
Γ i
α(v) = T ∗(v)A∗

i ,

where T ∗(v) = (T ∗

0 (v), T
∗

1 (v), . . . , T
∗

N(v)) is a row vector
of shifted Chebyshev polynomials up to degree N and A∗

i =

(a∗

i0, a
∗

i1, . . . , a
∗

iN)
⊤ is a column vector of the corresponding

coefficients. Similarly, the nth derivative of Γ i
α(v) can be expanded

into
dn

dvn
Γ i
α(v) = T ∗(v)A∗(n)

i . (14)

The link between coefficients A∗(n)
i and A∗

i from Sezer and Kaynak
(1996) is

A∗(n)
i = 4nMnA∗

i , (15)
where

M =



0
1
2

0
3
2

0
5
2

· · ·
N
2

0 0 2 0 4 0 · · · 0
0 0 0 3 0 5 · · · N
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · N
0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

for odd N

M =



0
1
2

0
3
2

0
5
2

· · · 0

0 0 2 0 4 0 · · · N
0 0 0 3 0 5 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · N


(N+1)×(N+1)

for even N

yields the expansion of the nth derivative dn
dvnΓ

i
α(v) in terms of

Chebyshev coefficients A∗

i .
On the other hand, functions Kij(v, y) can be expanded in

variable y into a Chebyshev series

Kij(v, y) =

N−
r=0

k∗ij
r (v)T

∗

r (y)

where the Chebyshev coefficients k∗ij
r are functions of v. Using

matrix notation for convenience

Kij(v, y) = k∗ij(v)T ∗(y)⊤, (16)

where k∗ij is the row vector of coefficients determined by
Clenshaw–Curtis quadrature; see Clenshaw and Curtis (1960).

Substituting (14)–(16), the ith equation (i = 1, . . . , n) of the
system (13) is finally obtained:
h′(v)−1A(v)16M2T ∗(v)A∗

i + h′(v)−1Bi(v)4MT ∗(v)A∗

i

+ h′(v)−1


n−

j=1

qij − (α + λ)


T ∗(v)A∗

i

= gi(v)−

∫ v

0
k∗ij(v)T ∗(y)⊤T ∗(y)A∗

i dy.

The matrix of the inner product of Chebyshev polynomials

Z∗(v) = (z∗

ij (v)) ≡

∫ v

0
T ∗(y)⊤T ∗(y)dy

=
1
2

∫ 2v−1

−1
T (x)⊤T (x)dx =

1
2
(zij(2v − 1))

=
1
2
Z(2v − 1)
zij(v) =
1
4



2v2 − 2 for i + j = 1
Ti+j+1(v)

i + j + 1
−

Ti+j−1(v)

i + j − 1
−

1
i + j + 1

+
1

i + j − 1
+v2 − 1 for |i − j| = 1

Ti+j+1(v)

i + j + 1
+

T1−i−j(v)

1 − i − j
+

T1+i−j(v)

1 + i − j
+

T1−i+j(v)

1 − i + j

+2


1
1 − (i + j)2

+
1

1 − (i − j)2


for even i + j

Ti+j+1(v)

i + j + 1
+

T1−i−j(v)

1 − i − j
+

T1+i−j(v)

1 + i − j
+

T1−i+j(v)

1 − i + j

−2


1
1 − (i + j)2

+
1

1 − (i − j)2


for odd i + j,

which yields the system

h′(v)−1A(v)8M2T ∗(v)A∗

i + h′(v)−1Bi(v)4MT ∗(v)A∗

i

+ h′(v)−1


n−

j=1

qij − (α + λ)


T ∗(v)A∗

i

= gi(v)− k∗ij(v)Z∗(v)A∗

i , (17)

for all i = 1, . . . , n. The only unknown values are Chebyshev
expansion coefficients A∗

i . The collocationmethod proposed by the
authors fits the solution through the collocation points

xs =
1
2


1 + cos

 s
N
π


, s = 1, 2, . . . , (N − 1).

Each of theN−1 collocation points xs is substituted into the system
(17) and yields n linear equations of unknown variable A∗

i , whence
n(N − 1) equations are obtained. The boundary conditions (12) for
i = 1, . . . , n,

T ∗(0)A∗

i = π(0−)
T ∗(1)A∗

i = P(∞),

yield another 2n equations. A linear system of n(N + 1) equations
is constructed and solved for the Chebyshev coefficients A∗

i . Once
the approximation Γ i

α(v) =
∑N

r=0 a
∗

irT
∗
r (v) is obtained, the

relationship between the solution of the transformed and the
original system from the Theorem 2.1 yields the approximation of
the expected penalty–reward function Υ i

α(u) = Γ i
α(h

−1(u)).

4. Numerical examples

As mentioned before, Υ i
t (u) is the Laplace–Carson transform in

time of the expected penalty–reward function in a jump–diffusion
process. This function has a probabilistic interpretation as the
penalty–reward function in an exponentially killed time horizon
Hα . The ultimate case is also unveiled by a straightforward
application of the Tauberian theorem

lim
α→0

Υ i
α = lim

α→0

∫
∞

0
αe−αtφi

t(u)dt

= −φi
0(u)+ lim

α→0

∫
∞

0
e−αt d

dt
φi
t(u)dt

= −φi
0(u)+

∫
∞

0

d
dt
φi
t(u)dt = φi

∞
(u). (18)

For the more challenging finite time horizon penalty–reward, a
numerical inversion of the Laplace transform recovers the original
function φi

α(u); see Usabel (1999). The relationship C(s) =

sL(s) between the Laplace transform L(s) and the Laplace–Carson
transform C(s) applies.
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Table 1
Ultimate survival probability for gamma distributed claims.
N-precision level
200 250 300 350 400 450

u

1 0.318081594 0.318079845 0.318079373 0.318079219 0.318079161 0.318079137
2 0.435631392 0.43562899 0.435628343 0.435628132 0.435628053 0.43562802
5 0.753759689 0.753755453 0.753754322 0.753753953 0.753753813 0.753753756

10 0.987580029 0.987573342 0.987571486 0.98757086 0.987570616 0.987570511
15 0.999982762 0.999973643 0.99997087 0.999969864 0.999969447 0.999969256

Table 2
Survival probability under Markov-modulated interest rate structure.

u δi (%) N-precision level

250 300 350 400 450

1

1 0.144815222 0.144815829 0.144815469 0.144814893 0.144814330
2 0.146306443 0.146307016 0.146306644 0.146306063 0.146305499
7 0.188906830 0.188906028 0.188905174 0.188904470 0.188903928
8 0.190954404 0.190953560 0.190952690 0.190951981 0.190951439
9 0.191794388 0.191793534 0.191792659 0.191791949 0.191791406

10

1 0.676382452 0.676390197 0.676389970 0.676387433 0.676384493
2 0.689328522 0.689335954 0.689335662 0.689333147 0.689330254
7 0.855051985 0.855051380 0.855048719 0.855045981 0.855043652
8 0.865060563 0.865059778 0.865057124 0.865054446 0.865052186
9 0.870653629 0.870652847 0.870650244 0.870647620 0.870645408

15

1 0.845057051 0.845074744 0.845078953 0.845078338 0.845076134
2 0.864897819 0.864914116 0.864918001 0.864917442 0.864915420
7 0.977203365 0.977208141 0.977208683 0.977207860 0.977206693
8 0.981995614 0.981999965 0.982000462 0.981999717 0.981998658
9 0.984633935 0.984638092 0.984638607 0.984637937 0.984636962

20

1 0.949938439 0.949967119 0.949978339 0.949982157 0.949982771
2 0.967826609 0.967849612 0.967858765 0.967861995 0.967862632
7 0.999402042 0.999408967 0.999411851 0.999412960 0.999413267
8 0.999715443 0.999721564 0.999724130 0.999725128 0.999725416
9 0.999823318 0.999828873 0.999831216 0.999832138 0.999832412

25

1 0.993079369 0.993110103 0.993125249 0.993132811 0.993136514
2 0.998186486 0.998205547 0.998215150 0.998220073 0.998222575
7 0.999986074 0.999991170 0.999993799 0.999995183 0.999995911
8 0.999988832 0.999993290 0.999995592 0.999996805 0.999997445
9 0.999990114 0.999994091 0.999996147 0.999997232 0.999997804

4.1. Ultimate survival probability

The survival probability is a special case of the function Υ i
α(u).

For π(x) ≡ 0 and P(x) ≡ 1
φi (u) = E[I(τ = ∞) | U0 = u,∆0 = δi].

The low interest rate regime embeds two levels 1% and 2% while
the high interest rate regime considers three levels 7%, 8%, and
9%. Let the premium collection rate be 1 with the volatility of
premium accruals 0.25, the intensity of claims arrival 1

3 (one claim
every three time periods on average), the distribution of claim size
∞

The premium collection rate is c = 11, the volatility of premium
accruals σ 2

= 0.04, the intensity of claim arrivals λ = 4, and
claims follow a Gamma distribution Gamma(5; 2). The interest
rate is assumed to be fixed at 3% with no volatility (σ 2

r = 0). The
ultimate survival probability φi

∞
(u) is considered in this context

and thus α = 0 as motivated by (18). For the change of variables,
the function h(v) = − ln(1 − v) was used. The Table 1 shows the
approximations for various starting reserves and precision levels
(order of Chebyshev polynomials).

4.2. Markov-modulated interest rate structure

The second example presents an interest rate structure driven
by a Markov process and a reserve dependent volatility. Let us
assume two regimes (high interest rate and low interest rate)
comprising several interest rate levels. The intensity matrix Q ,
characterizing the Markov process, governs the evolution of the
interest rate:

Q =

δi 1% 2% 7% 8% 9%
1%
2%
7%
8%
9%


−2 2 0 0 0
1.9 −2 0.1 0 0
0 0.1 −3 2.9 0
0 0 1 −3 2
0 0 0 3 −3

.
lognormal lnN (0.5; 1). The volatility of the return on investment,
dependent on the reserves level, is κ2(u) =

σ 2
r
u , as motivated in

the introduction, with σ 2
r = 0.81. The probability of survival of a

randomhorizon of 20 years on average is approximated (α = 0.05,
π(x) ≡ 0 and P(x) ≡ 1). Regarding the change of variables,
the function h(v) = − ln(1 − v) was used again. In Table 2 the
survival probabilities conditional on various initial interest rates
and starting reserve levels are presented.

Fig. 1 unveils the impact of the initial conditions on the survival
probability. Each curve represents different initial interest rate,
the lowest curve corresponds to ∆0 = 1% and the uppermost to
∆0 = 9%. The horizontal axis shows the initial reserves level U0,
the vertical axis the survival probability Υ i

α(u).

5. Conclusions

A general model for the risk process of an insurance company
is presented allowing arbitrary distributions of the claim sizes, a
Wiener fluctuation in premium collection and investment in a,
possibly, risky asset. The evolution of the return rate is modulated
by Markov process implementing a non-constant interest rates
in a risk process. In particular, we suggest the possibility of
interpretation as interest rates announced by a central bank that in

5



Fig. 1. Survival probability curves as a function of initial reserves. Each curve
represents different initial interest level, the lowest curve corresponding to 1%, the
uppermost to 9%.

practice move by a quarter percentile jumps. Amethod is obtained
to calculate the Gerber–Shiu expected penalty–reward function
in this framework that comprises several interesting particular
cases such as the calculation of ruin probabilities or moments of
the deficit at ruin. The method is based on Chebyshev polynomial
approximations and shows an outstanding convergence rate.
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