
Finite time ruin probabilities with one Laplace inversion

Florin Avrama,b, Miguel Usabela,c,∗
a Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, UK

b Department of Mathematics, University of Pau, Pau, France
c Dep. de Economia de la Empresa, Universidad Carlos III de Madrid, Campus de Colmenarejo, Comenarejo, Madrid 28270, Spain

Abstract

In this work we present an explicit formula for the Laplace transform in time of the finite time ruin probabilities of a classical
Levy model with phase-type claims. Our result generalizes the ultimate ruin probability formula of Asmussen and Rolski
[IME 10 (1991) 259]—see also the analog queuing formula for the stationary waiting time of the M/Ph/1 queue in Neuts
[Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore,
MD, 1981]—and it considers the deficit at ruin as well.
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1. Introduction

1.1. The model

We consider a classical risk process in continuous time{Ut}t≥0 with Zk claim sizes and premiumc per time unit,

Ut = u+ ct −
Nt∑
k=1

Zk, (1)

whereu are the initial reserves andNt the total number of claims up to timet. The claim times sequence forms
a Poisson process with interarrival times exponentially distributed with densityw(t) = λ e−λt . We will assume
that the claim sizesZk have a phase-type distribution (see next section)F(z), with density and Laplace transform
denoted byf(z), f ∗(s). The Levy exponent of the processκ(s) defined byE esUt = etκ(s) is given by

κ(s) = cs + λ(f ∗(s)− 1). (2)
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1.2. The ruin problem

Let τ = inf {t > 0 : Ut < 0} be the ruin time andY = −Uτ be the deficit at ruin or severity of ruin. We are
interested in the probability of ruin with time spant and initial reservesu and severity of ruin larger thany, i.e.

Ψt,u,y = Pu{τ〈t, Y〉y}. (3)

We will study its density with respect tot, ψt,u,y = ∂Ψt,u,y/∂t, and its more tractable Laplace transform in time:

ψ∗
a,u,y =

∫ ∞

0
e−atψt,u,y dt. (4)

This function satisfies a second kind Volterra integro-differential equation. One natural approach to this kind of
problems, going back in this case toCramèr (1957)and Sparre Andersen (1957), consists in taking a double
Laplace–Stieltjes transform of the equation of interest (or triple, if the deficitY is also included), to be inverted
numerically. The results contained inThorin (1971)show formulae for the mentioned double Laplace transforms. For
alternative classical approaches, see for example the pioneer works byArfwedson (1954)who uses the saddle-point
approximation andSeal (1974)who uses differential equations.

1.3. “Phase-type” modeling

It is well known that simplifications in the resolution of second kind Volterra integro-differential equations are
possible if the kernel is degenerate, i.e. a finite sum of products (for example, the equation becomes equivalent to a
linear ordinary differential system).Asmussen and Rolski (1991)andAsmussen (1992)proposed (following analog
work in queuing theory), a probabilistic alternative to this analytic approach, based upon assuming that the claims and
interrivals time havephase-type distributions. These are defined as probability distributions of matrix-exponential
type (see below), and they have also an important probabilistic interpretation as absorption times of finite (transient)
homogeneous Markov processes to a special absorbing state calledcemetery.

More precisely, letJt denote a terminating Markov process with finite state spaceE = {C, 1, . . . , m}, whereC
is an absorbing state (i.e.Pi[Jt = C eventually] = 1 for any statei) and letξ = inf {t > 0 : Jt = C} denote the
absorption time to the cemetery. LetG denote the restriction of the intensity matrix ofJt to {1, . . . , m}, and note
that the rates of absorption to the cemetery are given by the column vectorg = −G1, where1 = (1 . . . 1)′ (a
column vector). Letα denote the initial distribution ofJ0, written as a row vector. Then, it is easy to check that the
distribution ofξ satisfies:

F(x) = Pα(ξ ≤ x) = 1 − α eGx1, (5)

f(x) = α eGxg, (6)

and

f ∗(s) = E� e−sξ =
∫ ∞

0
e−sxF(dx) = α(sI − G)−1g. (7)

Definition. A probability distributionF(x) is said to be of phase-type(α,G,m) if it is of the form (5), for some
probability vectorα and some matrixG which is a subintensity matrix (i.e. with nonnegative off diagonal elements
and nonpositive row sums).

Phase-type distributions include and generalize exponential distributions in series and/or parallel. They have
found numerous applications in applied probability and are of considerable practical interest, since they form a
dense class in the set of all distributions on(0,∞).
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The advantages of this class of distributions can be perceived from several points of view:

• Algebraic and numerical convenience due to the possibility of manipulations of matrix exponentials, which
generalize the scalar exponential case (n= 1). Some of the first are illustrated in this paper; the latter may be
seen in the companion paper ofAsmussen et al. (2002), where a numerical method for computing finite time ruin
probabilities without Laplace inversion is proposed and implemented.

• The availability of probabilistic interpretations of the results. For the interpretation of our result, which basically
says that with phase-type jumps, the Laplace transform in time of the ruin probability has a similar phase-type
formula, seeAsmussen (2000), andAppendix A. For now, we note that it is a consequence of the property that
the conditional overshoot distributionF(x+ y)/(1 − F(x)) belongs to a finite vector space. More precisely, this
overshoot distribution is again phase-type with the samem andG, but withαi replaced by Pr(Jx = i|ζ > x),
which is reminiscent of the memoryless property of the scalar exponential distribution.

We note that while the convenience of phase-type distributions had long been recognized for the perpetual ruin
problem, it is only recently that it has started being implemented for computing finite time ruin probabilities. For
example, related in spirit to our work are the papers ofStanford and Stroinski (1994, 2000)(who use a recursive
approach) andWillmot (1999, 2000).

1.4. The result

The motivation of our result, which generalizes the perpetual ruin formula ofAsmussen and Rolski (1991)—
see(13)—comes from the observation that the Laplace transform in timeψ∗

a,u,y coincides also with the expected
probability of ruin before an exponential horizonHa with parametera, independent of the process. Indeed, an
integration by parts shows that:

ψ∗
a,u,y =

∫ ∞

0
e−atψ(u, t, y)dt =

∫ ∞

0
a e−at

Pu{τ < t;Y > y} dt, (8)

ψ∗
a,u,y = Pu{τ < Ha;Y > y} = EΨ(Ha, u, y). (9)

Furthermore, an exponential horizonHa is probabilistically similar to a perpetual horizon, since by the memoryless
property of the exponential, the passage of time does add any extra information. Thus, in principle every perpetual
result should have an extension to an exponential horizon result; however, as our result illustrates (see(10) and
(11)), the extension may not be altogether obvious.

Theorem 1. If Ut is a classical risk process (1) with claim sizes of phase-type (p,G) and a > 0 is a positive
number, then:

(a) The single Laplace transform in the time t of the ruin function (4) (with given initial reserves u and deficit at
ruin greater than y) is

ψ∗
a,u,y = pa eQau eGy1, (10)

where

pa =
(
λ

c

)
p(saI − G)−1, Qa = G + gpa, (11)

and sa is the (unique) nonnegative root of the Lundberg equation

κ(sa) = a.
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(b) The double Laplace transform of the ruin time τ and of the ruin deficit Y (i.e. the transform in t, y of the joint
density −∂ψt,u,y/∂y) is given by

ψ∗∗
a,u,b = −

∫ ∞

0

∫ ∞

0

∂ψt,u,y

∂y
e−at−by dt dy = Eu e−aτ−bY = pa eQau(bI − G)−1g. (12)

Notes.

(1) Parts (a) and (b) may be seen to be equivalent by taking the Laplace transform iny of the derivative iny of (10),
i.e. pa eQau eGyg.

(2) Whena = 0 (thussa = 0) andy = 0, part (a) reduces to the perpetual ruin formula 3.1 ofAsmussen and Rolski
(1991)

ψ∗
0,u,0 =

(
λ

c

)
p(−G)−1 eQu1. (13)

The casey = 0 anda > 0 yields the formula

ψ∗
a,u,0 = pa eQau1 =

(
λ

c

)
p(saI − G)−1 eQau1,

which states that the killed ruin probability inherits a phase-type representation(pa,Qa) from the claims, with
Qa = G+gpa. This special form of the intensity matrixQa and the fact that the conditional surplus distribution
remains unchanged with phase-type jumps have a nice probabilistic interpretation offered inAsmussen (2000,
Chapter 8, Corollary 3.1)(included for convenience inAppendix A). The formula(11)for the vectorpa offered
here is however new. For a generalization to the case of arbitrary phase-type interarrivals, seeAvram and Usabel
(2003).

(3) An alternative “spectral expansion” formula for the single Laplace transform was obtained byThorin (1971,
Formula 4.4)(for hyperexponential claim sizes). However, Thorin’s formula requires computing all the negative
roots of the Lundberg equation, which it also assumes to be distinct. Our formula uses instead the unique
nonnegative root (independently of the complexity of the phase-type representation), without any additional
assumptions. We view these two points as its major practical contribution.

(4) Gerber and Shiu (1997, 1998)—see alsoGerber and Landry (1998)for an interesting paper incorporating
Brownian motion in the model as well—have obtained explicit formulas requiring one numerical integration
for the functionΨ∗

a,0,y which do not assume phase-type jumps. However, to deal with positive surplusesu > 0,
they still need to solve one renewal equation which requires a second Laplace transform inu.

1.5. Example

In the exponential case with claim intensityµ, which is of phase-type withp = 1,G = −µ we find that the
single Laplace transform is

ψ∗
a,u,y = λ

µ+ sa e−µ(1−λ/(µ+sa))u e−by,

wheresa is the nonnegative root of the quadratic equationκ(s) = s(1− λ/(s+µ)) = a. This is a famous text-book
formula; see for instanceGerber et al. (1987). For example, whena = y = 0 this becomesψ∗

0,u,0 = (λ/µ)

e−(µ−λ)u.
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1.6. Contents

The approach for establishingTheorem 1consists in applying a further Laplace transform inu. Some special
properties of phase-type distributions—reviewed in the next section—will allow us to invert the transforms (except
for the one int). The proof of the theorem is given inSection 3.

2. Some auxiliary results

We present now a classical “fluctuation theory” result for the triple Laplace transform of the multivariate ruin
density

ψ∗∗∗
a,s,b =

∫ ∞

0
e−su

Eu e−aτ−bYτ du =
∫ ∞

0
e−suψ∗∗

a,u,b du (14)

for spectrally one-sided processes. An expression for it may be found for example inBingham (1975, Theorem 6a)
or Bertoin (1996); we use instead a simplified expression given inAvram et al. (2002, Corollary 2.3):

Proposition 1. The triple Laplace transform (14) of the ruin function is

ψ∗∗∗
a,s,b = (a− κ(s))−1

(
κ(s)− k(b)
b− s − κ(sa)− κ(b)

b− sa

)
. (15)

A simplification in the phase-type case will come from an analog of the identity in Asmussen and Bladt (1997,
Lemma 3.1).

Proposition 2.

p∗(sI − G)−1v1

1 − p∗(sI − G)−1v
= p∗(sI − G − vp∗)−1v1. (16)

Proof. We will apply to the RHSp∗(sI − G − vp∗)−1v1 a well-known matrix identity (see for exampleSeber
(1984, p. 519))

(A − vp∗)−1 = A−1 + A−1v(1 − p∗A−1v)−1p∗A−1

with A = (sI − G). This yields:

p∗(sI − G − vp∗)−1v1 = p∗(A − vp∗)−1v1

= p∗(A−1 + A−1v(1 − p∗A−1v)−1p∗A−1)v1 = σ2 + σ1σ2

1 − σ1
= σ2

1 − σ1
,

whereσ2 = p∗A−1v1 andσ1 = p∗A−1v. �

Note. This identity is useful when a Laplace transform may be expressed in the form of the LHS above; in that case,
the RHS provides a matrix-exponential representation for the density, and relieves us therefore of the need to invert
the Laplace transform.

3. Proof of the theorem

Proof. Part (a) is clearly equivalent to part (b); it is enough therefore to establish the latter. We simplify first the
triple Laplace transform(15), usingκ(s) = cs + λ(p(sI − G)−1g − 1) and the resolvent identity:

(sI − G)−1 − (s′I − G)−1 = (s′ − s)(sI − G)−1(s′I − G)−1.
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We find that:

κ(s)− κ(b)
b− s = −c+ λp((sI − G)−1 − (bI −G)−1)g

b− s = −c+ λp(sI − G)−1(bI − G)−1g.

Plugging this in(15), using again the resolvent identity and puttingv1 = (bI − G)−1 yields:

ψ∗∗∗
a,s,b = 1

a− κ(s) (λp(sI − G)−1(bI − G)−1g − λp(saI − G)−1(bI − G)−1g)

= 1

a− κ(s)λp((sI − G)−1 − (saI − G)−1)(bI − G)−1g

= sa − s
κ(sa)− κ(s))λp(sI − G)−1(saI − G)−1(bI − G)−1g

= λp(sI − G)−1(saI − G)−1(bI − G)−1g
c− λp(sI − G)−1(saI − G)−1g

= pa(sI − G)−1v1

1 − pa(sI − G)−1g
= pa(sI − (G + gpa)

−1v1,

where the last equality comes fromProposition 2. �

Finally, we recognize the last form to be the Laplace transform inu of the functionpa e(G+gpa)u(bI − G)−1g.

4. Conclusions

In conclusion, althoughTheorem 1is mathematically quite close to previous known results, it does yield a
simpler formula for the Laplace transform in time of the finite time ruin probabilities thanThorin (1971), with
less assumptions (see note (3) after the theorem), and including the deficit at ruin as well. In conclusion, our result
suggests two possible approaches for calculating/approximating the finite time ruin probabilities:

• Inverting the Laplace transform in time (since there is only one transform to invert, there will be of course less
numerical errors).

• Using random horizon approximations. A first rough approximation for a fixed horizont may be obtained
by choosing an exponential horizonHa with expectationt (thusa = t−1). This replaces the finite time ruin
probability by the rough approximationt−1ψ∗

t−1,u,y
which is however obtained via only one evaluation of the

explicitly available transform (thus, no inversion)!
Further (converging) approximations may be obtained by choosing Erlang random horizons with expectation

equal to the desired fixed onet, as proposed and implemented inAsmussen et al. (2002)(also, with no inversion).

The second approach is may be less attractive nowadays than it would have been twenty years ago, before the
developing of effective numerical inversion methods (like that of Gaver–Stehfest, for example). Its potential is worth
however further investigation.
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Appendix A

Formula(10)comes with a convenient probabilistic interpretation—see for exampleAsmussen (2000, pp. 227–231),
obtained by following the distribution of the Markovian phase processJ̃t which gives the phase of the jump at the
first visit time of any pointt, while t moves fromu to 0. Let pa denote the row probability vector giving the
“initial” distribution of the phases at the first descending ladder height time of the risk process, obtained before the
exponential random time horizonHa.

Note then that there are two ways for the processJ̃t to change phase: one, describing the phase changes “within
jump” at ratesG, and the second describing phase changes after the end of a jump and passing through “an invisible
upward excursion”. The end of a jump occurs at ratesg, and the start of the next downwards ladder point following
an upwards excursion occurs at ratespa, resulting in transition rates ofgpa. Therefore, the transition matrixQa of
J̃t must equalG + gpa.

Finally, note that below 0 and until the ruin deficit−Y , the phase processJ̃t continues simply at rateG, implying
therefore that the deficit distribution is phase type(pa eQau,G).

Notes.

(1) The easiness with which the deficit result may be obtained under phase-type assumptions may be viewed as
one of the main advantages of this approach.

(2) This probabilistic structure turns out to be especially important inAsmussen et al. (2002), for the solution of
the Erlang killed case.
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