Finite time ruin probabilities with one Laplace inversion
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Abstract

In this work we present an explicit formula for the Laplace transform in time of the finite time ruin probabilities of a classical
Levy model with phase-type claims. Our result generalizes the ultimate ruin probability formula of Asmussen and Rolski
[IME 10 (1991) 259]—see also the analog queuing formula for the stationary waiting time of the M/Ph/1 queue in Neuts
[Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore,
MD, 1981]—and it considers the deficit at ruin as well.
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1. Introduction
1.1. The model

We consider a classical risk process in continuous fithég o with Z; claim sizes and premiumper time unit,

N

U=u+ct—Y Z. 1)
k=1

whereu are the initial reserves anl; the total number of claims up to tinte The claim times sequence forms
a Poisson process with interarrival times exponentially distributed with demsily= 1 e~*'. We will assume
that the claim sizeg; have a phase-type distribution (see next sectit), with density and Laplace transform
denoted byf(z), f*(s). The Levy exponent of the process) defined byE eV = &) is given by

Kk(s) = cs+ A(f*(s) — 1). )
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1.2. Theruin problem

Lett = inf{t > 0 : U; < 0} be the ruin time and” = —U; be the deficit at ruin or severity of ruin. We are
interested in the probability of ruin with time spaand initial reserves and severity of ruin larger thay i.e.

Viuy = P {z(s, Y)y}. 3)

We will study its density with respect 09, , = 0¥ ,.,,/0t, and its more tractable Laplace transform in time:

o0
Vi, = fo ey, dr. ()

This function satisfies a second kind Volterra integro-differential equation. One natural approach to this kind of
problems, going back in this case @rameér (1957)and Sparre Andersen (1957), consists in taking a double
Laplace—Stieltjes transform of the equation of interest (or triple, if the défigtalso included), to be inverted
numerically. The results containedlihorin (1971 )show formulae for the mentioned double Laplace transforms. For
alternative classical approaches, see for example the pioneer wokkimdson (1954yvho uses the saddle-point
approximation anéeal (1974who uses differential equations.

1.3. “Phase-type” modeling

It is well known that simplifications in the resolution of second kind Volterra integro-differential equations are
possible if the kernel is degenerate, i.e. a finite sum of products (for example, the equation becomes equivalent to ¢
linear ordinary differential systemhsmussen and Rolski (199&hdAsmussen (1993)roposed (following analog
work in queuing theory), a probabilistic alternative to this analytic approach, based upon assuming that the claims and
interrivals time havehase-type distributions. These are defined as probability distributions of matrix-exponential
type (see below), and they have also an important probabilistic interpretation as absorption times of finite (transient)
homogeneous Markov processes to a special absorbing statecestitery.

More precisely, let/; denote a terminating Markov process with finite state sgaee {C, 1, ..., m}, whereC
is an absorbing state (i.B;[J; = C eventually] = 1 for any state) and leté = inf{r > 0 : J, = C} denote the
absorption time to the cemetery. L&tdenote the restriction of the intensity matrix ffto {1, ..., m}, and note

that the rates of absorption to the cemetery are given by the column yeeto~G1, wherel = (1... 1) (a
column vector). Lete denote the initial distribution afp, written as a row vector. Then, it is easy to check that the
distribution of¢ satisfies:

F(x) =Py(§ <x) =1— ae®1, (5)

f(x) = a e, (6)
and

F(s) = Eq e = /O - e F(dx) = a(sl — G)'g. 7)

Definition. A probability distributionF(x) is said to be of phase-tyge, G, m) if it is of the form (5), for some
probability vectorx and some matrix; which is a subintensity matrix (i.e. with nonnegative off diagonal elements
and nonpositive row sums).

Phase-type distributions include and generalize exponential distributions in series and/or parallel. They have
found numerous applications in applied probability and are of considerable practical interest, since they form a
dense class in the set of all distributions(@noo).



The advantages of this class of distributions can be perceived from several points of view:

e Algebraic and numerical convenience due to the possibility of manipulations of matrix exponentials, which
generalize the scalar exponential case=(/l). Some of the first are illustrated in this paper; the latter may be
seen in the companion paperAdémussen et al. (2002), where a numerical method for computing finite time ruin
probabilities without Laplace inversion is proposed and implemented.

e The availability of probabilistic interpretations of the results. For the interpretation of our result, which basically
says that with phase-type jumps, the Laplace transform in time of the ruin probability has a similar phase-type
formula, seeAsmussen (2000), andippendix A. For now, we note that it is a consequence of the property that
the conditional overshoot distributidi(x + y)/(1 — F(x)) belongs to a finite vector space. More precisely, this
overshoot distribution is again phase-type with the sanmendG, but with «; replaced by R/, = i|¢ > x),
which is reminiscent of the memoryless property of the scalar exponential distribution.

We note that while the convenience of phase-type distributions had long been recognized for the perpetual ruin
problem, it is only recently that it has started being implemented for computing finite time ruin probabilities. For
example, related in spirit to our work are the paperSwinford and Stroinski (1994, 200Q¥ho use a recursive
approach) andVillmot (1999, 2000).

1.4. Theresult

The motivation of our result, which generalizes the perpetual ruin formukssofussen and Rolski (1991)—
see(13)—comes from the observation that the Laplace transform in fifne, coincides also with the expected
probability of ruin before an exponential horizd#, with parameteu, mdependent of the process. Indeed, an
integration by parts shows that:

o o
Vi uy = /0 e Ay(u, 1, y)dr = fo ae Pt <Y > y}dt, (8)

wa u,y ]P) {T < Ha’ Y > y} EW(HH, u, )’) (9)

Furthermore, an exponential horizéfy is probabilistically similar to a perpetual horizon, since by the memoryless
property of the exponential, the passage of time does add any extra information. Thus, in principle every perpetual
result should have an extension to an exponential horizon result; however, as our result illustraieg) (aed

(11)), the extension may not be altogether obvious.

Theorem 1. If U; is a classical risk process (1) with claim sizes of phase-type (p, G) and @ > 0 is a positive
number, then:

(a) The single Laplace transformin the time t of the ruin function (4) (with given initial reserves u and deficit at
ruin greater thany) is

V’a uy = Pa gRat gByq, (10)
where
A
Pa = (;) PGsal —G)71, Qa =G +9p,, (11)

and s, isthe (unique) nonnegative root of the Lundberg equation

k(sq) = a.



(b) The double Laplace transform of the ruin time ¢ and of the ruin deficit Y (i.e. the transformin z, y of the joint
density —ovy; ,,.,/dy) isgiven by

Wruy
Vo = / / w’ L Mdrdy = B, & = p e (bl — G) g, (12)

Notes.

(1) Parts (a) and (b) may be seen to be equivalent by taking the Laplace transfoofitiire derivative iny of (10),
i.e.p, eQa Sy,

(2) Whena = 0 (thuss, = 0) andy = 0, part (a) reduces to the perpetual ruin formula 3. Asrhussen and Rolski
(1991)

A
Voo = (Z) p(—G)~1e 1. (13)

The casey = 0 anda > 0 yields the formula
* Qqu A -1 Qquu
wd’u,o = pa € “ 1 = E p(sal - G) e “ 1:

which states that the killed ruin probability inherits a phase-type representptio@,) from the claims, with
Q. = G+gp,. This special form of the intensity matr@}, and the fact that the conditional surplus distribution
remains unchanged with phase-type jumps have a nice probabilistic interpretation offaseduasen (2000,
Chapter 8, Corollary 3.1(jncluded for convenience iippendix A). The formulg11)for the vectorp, offered
here is however new. For a generalization to the case of arbitrary phase-type interarrivalsaseand Usabel
(2003).

(3) An alternative “spectral expansion” formula for the single Laplace transform was obtairitbhby (1971,
Formula 4.4)for hyperexponential claim sizes). However, Thorin’s formula requires computing all the negative
roots of the Lundberg equation, which it also assumes to be distinct. Our formula uses instead the unique
nonnegative root (independently of the complexity of the phase-type representation), without any additional
assumptions. We view these two points as its major practical contribution.

(4) Gerber and Shiu (1997, 1998)—see aSerber and Landry (1998pr an interesting paper incorporating
Brownian motion in the model as well—have obtained explicit formulas requiring one numerical integration
for the functlonlI/"‘0 which do not assume phase-type jumps. However, to deal with positive surplus@s
they still need to so]ve one renewal equation which requires a second Laplace transform in

1.5. Example

In the exponential case with claim intensjty which is of phase-type with = 1,G = —u we find that the
single Laplace transform is
yE o= L g A=A/ (utsa))u g—by
G+ sa '

wheres, is the nonnegative root of the quadratic equation = s(1— A/(s + 1)) = a. This is a famous text-book

formula; see for instanc&erber et al. (1987). For example, when= y = 0O this becomes)j , o = (A/1)
—(u—A)u

e .



1.6. Contents

The approach for establishingheorem 1consists in applying a further Laplace transfornuinSome special
properties of phase-type distributions—reviewed in the next section—will allow us to invert the transforms (except
for the one ir¥). The proof of the theorem is given Bection 3.

2. Some auxiliary results

We present now a classical “fluctuation theory” result for the triple Laplace transform of the multivariate ruin
density

o0 oo
—su —at—bY; _ —su
Y, = /0 e VE, e P du = /o e Y, du (14)

for spectrally one-sided processes. An expression for it may be found for exanBiteytmam (1975, Theorem 6a)
or Bertoin (1996); we use instead a simplified expression givékviam et al. (2002, Corollary 2.3):

Proposition 1. Thetriple Laplace transform (14) of the ruin function is
oo g (k) = k(B)  K(sa) — k(D)
Vi, = (a — k() ( - o)

A simplification in the phase-type case will come from an analog of the identity in Asmussen and Bladt (1997,
Lemma 3.1).

(15)

Proposition 2.
P« (sl — G)_lvl
1—p:Gsl —G)1v

= ps(sl — G —vp,) vy (16)

Proof. We will apply to the RHSp, (sl — G — vp,)~1v; a well-known matrix identity (see for examp&eber
(1984, p. 519))

A-vp) t=A"t+A A -pAY) pATE
with A = (sI — G). This yields:
Pi(sl —G —vp,)tvi = pu(A —vp,)"tvq

010 O
=p AT +A VAL -p AV P A D =0y e = 22

’

l-0qn 1-o
whereo, = p,A~1v; andoy = p, A~ 1v. O
Note. This identity is useful when a Laplace transform may be expressed in the form of the LHS above; in that case,

the RHS provides a matrix-exponential representation for the density, and relieves us therefore of the need to invert
the Laplace transform.

3. Proof of thetheorem

Proof. Part (a) is clearly equivalent to part (b); it is enough therefore to establish the latter. We simplify first the
triple Laplace transfornil5), usinge(s) = cs+ A(p(sl — G)~1g — 1) and the resolvent identity:

sl -G 11 -6)"t= -6l —6G) 1 —G)~L



We find that:

k(s) — k(b) _
b—s N b—s

_ -1 _ _ -1
e P =07 =026 I8 _ Lol - 6)- Lol — ) lg.

Plugging this in(15), using again the resolvent identity and putting= (b — G) 1 yields:

Y = ! pGsl — G) Ll — G)tg — Ap(sal — G) LBl — G)Lg)
B a— k(s)

- (sl —G) ™t = (sal —G)H(BI —G) g

a — k(s)

Sqg — S
K(5q) — K (s))
_apGsl = G) s, — G) ol — G) g
T = ApGsl = G)L(s.l —G)Ig

ApGsl — G) sl — G) 7Ll — G) g

Pa(sl — G)_lvl _1
= = Ma I - G )
1_ pa(SI — G)_lg p (S ( + gpa) V1
where the last equality comes frdPmoposition 2. |

Finally, we recognize the last form to be the Laplace transformafithe functionp, e¢+9%%(p| — G)~1g.

4. Conclusions

In conclusion, althougfTheorem 1lis mathematically quite close to previous known results, it does yield a
simpler formula for the Laplace transform in time of the finite time ruin probabilities aorin (1971), with
less assumptions (see note (3) after the theorem), and including the deficit at ruin as well. In conclusion, our result
suggests two possible approaches for calculating/approximating the finite time ruin probabilities:

e Inverting the Laplace transform in time (since there is only one transform to invert, there will be of course less
numerical errors).

e Using random horizon approximations. A first rough approximation for a fixed horizoay be obtained
by choosing an exponential horizd#, with expectatiory (thusa = r~1). This replaces the finite time ruin
probability by the rough approximatiorflw:il iy which is however obtained via only one evaluation of the
explicitly available transform (thus, no inversi’o’n)!

Further (converging) approximations may be obtained by choosing Erlang random horizons with expectation

equal to the desired fixed oneas proposed and implementeddismussen et al. (2002also, with no inversion).

The second approach is may be less attractive nowadays than it would have been twenty years ago, before th
developing of effective numerical inversion methods (like that of Gaver—Stehfest, for example). Its potential is worth
however further investigation.

Acknowledgements

This paper benefited from discussions with Soren Asmussen, and from useful comments from the referee. This
research was partially funded by MEyC Proyecto SEC2001-1169.

6



Appendix A

Formula(10)comes with a convenient probabilistic interpretation—see for exaAgteissen (2000, pp. 227-231),
obtained by following the distribution of the Markovian phase procesehich gives the phase of the jump at the
first visit time of any point:, while + moves fromu to 0. Letp, denote the row probability vector giving the
“initial” distribution of the phases at the first descending ladder height time of the risk process, obtained before the
exponential random time horizd, .

Note then that there are two ways for the procggs change phase: one, describing the phase changes “within
jump” at rate<s, and the second describing phase changes after the end of a jump and passing through “an invisible
upward excursion”. The end of a jump occurs at rgteend the start of the next downwards ladder point following
an upwards excursion occurs at rgpgsresulting in transition rates gjp,. Therefore, the transition matri@, of
J; must equalG + gp,,.

Finally, note that below 0 and until the ruin defieit, the phase process continues simply at rat®, implying
therefore that the deficit distribution is phase typge®, G).

Notes.

(1) The easiness with which the deficit result may be obtained under phase-type assumptions may be viewed as
one of the main advantages of this approach.

(2) This probabilistic structure turns out to be especially importadtamussen et al. (2002), for the solution of
the Erlang killed case.
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