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Technical Efficiency of the Longline
Fishery in Hawaii:  An Application
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Abstract  This paper examines the level and determinants of technical effi-
ciency for a sample of domestic longline fishing vessels operating in Hawaii in
1993. The data on per-trip costs and revenues, fishing targets, vessel ownership,
experience and education level of fishermen, vessel size, and vessel age are ana-
lyzed using a translog stochastic production frontier, including a model for
vessel-specif ic technical ineff iciencies.  Output elasticit ies,  marginal
productivities of inputs, and returns to scale are also examined. The technical
inefficiency effects are found to be highly significant in explaining the levels of
and variation in vessel revenues. The mean technical efficiency for the sample
vessels is estimated to be 84%. Vessels that target swordfish, and those varying
target by season, set, or trip, tend to be less efficient than those vessels target-
ing tuna and those mixing targets in all trips. Owner-operated vessels seem to
be more efficient than those operated by hired captains. The experience of fish-
ermen has a strong positive influence on technical efficiency. Although
insignificant, vessel size and fishermen’s education level have a positive influ-
ence, and vessel age has a negative influence on vessel efficiency.

Key words  Hawaii, longline fishery, pelagic fishery, stochastic production
frontier, swordfish, technical efficiency, tuna.

Introduction

The management and regulation of ocean fisheries continues to be one of the biggest
challenges for fishery agencies worldwide. In most cases, the regulations which
have been developed based on traditional bioeconomic models have failed to deliver
the expected results. Several economists have provided a number of reasons why
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traditional measures have not been successful when analyzing the characteristics of
multi-product (multi-species) technologies of fishing firms in terms of profit or rev-
enue functions. Most frequently cited reasons include the disregard of jointness-in-
technology (Kirkley and Strand 1988; Squires 1987a), substitutability among regu-
lated versus unregulated inputs (Dupont 1991), and the possibility of rent dissipa-
tion through inefficient fleet composition (Dupont 1990).

In addition to technology characteristics, the knowledge of the productive
performance of individual fishermen relative to the available technology and its
interaction with other socio-economic factors can also be useful for fishery
managers in formulating appropriate regulations. Depending upon the availabil-
ity of data, the productive performance of multi-product firms can be deter-
mined by estimating production, cost, or profit frontiers (Kumbhakar 1996).
Despite recent developments and widespread use of various production frontier
approaches to assess the various measures of productive efficiencies of firms in
many industries, the application of these techniques in commercial fisheries is
very limited.1 To our knowledge, Kirkley, Squires, and Strand (1995) and
Campbell and Hand (1997) have produced the only two studies that have em-
ployed production frontiers to commercial fisheries issues. The lack of frontier
studies in marine fisheries can largely be attributed to their inherent complexity
and consequent difficulty in collecting necessary production data. Furthermore,
fishery management authorities are generally more concerned with biological
aspects of fishery resources than with the economic performance of fishermen.
However, both the sustainable management of fish stocks and the efficient utili-
zation of resources associated with fishery production (such as labor, capital,
etc.) are crucial in order to maximize the social benefits of the fishing industry.

Given the inherent, stochastic nature of harvesting marine resources, the
stochastic frontier production function approach developed by Aigner, Lovell,
and Schmidt (1977) and Meeusen and van den Broeck (1977) appears to be ap-
propriate for assessing technical efficiency in a commercial fishery. Technical
efficiency measures the ability of firms to produce maximum output using a
given set of inputs and technologies.

The main objective of this paper is to examine the level and determinants of
technical efficiency of a sample of Hawaii-based, domestic longline vessels,
based on their 1993 operating cost and catch data. Due to its flexible properties,
a translog stochastic production frontier is estimated utilizing the Battese and
Coelli (1995) model for firm-specific technical inefficiency effects in order to
identify the relevant vessel- and operator-specific variables that may influence
technical efficiency.2

Output elasticities, marginal productivities of inputs, and returns to scale
are also investigated. Other efficiency measures, especially allocative effi-
ciency, are important in fisheries management, but due to data constraints, this
paper focuses only on technical efficiency.

1 See Coelli (1995a) for the most recent review of these approaches, including their estimation proce-
dures.
2 Kirkley, Squires, and Strand (1995) also specified a stochastic translog frontier for the analysis of
technical efficiency of the mid-Atlantic sea scallop fishery, but they used a second-stage procedure to
determine factors explaining technical efficiencies. Recently, several authors (Battese and Coelli 1995;
Kumbhakar, Ghosh, and McGuckin 1991; Battese, Coelli, and Colby 1989) have questioned this second-
stage approach by arguing that such factors should be incorporated directly into the estimation of the
production frontier model because they may have a direct impact on efficiency.
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Hawaii’s Longline Fishery

The longline fishery in Hawaii has been in existence since the early 1900s, but sig-
nificant growth did not occur until the late 1980s. This was due to the entry of mod-
ern longline vessels, development of local and export markets for fresh tuna, and
improved swordfish fishing methods. The longline fishery is now the largest domes-
tic commercial fishery in Hawaii (Boggs and Ito 1993).

In 1993, longliners landed over 25 million pounds of pelagic species with an ex-
vessel value of $54 million. The longline catch included 79% of total pelagic catch
and 84% of the total ex-vessel revenue in Hawaii. Landings of important pelagic
species by Hawaii’s longline vessels include four tuna species (yellowfin, bigeye,
albacore, and skipjack), three billfish species (swordfish, blue marlin, and striped
marlin), dolphinfish, and wahoo (Acanthocybium solandri). The Hawaiian pelagic
fishery also lands small quantities of shortbill spearfish (Tetrapturus angustirostris)
and black marlin (Makaira indica). Swordfish (Xiphias gladius) and bigeye tuna
(Thunnus obesus) are the two major species targeted by the longline fleet. In 1993,
the longliners landed about 13 million pounds of swordfish and 4.7 million pounds
of bigeye tuna. Other selected pelagic species landed by Hawaii’s longline fishery
included 1 million pounds of striped marlin (Tetrapturus audax); 1.4 million pounds
of yellowfin tuna (Thunnus albacares); nearly 1 million pounds of albacore
(Thunnus alalunga); 0.8 million pounds of blue marlin (Makaira mazara); and 1.7
million pounds of shark, mostly blue shark (Prionace glauca) [WPRFMC 1994a].
Statistics for subsequent years can be found in various annual reports on the Hawaii-
based longline fishery (Ito 1995; Ito and Machado 1996, 1997).

The present longline fleet in Hawaii includes a few older wood vessels, wood and
fiberglass vessels, and many newer steel vessels, most of which were previously en-
gaged in the U.S. mainland fishery (WPRFMC 1995). In 1993, there were 167 longline
vessels registered with federal limited-entry permits, of which only 122 were active.

Hawaii-based longline vessels are categorized by length into three size classes:
small (< 56 feet), medium (56–74 feet), and large (> 74 feet). Of the 122 vessels op-
erating in 1993, 30 were categorized as small, 48 as medium, and 44 as large (Dollar
1994). Some vessels target either swordfish or tuna, while others shift targets by
season, trip, or set. Furthermore, some longline vessels engage in the longline fish-
ery year-round, while others may switch to other Hawaiian fisheries or move to the
U.S. mainland during part of the year (WPRFMC 1995).

The older longline vessels are 42–70 feet in length and are capable of taking
two-week trips. The newer, modern vessels average 70–98 feet in length and can
travel up to 2–3 months. These vessels are often equipped with water, ice-making
machines, and modern electronic equipment for navigation, communications, and lo-
cating fish. When targeting tuna, longliners typically take 14–21 day-trips with a
captain and a crew of three. When targeting swordfish, longer trips of 30–45 days
are usually taken with a captain and a crew of four (WPRFMC 1995).

Expansion of longline activities in the early 1990s heightened the conflicts be-
tween longliners and the troll and handline fisheries. In addition, concern over im-
pacts on endangered species (e.g., sea birds and turtles) and the possibility of local-
ized overfishing led to tighter regulations for the domestic longline fishery in 1990
(Pooley 1990; Boggs and Ito 1993) and subsequent regulations for longliners under
the Pelagic Fishery Management Plan (WPRFMC 1994b).

After a rapid increase in the early 1990s, swordfish catch by the Hawaii-based
longline fleet experienced a significant decline (almost 50%) in 1994, and further
slight declines in 1995 and 1996. The reasons for these declines are still under in-
vestigation. Some preliminary explanations include a decline in catch-per-unit-effort
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(CPUE) for swordfish trips in 1994, combined with a subsequent decline in longline
effort directed toward swordfish (Ito and Machado 1997). Due to poor swordfish
catches in the central Pacific, several swordfish vessels migrated to the U.S. main-
land, and many of the remaining swordfish vessels shifted their fishing activities to-
ward targeting tuna. The recent decline in swordfish catch has generated consider-
able debate whether the swordfish stock can sustain any further increase in longline
activities. Examining the productive efficiency of the 1993 fleet can potentially shed
some light on possible future changes in longline fishing strategies. Furthermore,
the information on longline cost and production structure and its underlying technol-
ogy can be useful when considering new fishery regulations.

Data and Variables

The data for this paper came primarily from two sources. The first was a cross-sec-
tional survey of longline vessels which was undertaken for a cost-earnings study of
the Hawaii-based domestic longline fleet (Hamilton, Curtis, and Travis 1996). Of
the 122 longline vessels operating in 1993, 101 vessel owners and/or captains were
interviewed during May through December of 1994 to collect detailed information
on various aspects of the longline fishery, including vessel characteristics, fishing
targets, and operating costs. The second source was the 1993 sales and revenue data
from the Hawaii Department of Aquatic Resources (HDAR) commercial catch re-
ports, and dealer reports of pounds sold per trip by each vessel. Since inputs (crew
size, fuel, gear, and other supplies) were collected as averages of all trips for the en-
tire year, trip level outputs/revenues reported by the sample vessels in 1993 were
also averaged to form an estimate of output/revenue variable. Information on trip
length (days at sea) was obtained from the National Marine Fisheries Services
(NMFS) vessel inventory database, and the average days per trip for 1993 was esti-
mated in the same manner as the output/revenue variable. With the omission of six
vessels due to incomplete data, the number of vessels considered in the cost-earn-
ings study was ninety-five. For this study, another four vessels were dropped due to
missing information. Thus, ninety-one vessels were analyzed. Some key characteris-
tics of the longline fleet are discussed next, followed by a description of variables
used in the estimation of the stochastic production frontier.

The selected vessels showed considerable heterogeneity in terms of size, age,
and fishing targets, as well as experience, education level, and ethnicity of fisher-
men. Vessel size for the sample longline fleet ranged from 46 to 93 feet, with an av-
erage length of 69 feet. Similarly, gross registered tons (GRT) for the selected ves-
sels ranged from 10 to 127 GRT, with a sample mean of 95 GRT. The age of the
longline vessels varied from 3 to 68 years, with a mean age of 13 years. Of the 91
vessels analyzed, 21 targeted swordfish, 31 targeted tuna, 30 were mixed (“catch
whatever you can”), and the remaining 9 vessels varied their target by set, trip, or
season.

On average, the tuna vessels were generally smaller (64 feet) and older (21
years) than the others. Interestingly, fishing targets followed an ethnic line, with
most tuna vessels owned and operated by Koreans, most varied and mixed vessels
owned by Vietnamese, and the majority of swordfish vessels owned by Caucasians
(Hamilton, Curtis, and Travis 1996).

All output and input variables used in the production frontier analysis were
measured on a per-trip basis as, except for trip days, all data on input variables were
collected as per-trip averages. Landings of longline fleets typically feature multiple
species, often receiving different prices in the market. Thus, the aggregated quantity
of fish landed is not a suitable measure of output for the stochastic production fron-
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tier analysis. For this reason, the output variable (Y) is represented in terms of rev-
enue per trip.3

Longline fishery production involves multiple inputs, including number of days
at sea, crew size, fuel, bait, ice, gear, and other miscellaneous supplies. However,
for the purpose of this study, these inputs are aggregated into three categories;
namely, trip days, crew size, and other inputs.4 These are described in table 1, as are
a number of relevant vessel-specific and operator-specific variables hypothesized to
influence technical efficiency for the longline fleet. Summary statistics of output
and input variables, as well as vessel- and operator-specific variables included in the
analysis, are presented in table 2.

The Stochastic Frontier Model

Following Zellner, Kmenta, and Drèz (1966), a single-equation translog stochastic
production frontier for the Hawaii-based longline fishery is specified as:5
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3 As noted by one of the anonymous reviewers, using value instead of quantity as the output variable
results in a specified frontier that is not truly a production function. Nevertheless, this has been standard
practice in empirical work involving multi-product firms. An alternative would be to estimate profit or
cost frontiers. However, there is a limited scope for applying dual frontiers to cross-sectional data be-
cause of the lack of variation in prices. Some economists may be concerned with price instability in us-
ing prices to aggregate outputs. However, as noted by Squires (1987b), fishermen form their production deci-
sions based on expected relative species prices and prior knowledge subject to available technology, resource
availability, and environmental conditions. Thus, changes in relative prices do not affect their fishing strate-
gies. Moreover, relative prices of major species landed by Hawaii’s longliners have remained fairly con-
stant in recent years. One limitation of using revenue as an output variable is that such analysis may
confound the measures of technical efficiencies with allocative efficiencies; i.e., producer’s ability to
choose a revenue-maximizing species combination given the prices and technological constraints. How-
ever, because of bycatch of incidental species harvested in conjunction with targeted species, it will be
difficult to calculate a true measure of allocative efficiency in multi-species fisheries.
4 Kirkley, Squires, and Strand (1995) do not include other inputs for the assessment of technical effi-
ciency in the mid-Atlantic sea scallop fishery. They assume that these inputs are embodied in days at
sea. However, as indicated by a wide variation in other inputs/trip days by fishing target, this assump-
tion does not hold for Hawaii’s longline fishery. For instance, on average, other inputs ranged from
$483/day for tuna vessels to $1,141/day for mixed vessels. Initially, fixed inputs (insurance, deprecia-
tion, and dry-dock cost) were also considered but are not included in the final analysis because their out-
put elasticity was insignificant. Similarly, although stock abundance is an important input in fishery produc-
tion, due to the lack of data, no variable could be included in the analysis to reflect the stock situation in
1993. In the absence of direct observations of fish stocks, CPUE figures are commonly used as indicators of
stock abundance. However, because of its dependence on other inputs (crew size, fuel, and gear type)
[Squires 1987b; Pascoe and Robinson 1998], CPUE is not suitable to include as an input variable in produc-
tion function analyses. In practice, a series of dummy variables is used to capture the effect of stock
availability in different areas, seasons/months, and years (Campbell and Nicholl 1994; Pascoe and
Robinson 1998). However, because of one-period data, we are unable to include such variables in our
analysis. Thus, the results presented here are conditional on stock availability and targeting strategies
chosen by the sample vessels in 1993. The results for subsequent years may be different, as some of the
vessels previously targeting swordfish have shifted effort toward targeting tuna or mixed species.
5 Although, as noted by Kirkley and Strand (1988), the economic behavior of fishermen is not well es-
tablished in the literature, this formulation implies that the fishing firms maximize expected profits. Under
limited-entry conditions and with no restrictions being imposed on variable inputs, as in Hawaii’s longline
fishery, it is quite a realistic assumption. Because of the lack of sufficient observations to estimate a separate
production frontier for each target group, a single frontier is specified for the vessels involved in the study.
The authors are currently investigating the possibility of using longline trip level catch data to estimate a
separate frontier for each target. However, the lack of information on other inputs (crew size, fuel, gear,
etc.) used on each trip precludes us from using the same model specification as presented in this paper.
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where subscript i refers to the ith vessel in the sample; ln represents the natural
logarithm; Y represents output; and Xs are input variables, defined in the previous
section; βs are parameters to be estimated; Vi is assumed to be an independently and
identically distributed N(0, σv

2 ) random error, independent of Ui; and Ui is a nonne-
gative random variable, associated with technical inefficiency in production, which
is assumed to be independently and identically distributed and truncations (at zero)
of the normal distribution with mean, µi, and variance, σu

2 (|N(µi, σu
2 )|). Maximum

likelihood estimation of equation (1) provides the estimators for βs and variance pa-
rameters, σ σ σ2 2 2= +v u  and γ σ σ= u

2 2 .
Following Battese and Coelli (1995), it is further assumed that the technical in-

efficiency distribution parameter, µi, is a function of various operator- and vessel-
specific variables hypothesized to influence technical inefficiencies as:6
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9

(2)

where Zs are various operator- and vessel-specific variables, defined earlier, and
δs are unknown parameters to be estimated.

It should be noted that the above model for technical inefficiencies in equation
(2) can only be estimated if the technical inefficiency effects, Ui, are stochastic and
have particular distributional properties (Coelli and Battese 1996). Therefore, it is of

6 This specification assumes a neutral stochastic frontier. Because of an inadequate sample to estimate a large
number of parameters involved, the non-neutral frontier model (Huang and Liu 1994) is not considered.

Table 1
Description of Input and Vessel- and Operator-Specific Variables

Variables Description

Input

Trip days (X1) Total trip length (in days), including days spent on travel
Crew size (X2) Number of persons on the boat, including the captain
Other input (X3) Other variable operating costs ($/trip), including fuel,

bait, ice, and other miscellaneous items

Vessel- and operator-specific

Target dummy: Swordfish (Z1) Value 1 if the vessel targeted only swordfish all year,
0 otherwise

Target dummy: Tuna (Z2) Value 1 if the vessel targeted only tuna all year,
0 otherwise

Target dummy : Varied (Z3) Value 1 if the vessel changed its target by trip, season,
or trip, 0 otherwise

Owner-operated dummy (Z4) Value 1 if the vessel was owner-operated, 0 otherwise
Experience (Z5) Captain’s longline fishing experience (years)
Education dummy (Z6) Value 1 if the operator had high school or college

education,  0 otherwise
Vessel size dummy: Medium (Z7) Value 1 if the vessel is medium size (56 to 73 feet),

0 otherwise
Vessel size dummy: Large (Z8) Value 1 if the vessel is large size (≥ 74 feet), 0 otherwise
Vessel age (Z9) Age of vessel as of 1993 (years)
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interest to test the null hypotheses that the technical inefficiency effects are absent,
γ = δ0 = δ1 = … = δ9 = 0; technical inefficiency effects are nonstochastic, γ = 0; and
vessel-specific factors do not influence the technical inefficiencies, δ1 = … = δ9 = 0.
Under γ = 0, the stochastic frontier model reduces to a traditional average response
function in which the explanatory variables in the technical inefficiency model are
included in the production function. These null hypotheses can be tested using the
generalized likelihood-ratio statistic, λ , given by:7

λ  = 2[ln{L(H0)} – ln{L(H1)}]  (3)

where L(H0) and L(H1) denote the values of likelihood function under the null (H0)
and alternative (H1) hypotheses, respectively.

Given the specifications of the stochastic production frontier model in equations
(1) and (2), the technical efficiency index for the ith vessel in the sample (TEi), defined
as the ratio of observed output to the corresponding frontier output is given by:

TEi = exp(–Ui). (4)

The prediction of technical efficiencies is based on the conditional expectation
of expression, equation (4), given the values of Vi – Ui evaluated at the maximum

7 If the given null hypothesis is true, λ is approximately Chi-square distributed or mixed Chi-square dis-
tributed when the null hypothesis involves γ = 0 (see Coelli 1995b).

Table 2
Summary Statistics for Variables Involved in the Stochastic Production Frontier
and Technical Inefficiency Models for the Longline Fishery in Hawaii in 1993

Standard
Variable Average Deviation Minimum Maximum

No. of trips 10.7 3.6 3.0 17.0
Output ($/trip) 49,654.7 28,239.2 12,275.0 128,072.0

Inputs

Trip days (days/trip) 20.3 8.4 7.0 39.0
Crew size (no. of persons) 5.4 0.8 3.0 7.0
Other input ($/trip) 17,516.0 10,752.0 4,689.0 38,830.0

Vessel- and owner-specific variables

Target dummy: Swordfish (0 or 1) 0.23 0.42 0 1
Target dummy: Tuna (0 or 1) 0.34 0.48 0 1
Target dummy: Varied (0 or 1) 0.10 0.30 0 1
Owner-operated dummy (0 or 1) 0.56 0.50 0 1
Experience (years) 9.8 6.8 1 30
Education dummy (0 or 1) 0.74 0.44 0 1
Vessel size dummy: Medium (0 or 1) 0.43 0.50 0 1
Vessel size dummy: Large (0 or 1) 0.36 0.48 0 1
Vessel age (years) 12.8 11.8 3 68

Note: Figures for number of trips and output and input variables are the 1993 averages for 91 vessels
involved in the study.
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likelihood estimates of the parameters of the stochastic frontier model (Battese and
Coelli 1988). The frontier production for the ith vessel can be computed as its actual
production divided by its technical efficiency estimate.

Since the coefficients of the translog stochastic production frontier, equation
(1), do not have straightforward interpretation, the elasticity of output with respect
to the kth input variable, εk, evaluated at the mean values of relevant data points can
be derived as:

ε β β βk
k

k kk k kj
j k

ji
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∂
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≠
∑

ln

ln
ln ln2 (5)

where Xs  are the means of input variables used in the production frontier. The elas-
ticity, εk, measures the responsiveness of output to a 1% change in the kth input. The
measure for returns to scale, RTS, representing the percentage change in output due
to a proportional change in the use of all inputs, is estimated as the sum of output
elasticities for all inputs. If this estimate is greater than, equal to, or less than one,
we have increasing, constant, or decreasing returns to scale, respectively. Imposing
the restriction that the sum of output elasticities of all inputs be equal to 1, one can
formally test the assumption of constant returns to scale.8

Finally, marginal product of kth input at mean values of output and relevant in-
put variables can be computed as:9
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k

ε .  (6)

Empirical Results

The parameters for the stochastic production frontier model, equation (1), and those
for the technical inefficiency model, equation (2), are estimated simultaneously us-
ing the maximum-likelihood estimation (MLE) program, Frontier 4.1 (Coelli 1994).
These results are presented in table 3. Given the lack of direct interpretation of pa-
rameters in the translog production frontier, the parameter estimates of the stochas-
tic production frontier, equation (1), will be summarized and explained later in
terms of output elasticities with respect to various inputs.

Tests of Hypotheses

Generalized likelihood-ratio tests of various null hypotheses involving restric-
tions on the variance parameter, γ, in the stochastic production frontier and the
δ-coefficients in the technical inefficiency model are presented in table 4. Both
first and second null hypotheses, that technical inefficiency effects are not
present and that inefficiency effects are not stochastic, are rejected. Thus, the

8 The constant returns to scale assumption in the translog stochastic production frontier, equation (1),
imposes a number of linear restrictions in the parameters as follows: β1 + β2 + β3 = 1, 2β11 + β12 + β13 = 0,
β12 + 2β22 + β23 = 0, β13 + β23 + 2β33 = 0 (for mathematical details, see Boisvert 1982).
9 The marginal product estimated here is, in fact, the value of marginal product (VMP) since the output
variable in the production frontier is measured in value instead of quantity.
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traditional average (OLS) function is not an adequate representation for the analysis
of longline vessels in this study. This is also confirmed by the estimated value of
the variance parameter, γ, which is statistically different from zero.

The third null hypothesis, that the intercept and all the coefficients associ-
ated with various vessel- and operator-specific variables in the technical ineffi-
ciency model are zero (that the technical inefficiency effects have a traditional
half-normal distribution with zero mean), is rejected. The less restrictive fourth
null hypothesis, that all the parameters of the technical inefficiency model ex-
cept the intercept are zero (that the technical inefficiency effects have the same
truncated-normal distribution with mean equal to δ0), is also rejected. Given the
specifications of the stochastic production frontier model, defined by equations
(1) and (2), likelihood-ratio tests indicate that the technical inefficiency effects
are significant in explaining the variation in productive performance of the Ha-
waii-based longline vessels. The fifth null hypothesis of constant returns to
scale for the longline fishery is rejected by the data. Finally, the hypothesis that
type of species targeted has no effect on technical efficiency of longline vessels
is also rejected at the 0.10 level of significance.

Table 3
Parameter Estimates of Stochastic Production Frontier and Technical Inefficiency Models

Coefficient Asymptotic T-ratio

Stochastic production frontier

Constant 25.47** 25.81
ln (trip days) –1.10 –1.14
ln (crew size) –6.60** –6.23
ln (other input) –2.19** –5.64
ln (trip days) x ln (trip days) –0.42 –1.18
ln (crew size) x ln (crew size) –2.93** –3.00
ln (other input) x ln (other input) –0.34** –4.29
ln (trip days) x ln (crew size) –4.70** –5.15
ln (trip days) x ln (other input) 1.25** 3.91
ln (crew size) x ln (other input) 3.21** 7.44

Technical inefficiency model

Constant 0.63 1.17
Target dummy: Swordfish (0 or 1) 0.43 1.50
Target dummy: Tuna (0 or 1) –0.08 –0.10
Target dummy: Varied (0 or 1) 0.53 1.30
Owner-operated dummy (0 or 1) –0.36* –1.87
Experience (years) –0.07** –3.24
Education dummy (0 or 1) –0.18 –0.93
Vessel size: Medium (0 or 1) –0.20 –0.56
Vessel size: Large (0 or 1) –0.29 –0.74
Vessel age (years)  0.01 1.13

Variance parameter

σ2 0.11** 3.39
γ 0.68** 5.75

Ln (likelihood) –0.11 –

Notes: * statistically significant at the 0.10 level. ** statistically significant at the 0.01 level.
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Technical Efficiencies

The estimated technical efficiencies for the Hawaii-based longline vessels range
from 0.29 to 0.97, with a mean efficiency level of 0.84. The frequency distribution
of the estimated technical efficiencies is depicted in figure 1. The majority of ves-
sels (42%) has a technical efficiency index of 0.9 or above, followed by those with
efficiency indices of 0.8 to 0.9 (34%). Thus, more than 75% of the sample vessels
have a technical efficiency index of 0.8 or higher, suggesting that, in 1993, a large
proportion of the vessels operated close to the efficient frontier. However, substan-
tial inefficiencies prevail among the remaining 25% of the vessels involved in this
study. The mean technical efficiency for the longline fishery in Hawaii is somewhat
higher than 0.75 for the mid-Atlantic sea scallop fishery (Kirkley, Squires, and
Strand 1995).

Figure 1. Frequency Distribution of Technical Efficiencies
for the Longline Fishery in Hawaii

Table 4
Generalized-likelihood Ratio Tests of Hypotheses for Parameters of the Stochastic

Production Frontier and Technical Inefficiency Models for the Longline Fishery in Hawaii

Null Hypothesis Log-likelihood Value Test Statistic (λ)

H0: γ = δ0 = δ1 = … = δ9 = 0 –17.82 35.43**

H0: γ = 0 –7.01 13.81**

H0: δ0 = δ1 = … = δ9 = 0 –14.24 28.27**

H0: δ1 = … = δ9 = 0 –11.91 23.61**

–6.38 12.54**

H0: δ1 = δ2 = δ3 = 0 –3.60 6.98*

Notes: * statistically significant at the 0.10 level. ** statistically significant at the 0.01 level. The correct
critical values for the first and second hypotheses involving γ = 0 are obtained from table 1 of Kodde
and Palm (1986, p. 1246), with degrees of freedom equal to 11 and 2, respectively.

H ij0 1
3 1: ε=∑ =
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Factors Affecting Technical Inefficiencies

The results of generalized likelihood-ratio tests reveal that the joint effect of
vessel- and operator-specific variables on technical inefficiencies is highly sig-
nificant. However, as shown in table 3, the individual effects of several of these
variables are statistically insignificant. Based on asymptotic t-ratios, none of
the coefficients associated with target dummies have a significant effect on
technical efficiency. However, according to the likelihood-ratio test, the net ef-
fect of target dummies on technical efficiency is found to be significant at the
0.10 level, with mixed and tuna vessels being technically more efficient than
varied and swordfish vessels.

The mean technical efficiencies for mixed, tuna, swordfish, and varied ves-
sels are 0.86, 0.89, 0.80, and 0.69, respectively. The differences in technical ef-
ficiency should be interpreted carefully. In view of varying conditions facing
the fishery, it is hard to draw any firm conclusions regarding the performance
of vessels targeting different species based on results for a single year. Al-
though the varied vessels performed poorly in 1993, they may have a long-run
advantage over specialized vessels because of their greater ability to shift tar-
geting strategies. However, because of the cost associated with the design of
flexible technology, varied vessels are likely to be technically less efficient in
the short run. A lower technical efficiency for swordfish vessels than tuna or
mixed vessels could be attributed to longer travel time involved for swordfish
trips than for tuna or mixed trips. The travel time for swordfish trips is increas-
ing every year, which may be one of the reasons why swordfish vessels have
now shifted toward tuna or mixed species.

Owner-operated vessels tend to be more efficient than those operated by
hired captains. As expected, both operator fishing experience and educational
attainment have a positive influence on technical efficiency, but the effect of
education is insignificant, indicating that experience is more important for ves-
sel performance than the education level of the fishermen. Although not signifi-
cant, vessel size has a positive influence, and vessel age has a negative influ-
ence on the technical efficiency of the longline fleet.

Elasticities and Returns to Scale

The estimates of output elasticities evaluated at means of relevant data points and
defined by equation (5) are presented in table 5. As expected, the estimated values
of output elasticities for all inputs are positive, suggesting that the estimated
translog frontier production function is a well-behaved production technology. Fur-
thermore, all elasticity estimates are significantly different from zero at the 0.01

Table 5
Output Elasticities for Longline Fishery Production in Hawaii

With Respect To: Elasticity Standard Error

Trip days 0.71* 0.15
Crew size 0.84* 0.32
Other input ($) 0.32* 0.12

Note: * statistically significant at the 0.01 level.
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level of significance. Crew size is found to have the highest elasticity (0.84), fol-
lowed by trip days (0.71) and other inputs (0.32).

To our knowledge, there exists few studies examining output elasticities in
commercial fisheries. Although the authors did not present the estimates of out-
put elasticities for the mid-Atlantic sea scallop fishery (Kirkley, Squires, and
Strand 1995), based on their results we estimated elasticities of days at sea and
crew size, in their case, to be 1.25 and 0.48, respectively. These values are
quite different from our study. The returns to scale for Hawaii-based longline
vessels, computed as the sum of output elasticities for all inputs, is estimated to
be 1.87. Thus, based on 1993 data, longline fishery production can be charac-
terized by increasing returns to scale. This is also confirmed by rejection of the
constant returns to scale hypothesis (table 4). The output elasticities estimated
for the mid-Atlantic sea scallop fishery also indicate the presence of increasing
returns to scale.

Table 6 provides estimates of the marginal contribution of each input to
gross earnings by target, derived from equation (6). Overall, fishermen could
increase their per-trip gross earnings by more than $1,700 by adding a fishing
day. Similarly, by adding a crew member, they could increase their per-trip
gross earnings by more than $7,700. Of this, approximately 50% goes to the
owner of the vessel, 15% to the captain, and the remaining 35% is shared
among other crew members. The addition of an extra crew member could in-
crease per-trip earnings of each crew member (excluding the captain) by about
$140 (table 6). Except for tuna vessels, the marginal gain from increasing other
inputs is not large enough to cover the actual expenses involved, indicating the
super-optimal (over) use of these inputs.

The results show substantial variation in marginal productivities of inputs
among different target groups. For example, mixed vessels may benefit most by
fishing an extra day, but low marginal productivity of other inputs suggests
shorter trips, as longer trips are associated with higher levels of these inputs.
Comparing marginal productivity of crew size with average earnings received
by each crew member, swordfish vessels may benefit most by increasing crew
size. Among other target groups, mixed vessels could also benefit slightly by
expanding crew size, while varied and tuna vessels are probably at or above op-
timal crew size already. Only tuna vessels are found to be highly efficient in us-
ing the other inputs.

Table 6
Marginal Product of Inputs and Average and Marginal

Crew Shares for the Longline Fishery in Hawaii ($/trip)

Trip Days Crew Size Other Inputs

Marginal Marginal Marginal Average Marginal
Product Product Crew Share* Crew Share* Product

Mixed 2,023 7,436 1,906 1,744 0.81
Swordfish 1,821 12,730 2,957 2,605 0.86
Tuna 1,433 4,992 1,849 1,882 1.35
Varied 1,236 5,396 1,996 2,001 0.88
All 1,736 7,741 2,146 2,008 0.90

Note: * Crew shares denote the earnings per crew member, excluding captain and owner shares.
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Implications

Given the stock availability and fishing practices of the sample vessels in 1993,
results indicate that the majority of mixed and tuna vessels operate close to the
efficient frontier, while there still exists potential for improving performance
among varied and swordfish vessels. On average, the sample vessels could have
increased their 1993 per-trip gross earnings by about 19% by operating at full
technical efficiency.10 Table 7 shows the mean levels of actual and frontier rev-
enues, as well as average input levels by target. Based on these results, varied
vessels could, on average, increase their gross earnings by 39%, swordfish ves-
sels by approximately 22%, mixed vessels by 15%, and tuna vessels by 12% if
operated at full technical efficiency. If these results were extrapolated for the
entire longline fleet in Hawaii, the 1993 total annual gross earnings at full effi-
ciency would have been nearly $12 million higher than actual total earnings.
Due to their large size, capacity to take longer trips, and hold more catch,
swordfish vessels could capture more than two-fifths of these increased earn-
ings at full technical efficiency, followed by mixed vessels. Because of the de-
cline in longline effort toward swordfish, the share of swordfish vessels in total
efficiency gains would be smaller after 1993, but it would still be the largest.

The model for technical inefficiency effects provides some helpful clues to
improve performance of the longline fleet. For instance, the results indicate

10 Although the output is measured in value, increased revenue at a higher level of technical effi-
ciency has to come mainly from increases in landings, as fishermen have little control over prices
they get. There may exist potential for increasing revenue without increasing the total quantities of
fish harvested through an increase in allocative efficiency; i.e., increasing the effort toward target-
ing high-value instead of low-value species. Either way, increases in efficiency will contribute to a
decline in stocks. Despite a decline in swordfish catch in last 3–4 years, there is no evidence that
increased longline activities have led to this decline. In fact, the longline landings of tuna and
mixed species, especially sharks, have increased as vessels previously targeting swordfish have
shifted toward tuna and mixed species. It is still not clear whether the recent decline in swordfish
catches by Hawaii-based longliners is due to a decline in swordfish abundance or due to the de-
cline in longline effort toward swordfish.

Table 7
Average Technical Efficiency, Input Use, and Revenue by Target in 1993

Mixed Swordfish Tuna Varied

Number of vessels analyzed 30 21 31 9
Average number of trips 10.7 7.7 13.0 11.2
Technical efficiency 0.86 0.80 0.89 0.89

Inputs

Trip days (days/trip) 18.8 32.1 13.8 19.8
Crew size (no. of people) 6.0 5.4 4.7 5.3
Other inputs ($/trip) 21,250 30,434 6,589 12,566

Revenue

Actual revenue ($/trip) 53,721 82,386 27,958 34,463
Frontier revenue ($/trip) 61,870 100,790 31,195 47,775
Difference (%) 15.2 22.3 11.6 38.6
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that, holding everything else constant, varied vessels could benefit by changing
their targeting strategies in the short-run, but as mentioned previously, the ap-
plication of varying technology can be advantageous in the long-term. Simi-
larly, vessel owners may increase the rate of return by operating the vessel by
themselves or by using more experienced captains. If the current trend of using
newer and larger vessels continues, and everything else remains the same, ves-
sel efficiency of the longline fleet is expected to improve over time.

The analysis of marginal productivities of inputs also provides some useful
information for the longliners, although they might have changed over the past
3–4 years. Except for tuna vessels, smaller marginal benefits of inputs other
than their actual expenses, indicate that fishermen will not gain by increasing
the levels of these inputs. For the same reason, they will also not benefit by
prolonging fishing trips, as this increases the levels of operating inputs. The re-
sults also indicate that swordfish vessels and, to some extent, mixed vessels
could benefit by increasing their crew size.

Conclusions

This paper provides an assessment of technical efficiency for a sample of Ha-
waii-based domestic longline vessels based on their 1993 catch performance
and cost data. Average per-trip inputs and revenues, as well as vessel- and op-
erator-specific information are analyzed by estimating a translog stochastic pro-
duction frontier, including a model for technical efficiency effects. Besides
technical efficiency, output elasticities and marginal products of trip days, crew
size and other inputs, and returns to scale are also examined.

The results reveal that technical inefficiency effects are significant in ex-
plaining the level and variation in per-trip vessel revenues. The mean technical
efficiency for the sample longliners is estimated to be 84%. Various vessel- and
operator-specific factors influence technical efficiency, particularly vessel own-
ership, experience of fishermen, and the choice of targets. Owner-operated ves-
sels seem to operate more efficiently than those operated by hired captains.
Fishing experience has a strong positive effect on technical efficiency. Mixed
and tuna vessels tend to be relatively more efficient than varied and swordfish
vessels. Results indicate the presence of increasing returns to scale in longline
fishery production. The estimates of marginal productivities of inputs suggest
that, except for tuna vessels, it is not economical for longliners to extend their
trip days or to increase the level of other inputs. Swordfish vessels have the
most potential for expanding crew size.

Based on 1993 data, sample vessels, on average, could increase their per-
trip gross earnings by 19% if all vessels operate at full technical efficiency.
This would amount to an additional $12 million annual revenue for the entire
longline fleet.

Because of the use of average per-trip data, we cannot examine the seasonal
variation in performance of the longline fleet. Similarly, due to the lack of ad-
equate observations in the sample, the frontier analysis could not be conducted
separately for each target group to examine the presence of different production
technologies under different targeting strategies. Although the availability of
fish stocks can have a significant impact on the level and efficiency of fishery
production, this information was not available. Despite the importance of
allocative and scale efficiencies, again, due to data constraints, our analysis fo-
cused only on technical efficiency. Therefore, further study is recommended to
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analyze the seasonal effects on efficiency by collecting trip-level production
data (including trip days, crew size, and other inputs), to estimate the separate
production frontier for each target by increasing the sample size, and to extend
the analysis to allocative and scale efficiencies. Finally, due to the migratory
nature of pelagic species, collecting direct information on the abundance of fish
stocks will continue to be a challenge.
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