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Optimal Partial Harvesting Schedule
for Aquaculture Operations
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Abstract   When growth is density dependent, partial harvest of the standing
stock of cultured species (fish or shrimp) over the course of the growing season
(i.e., partial harvesting) would decrease competition and thereby increase indi-
vidual growth rates and total yield. Existing studies in optimal harvest
management of aquaculture operations, however, have not provided a rigorous
framework for determining “discrete” partial harvesting (i.e., partially harvest
the cultured species at several discrete points until the final harvest). In this pa-
per, we develop a partial harvesting model that is capable of addressing discrete
partial harvesting and other partial harvesting using impulsive control theory.
We derive necessary conditions of the efficient partial harvesting scheme for a
single production cycle. We also present a numerical example to illustrate how
partial harvesting can improve the profitability of an aquaculture enterprise
compared to single-batch harvesting and gradual thinning. The study results in-
dicate that well-designed partial harvesting schemes can enhance the
profitability of aquaculture operations.

Key words   Partial harvesting, impulsive control theory, aquaculture.

JEL Classification Codes   C61, Q22.

Introduction

Partial harvest of the standing stock of cultured species (fish or shrimp) over the
course of the growing season (hereafter refer as “partial harvesting”) would decrease
competition and thereby increase individual growth rates and total yield (Allen et al.
1984; Brummett 2002). Paessun and Allison (1984) and Watten (1992) observed that
partial harvesting could increase the productivity of a tilapia and trout farming sys-
tem, respectively. Moss, Otoshi, and Leung (2005) tested partial harvesting in a
super-intensive recirculating shrimp production system. Their results indicate that a
well-managed partial harvesting schedule could improve the overall productivity
and profitability of shrimp mariculture in the presence of density-dependent growth.
With affordable new techniques and machines nowadays, partial harvesting could
become a potential avenue to utilize efficiently the growout capacity of ponds,
tanks, cages, or raceways in aquaculture operations, especially in the semi-intensive
and intensive farms with the eventual goal of enhancing profitability. The basic
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premise of partial harvesting is that growth would be impeded when carrying capac-
ity is reached or simply growth would be depressed with increasing biomass
(density). As a result, partial harvest of the standing stock of cultured species would
increase overall productivity. The paradigm of partial harvesting has been well
documented in the literature (Allen et al. 1984; Hannesson 1986; Sendak, Brissette,
and Frank 2003; Burgess, Robinson, and Wetzel 2005), but we found that existing
harvest management models are still rather restrictive in nature and generally not
suitable for practical on-farm applications. Further, no practical model that is able to
address the “discrete” partial harvesting strategy consisting of several discrete har-
vests throughout the growout process can be found in the literature. Therefore, we
attempt to develop an optimal harvest model that is capable of addressing “discrete”
partial harvesting for a single cohort of farmed fish (or shrimp and other cultured
species) represented by uniform, density-dependent growth.

Literature Review

Economic analysis of harvesting management in aquaculture is not new. Studies on
optimal harvesting management of aquaculture focus on investigating the efficient
harvesting policies under various biological and economic conditions (Bjorndal,
Lane, and Weintraub 2004). Most of them considered only single-batch harvesting;
i.e., one harvest for the entire production cycle. Several distinct but related harvest-
ing strategies involve multiple harvests during a production cycle. They are
selective harvesting (Bjorndal 1988), sequential rearing (Paessun and Allison 1984;
Watten 1992), gradual thinning (Hannesson 1986), gradual culling (Heaps 1993,
1995), and graded harvesting (Summerfelt et al. 1993; Forsberg 1996, 1999). Selec-
tive harvesting, sequential rearing, and graded harvesting are strategies to be used
when individual growth is different among a single cohort of cultured species or
there are multiple cohorts. Gradual thinning (or culling) is designed for a single co-
hort of cultured species with uniform, density-dependent growth. Hannesson (1986)
developed a continuous time optimal control model to investigate the emergence of
gradual thinning; i.e., continuous thinning (until the final harvest) after a period of
uninterrupted growth, for a single year class of fish in the presence of density-de-
pendent growth. He proved that with density dependency, the farmer could use
gradual thinning to enhance the returns from a cohort of cultured fish, especially
when the effect of dependency is strong. Hannesson modeled the thinning decision
as an artificial mortality rate controlled by the farmer to maximize the present value
of harvesting activities (i.e.,  N  = –(M + F)N, where N, F, M are the number of re-
maining fish, thinning rate, and natural mortality rate, respectively). This
specification, however, only permits Hannesson’s optimal control model to handle
“continuous” gradual thinning. This is because in order to solve for the optimal con-
trol path in the conventional optimal control framework, the state variable (i.e., the
population (or the number) of remaining fish in the pond) has to be piecewise differ-
entiable and continuous in time (Chiang 1984). In other words, the population curve
permitted in Hannesson’s model has to be a continuous curve in time as illustrated
in figure 1. Discontinuous population curves, such as the one illustrated in figure 2,
are inadmissible in Hannesson’s model. Notice in figure 2 that there are jumps in the
state variable whenever a harvest occurs. We label the harvesting policy associated
with a discontinuous population curve, such as the one in figure 2, as “discrete” par-
tial harvesting. Discrete partial harvesting means that thinning takes place at several
discrete points until the final harvest. From the practical point of view, discrete par-
tial harvesting is likely to be a more realistic harvesting policy. Arnason (1992)
introduced the feed regime into harvesting management. He argued that if fish
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growth does not depend directly on density, it is always optimal to harvest the entire
cohort at one point in time. On the other hand, with density-dependent growth, some
thinning of the fish cohort prior to the final harvest would normally be optimal, as-
suming the size and growth of fish are identical within the cohort. Heaps (1995)
further extended Arnason’s model and derived a combined optimal feeding-thinning
schedule for a single year class of fish under the same optimal control framework as
Hannesson’s model. His results again indicated that if fish growth is density depen-
dent, the optimal harvest policy would involve a period of no culling followed by a
period in which there is a continuous culling up to a final harvest where all the re-
maining fish are harvested; i.e., gradual culling. Gradual culling is equivalent to
gradual thinning in Hannesson’s model. From the above brief review, it is clear that
existing optimal harvesting models of farmed fish either have not considered or can-
not evaluate the “discrete” partial harvesting strategy for a single year class of fish
when growth is density dependent. In addition, the integer linear programming deci-
sion model developed by Shaftel and Wilson (1990) proposed “discrete” partial
harvesting as the optimal harvesting policy in a very naive way. They presumed that
there is a threshold level of biomass, which could affect significantly shrimp growth
and survival, so the farmer would remove a portion of the shrimp stock to maintain
the biomass level under the threshold before the final harvest. The resulting “dis-
crete” partial harvesting is enforced by the specification of a threshold per se.
Consequently, their model cannot serve as a general analytical framework of har-
vesting management. We have to resort to an innovative optimal control framework
that can admit jumps in state variables.

Figure 1.  Fish Population Curve (Gradual Thinning)
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The appropriate method to construct optimal control problems with jumps in the
state variables is impulsive control theory. Impulsive control is a control paradigm
based on impulsive differential equations, which allows for jumps in the state vari-
ables (Yang 2001). Seierstad (1981) first derived the fundamental necessary and
sufficient conditions for the solution of basic impulsive control problems. Since
then, research continues to extend impulsive control systems by incorporating fea-
tures such as free ending time, stochastic variables, state constraints, and periodic
motions (Barles 1985; Yong and Zhang 1992; Miller 1993; Yang 2001; Arutyunov
and Pereira 2000; Arutyunov, Karamzin, and Pereira 2003). Impulsive control theory
has been extensively applied in many areas, including electrical engineering, me-
chanical engineering, medicine, and biological sciences, using different names such
as jump control and impulse control (Rogovchenko 1997). Using impulsive control
theory, the planner of a farming operation can determine the desired total number of
harvests and the magnitude and timing of each harvest. Hence, there are no a priori
assumptions about the nature of harvest strategy (i.e., single-batch harvesting,
gradual thinning, or discrete partial harvesting). For instance, (continuous) gradual
thinning could lead to the case where the total number of harvests becomes infinite.
Single-batch harvesting is the case where the desired total number of harvests is one.

To date, only a few applications of impulsive control theory can be found in for-
estry and fishery. Touza-Montero and Termansen (2001) applied the impulsive
control approach to derive the optimal rotation time for the clear-cutting strategy in
timber management. Baumeister and Leitao (2004) derived the first-order necessary
conditions of optimality for efficient exploitation of an open-sea fishery by model-

Figure 2.  Fish Population Curve (Discrete Partial Harvesting)
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ing harvesting as an impulsive depression in fish populations. The present study is
the first to apply impulsive control theory to solve a practical farming problem.

The Model

We use impulsive control theory to set up a partial harvesting model for a single co-
hort of cultured species with uniform, density-dependent growth. We use shrimp
culture as an illustrative example. Nonetheless, we can apply the derived results and
conclusions to other cultured species as well.

Let w(t) and n(t) represent the average weight and number of remaining shrimp
in the growout pond, respectively. The biological growth process of shrimp stock
can be described by the following two differential equations:

n t mn t n n( ) – ( ), ( )
•

= =         0 0 (1)

w t g f t w t n t t w w( ) ( ), ( ), ( ), , ( ) ,
•

= [ ] =    0 0 (2)

where m is the constant instantaneous rate of natural mortality of shrimp. Equation
(1) is the simplest and most common functional form in which mortality is depicted
in the literature. Equation (2) describes the growth of an individual shrimp, which is
enhanced by feeding [f(t)] and affected by density [w(t) · n(t)] and age (t). w0 and n0

are the average stocking weight and stocking number of juveniles, respectively. We
ignore the variation of weights among different shrimp in this basic model.

Define [0, T] as the planning horizon under our investigation. Let τj denotes the
timing of a decision period when the j-th harvest occurs (τj ∈ [0, T]). Changes in the
average weight and number of remaining shrimp due to a particular harvest at τj are
described by the following impulsive differential equations:

w wj j( ) ( )τ τ+ −− = 0 (3)

n n v nj j j j( ) ( ) ( ),τ τ τ+ − −− = − (4)

where τ j
+  denotes the instant just after the harvest occurs at the τ j

th  decision period,
and τ j

−  denotes the instant just before the harvest. vj denotes the amount (in percent-
age terms) of shrimp stock that is harvested at the τ j

th  period.
The reward (revenue) function associated with a typical harvest, vj, can be de-

scribed as:

 R p w t t w t n t v c h p w c w n v hj j j j j[ ( ), ], ( ), ( ), , , [ ( )] ( ) ( ) ,{ } = −{ } −−τ τ τ (5)

where p[w(τj)] is the price of shrimp (e.g., in $/kg), which is weight-dependent;1 c is
the variable cost of harvesting a unit of shrimp stock (e.g., in $/kg); and h is the
quasi-fixed cost associated with each harvest.

1 Weight-dependent or size-dependent price in the shrimp market is a very important relationship. Many
studies have been devoted to address this issue. For example, Mistiaen and Strand (1998) demonstrated
that a piecewise-continuous price schedule would generate stepwise-nonlinear responses of management
behavior to changes in exogenous parameters.
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On the other hand, the cost of feeding can be expressed as follows:

FC sf t w t n t dt

T

= ∫ ( ) ( ) ( ) ,
0

(6)

where f(t) denotes the amount of feed in terms of percentage of the prevailing biom-
ass [w(t) · n(t)]. s is the cost per unit of feed (e.g., in $/kg). For ease of exposition, we
ignore other fixed costs and variable costs of shrimp culture in the present analysis.

Assume that there are k harvests over the production cycle. The timing and mag-
nitude of these harvests can be denoted as τ1,…,τk and v1,…,vk, respectively. The
objective of the farmer (or the planner) is to maximize the net revenue from the har-
vesting and related feeding activities. Because of the relatively short planning
horizon involved in our problem, we ignore the discount factor. Hence, the optimi-
zation problem can be formally described as follows:

Max p w c w n v h sf t w t n t dt
f t k v v

j j j j

j

k T

k k( ), , ... , ...
( ) ( ) ( ) ( ) ( ) ( )

1 1
1 0

τ τ
τ τ τ= [ ] −{ } −[ ] −−

=
∑ ∫ (7)

w w j k
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v

j j
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j
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•
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+
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∈
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1
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0

0
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 .

The Hamiltonian, H(t), of problem (7) is defined by:

H t sf t w t n t t mn t t g f t w t n t t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ), ( ), .= − − + [ ]λ λ1 2 (8)

Let [n*(t), w*(t), f*(t), τ τ1 1
* * * *, , , , ,… …k kv v ] be an admissible collection which solves

the above maximization problem (7). Then there exists two piecewise continuous
functions, λ1(t) and λ2(t), according to the maximum principle of impulsive control
problems developed by Seierstad and Sydsater (1987). λ1(t) is the shadow value of n
(in situ value of one shrimp) at time t. λ2(t) is the shadow value of w (in situ value
of one unit of shrimp weight), e.g., $/kg.

Following Seierstad and Sydsater (1987), necessary conditions for the solution
of problem (7) can be described as follows:

For all non-jump points of [n*(t), w*(t)] (i.e., the no-harvest period), H[n*(t),
w*(t), f(t), λ1(t), λ2(t), t] ≤ H[n*(t), w*(t), f*(t), λ1(t), λ2(t), t]. This gives:

λ2 ( ) ( ), ( ), ( ), ( ), ( ), ( ), ( ) ( ) ( ) ( )* * * * * * * *t g f t w t n t t g f t w t n t t sw t n t f t f t[ ] − [ ]{ } ≤ −[ ] (9)

for all f(t) ∈ (0, ∞), where the right-hand side of equation (9) represents the cost of
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deviating from optimal feeding (i.e., excess feed cost due to overfeeding or savings
on feed cost due to underfeeding); the left-hand side of equation (9) represents the
change in the potential benefits of shrimp stock due to change in shrimp growth
caused by the deviation of optimal feeding (i.e., extra weight gain due to overfeed-
ing or insufficient weight gain due to underfeeding). Equation (9) indicates that an
optimized feeding regime would make the cost of any deviation greater than its as-
sociated return (benefit) such that any deviation is not worthwhile.

The co-state variables, λ1(t) and λ2(t), are continuously differentiable at the no-
harvest period and satisfy the following conditions:

λ λ λ1 1 2( )
( )

( )
( ) ( ) ( ) ( ) ( ), ( ), ( ),

• *
* * * * *t

H t

n t
sf t w t t m t g f t w t n t tn= −

∂
∂

= + − [ ] (10)

λ λ2 2( )
( )

( )
( ) ( ) ( ) ( ), ( ), ( ), .

• *
* * * * *t

H t

w t
sf t n t t g f t w t n t tw= −

∂
∂

= − [ ] (11)

Equation (10) shows that the change in the shadow value of n (in situ value of one
shrimp) is the sum of the added feeding cost, the cost associated with shrimp mor-
tality, and the marginal cost due to the negative effect on growth. Equation (11)
shows that the change in the shadow value of w (in situ value of one unit of shrimp
weight) is the sum of the added feeding cost and the marginal cost due to the nega-
tive effect on growth.

Furthermore, for the no-harvest period, we have:

p w t c w t t* *( ) ( ) ( ).[ ] −{ } ≤ λ1
(12)

Equation (12) shows that during the no-harvest period the net market value of a
piece of shrimp by harvesting it at time t, [{p[w*(t)] – c}w*(t)], will be smaller than
its shadow value [λ1(t)]; i.e., the potential net revenue that can be obtained by leav-
ing it to grow and to be harvested at a later date. Under an optimized harvest
schedule, the no-harvest period is defined as the time when the net benefit (market
value minus variable harvest cost) of harvesting one piece of shrimp immediately is
smaller than the potential net benefit of harvesting that piece of shrimp at a later
date (or the benefit of not harvesting at that moment).

In our application, the entire shrimp standing stock will be harvested at the end
of the planning horizon, T. Hence, the transversality conditions for the two co-state
variables can be expressed as:

λ1(T+) = Free (13)

λ2(T+) = 0. (14)

Now, we move to the conditions describing the jump points where a harvest oc-
curs (i.e., τ τ1

* *,..., k ). First, we have:

λ τ λ τ τ τ λ τ1 1 1( ) ( ) ( ) ( ) ( )* * * * * * * * *
j j j j j j jp w c w v v+ − +− = − [ ] −{ } +   for j =1,…,k (15)

λ τ λ τ τ τ τ τ2 2( ) ( ) ( ) ( ) ( ) ( )* * * * * * * * * * *
j j j j j w j jn v p w c p w w+ − −− = − [ ] − + [ ]{ }   for j =1,…,k. (16)
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Moreover, at all harvest points τ*
j, we have:

   p w c wj j j
* * * * *( ) ( ) ( ),τ τ λ τ[ ] −{ } = +

1    for j =1,…,k. (17)

Equation (17) indicates that at the moment when harvest occurs, the in situ
value of shrimp equals the net value of harvested shrimp. Equation (17) is the well-
known necessary condition for optimal harvesting in fisheries economics (Anderson
1977; Clark 1990). Equation (17) also describes “the law of indifference” in optimal
control theory: an optimal harvest schedule would make it indifferent between har-
vesting one more piece of shrimp right now and leaving that piece of shrimp to grow
for future harvest. Therefore, λ1(t) can be interpreted as the partial (shadow) value
foregone by harvesting a piece [or w(t) in terms of its average weight] of shrimp at
time t instead of leaving it to grow for harvest at a later date, while ignoring the cur-
rent effect of morality. In other words, it is the partial opportunity cost of harvesting
a single shrimp at time t or the partial potential benefit of harvesting a single shrimp
at a later date, ignoring the effect of morality at that instant. Subsequently, λ1(t)/w(t)
measures the partial value foregone by harvesting a unit of shrimp biomass at time t,
while ignoring the effect of mortality at that instant. Similarly, λ2(t)/w(t) measures
the partial value forgone by harvesting a unit of shrimp biomass at time t, while ig-
noring the effect of growth at that instant. Because λ1(t) and λ2(t), respectively,
ignore the effect of mortality and growth, λ1(t)/w(t) will not equal λ2(t)/n(t). In fact,
it is λ1(t)λ2(t)/w(t)n(t) that represents the total potential benefit of a unit of shrimp
biomass at time t by leaving it to grow further, taking into consideration the effect of
morality and growth together.

Substituting equation (17) into equation (15) gives λ τ λ τ1 j
*

1 j
*( ) ( ).+ −=  Therefore,

the co-state variable,  λ1(t), is continuous even at the jump points. This is because at
the instant of harvest there is no change in shrimp weight such that the partial
shadow value of a piece of shrimp would remain the same.

To explore the properties of equation (16), we will consider the special case
where shrimp price (p) is constant and variable cost of harvesting (c) is zero. Equa-
tion (16) now can be rewritten as λ τ λ τ τ2 2( ) ( ) ( ) .* * * * *

j j j jpn v+ − −= −  It shows that when
the effect of growth is ignored, the change in the partial potential value of n(t) units
of shrimp biomass due to a particular harvest would equal the market value associ-
ated with the number of shrimp harvested. It is clear that when the effect of future
growth is ignored, the change in the current value of the shrimp standing stock
[ ( ) ( ) ( ) ( )]* * * *λ τ τ λ τ τ2 2j j j jw w+ + − +−  due to the decreased number of shrimp [ ( ) ]* * *n vj jτ −

would be equal to the market value of harvested shrimp [ ( ) ( ) ].* * * * *pw n vj j jτ τ− −  The term
p w ww j j[ ( )] ( )* * * *τ τ  in equation (16) captures the effect of weight-dependent price.

The above necessary conditions [equation (9) to equation (17)] adopted directly
from Seierstad and Sydsater’s maximum principle can help us single out one or a
few solution candidates. For our particular problem, since the partial derivatives of
the cost, revenue, and growth functions with respect to time (t) exist and are con-
tinuous, we have two more conditions to help us locate the optimal harvest policy.
For the no-harvest period, we have [∂H*(t)/∂f(t)] = 0, or:

sw t
t

n t
g f t w t n t tf

*
*

* * *( )
( )

( )
( ), ( ), ( ), .= [ ]λ2

(18)

Equation (18) indicates that the optimal feeding trajectory for the no-harvest period
is determined when the marginal benefit of feeding due to its effect on shrimp
growth {[λ2(t)/n*(t)]gf[f*(t), w*(t), n*(t), t]} equals the corresponding marginal cost of
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feeding [sw*(t)]. Condition (18) is essentially condition (12) presented in a more rig-
orous fashion.

For the jump points where a harvest occurs, we have:

H H
R n v

if

if T

if T

j j j

j j

j

j

j

( ) ( )
( )

( )
( )

,

, ( , )

,

.* *
*

*

* * *

*

*

*

τ τ
τ

λ τ
τ
τ

τ

τ

τ

+ − +
−

− −
∂ ⋅

∂
−

∂ −[ ]
∂

=

≥ =

= ∈

≤ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

0 0

0 0

0

(19)

For the internal harvest point, τ j T* ( , ),∈ 0  substituting equations (3), (4), (15), and
(16) into equation (19) and rearranging the terms gives:

p w c mn w v sw n f v fj j j j j j j j j
* * * * * * * * * * * * * * * *( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( )]τ τ τ τ τ τ τ[ ] −{ } + − −− + − +1 (20)

= [ ] − [ ]+ + +λ τ τ τ τ τ λ τ τ τ τ2 2( ) ( ), ( ), ( ), ( ) ( ), ( ), ( ), .* * * * * * * * *- * *- * * * *- *
j j j j j j j j j jg f w n t g f w n

To explore the properties of condition (20), we consider the special case where
the feed regime (f*), mortality (m), and variable cost of harvesting (c) are ignored
and shrimp price (p) is constant. Condition (20) now can be rewritten as:

λ τ τ τ τ τ λ τ τ τ τ τ2 2( ) ( ), ( ), ( ) ( ) ( ), ( ), ( ),* * * * * * * * *- * * * *- * * *-
j j j j j j j j j jg w n w g w n w+ + +[ ] = [ ] (21)

where the left-hand side of equation (21) represents the increase in the potential
value of the remaining shrimp standing stock immediately after harvest. The right-
hand side of equation (21) represents the possible increase in the value of the entire
shrimp standing stock before (or without) harvest. From equation (16), we know that
λ τ λ τ2 2( ) ( ).* *-

j j
+ <  Because of the enhanced shrimp growth caused by reduced den-

sity, we have g n g nj j[ ( ), ...] [ ( ), ...].* * * *-τ τ+ >  Consequently, with the enhanced shrimp
growth, the return from the decreased number of shrimp after the harvest would remain
the same as the return from the entire shrimp standing stock before the harvest. This es-
sentially states that the current value of a capital stock could remain unchanged if the
rate of return increases due to a reduction in the amount of capital stock. The terms
{ [ ( )] } ( ) ( )* * * * * * *p w c mn w vj j j jτ τ τ− −  and sw n f v fj j j j j

* * * * * * * * *( ) ( )[ ( ) ( ) ( )τ τ τ τ+ − +− −1  in equa-
tion (20) reflect the effect of mortality and feeding on the marginal value of the
shrimp standing stock, respectively. Therefore, condition (20) indeed defines that an
optimal partial harvest would render the current value of the shrimp standing stock
unchanged before and after the harvest. In addition, the reward (revenue) associated
with a harvest at τj

* must outweigh the cost associated with it, or:

p w c w n v hj j j j
* * * * * * *( ) ( ) ( ) .τ τ τ[ ] −{ } ≥− (22)

Think of the standing stock of shrimp as a capital stock. The current value of
this capital stock is determined by the average rate of return during the planning ho-
rizon. The rate of return of the shrimp standing stock is determined by shrimp
growth plus price appreciation due to larger shrimp minus mortality, which will be
so high initially that it is normally worth holding it at the beginning of the planning
horizon. However, as shrimp grows, carrying capacity of the facility will be reached
sooner or later due to increased biomass at some point in time, for instance, at time
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τ*
i. As a result, the relative rate of return of holding the capital stock falls. In that

case, if the average rate of return during the rest of planning horizon [(τj
*, T)] can be

improved by harvesting a part of the capital stock, it is possible that the current
value of decreased capital stock would remain the same as the current value of the
entire capital stock. In consequence, it is profitable to undertake a harvest at τj

*

when conditions (20) and (22) are satisfied. In addition, if harvesting is not free, the
revenue generated from harvesting part of the capital stock must be able to outweigh
the harvesting cost. Thus, gradual thinning, which suggests harvesting an infinitesi-
mal number of shrimp at every infinitesimal point throughout the harvest period
normally is not optimal when there is a quasi-fixed cost associated with each har-
vest; i.e., h > 0. On the other hand, if the rate of return cannot be influenced by
reducing capital stock (i.e., density-independent growth), it is always not worth un-
dertaking a harvest during the planning horizon. This suggests that the entire shrimp
standing stock should be harvested at the end of the planning horizon or at the mo-
ment when the rate of return becomes zero; i.e., single-batch harvesting.

A variety of harvesting policies can be explored under the above framework by
controlling the total number of harvests (k) and the magnitude of each harvest (v).
For instance, by specifying k = 1, the resulting policy becomes single-batch harvest-
ing. By specifying that v1 = v2…= vk–1 (except the last harvest, vk = 1) equals some
constant, the solution is for a constant proportional harvesting policy. Therefore, the
optimal partial harvesting model developed here provides a consistent framework
for the comparison of different harvesting policies and can be tailored to reflect spe-
cific harvesting conditions of various farming systems in practice.

A Numerical Example

In this section, we provide a numerical example to illustrate the significance of par-
tial harvesting. The example is portrayed as follows:

n t n t n( ) . ( ),  ( ) ,
•

= − =0 03 0 40 000 (23)

w t w t n t w g( ) . . ( ) ( ),  ( ) ( )
•

= − =3 5 0 00001 0 1 (24)

R t p c w n v h p kg c hj j j( ) ( ) ( ) ( ) $ ,  ,  $ ,= − − = = =τ τ ,   5 0 100 (25)

where shrimp price is constant and equals $5/kg. The feed regime is entirely ignored
in this simple example. Variable cost of harvesting, c, is also ignored. The quasi-
fixed cost of harvesting (per harvest), h, equals $100/harvest. This example is
simple and only used to illustrate the potential of partial harvesting in aquaculture.
Solutions of three alternate harvest schemes: single-batch harvesting, partial har-
vesting, and gradual thinning, are obtained. For the gradual thinning scenario, the
quasi-fixed cost of harvesting, h, is assumed to be zero. For the purpose of compari-
son, the time of final harvest is set to be week 13.2 when net revenue is maximal for
the strategy of single-batch harvesting.2

2 To compare the harvesting strategies for a single production cycle, we have to set a uniform ending
time for final harvest. It does not make sense to compare returns from production cycles with different
lengths.
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To obtain the solutions of the above example, we use MATLAB and its toolbox
DIDO based on a special computational algorithm of reparameterization proposed
by Liu et al. (1998) for impulsive control problems. The results are presented in
table 1.

From table 1, we can see that overall revenue could be enhanced by allowing
more harvests during the course of growout compared to single-batch harvesting.
Without considering harvesting cost, h, gradual thinning is the most efficient harvest
scheme. However, a positive, quasi-fixed harvesting cost (h) would make gradual
thinning the worst scheme, because the costs associated with an infinite number of
thinning would easily offset any possible revenue. In fact, this is the exact reason
why gradual thinning is impractical. With a positive harvesting cost (h), discrete
partial harvesting will become the most efficient. Figure 3 illustrates how the mar-
ginal incremental revenue (increased revenue) and marginal incremental cost
(increased harvesting cost) change as the number of harvests increases. The mar-
ginal incremental revenue decreases as the number of harvests increases. Thus, the
optimal number of harvests must be finite when the marginal cost of harvesting (h)
is positive. The results in figure 3 indicate that the optimal number of total harvests
is determined by quasi-fixed harvesting costs associated with each harvest. As the
quasi-fixed harvesting cost increases, the optimal number of harvests decreases. For
the extreme case of zero cost (h = 0), gradual thinning is the most efficient. But for
the practical situation where the quasi-fixed cost of harvesting is positive (h > 0), an
optimal partial harvesting schedule must involve only a finite number of harvests.
Furthermore, from the necessary conditions derived above, we can see that the opti-
mal harvest time does not directly depend on the quasi-fixed cost of harvesting (h).
Once the total number of harvests is determined, the optimal harvest time for every
partial harvest can be uniquely obtained. This implies that the quasi-fixed cost of
harvesting (h) only influences the time of harvest indirectly.

As for our example, the best partial harvesting scheme is comprised of one par-
tial harvest at week 5.3 and a final harvest at week 13.2 (figure 4). We can see that
growth of shrimp is seriously impeded in the later stage of single-batch harvesting
when density becomes too high. With the help of partial harvest, the growth rate of
the remaining shrimp could be relatively high due to reduced density.

Although the above comparative results illustrate that partial harvesting could
enhance profitability, it does not imply that any partial harvest scheme could outper-
form single-batch harvesting. For instance, let a partial harvest occur at week 3,

Table 1
Results of the Numerical Example

Single-Batch Partial Gradual
Harvesting Harvesting Thinning

Start End
Harvesting Strategy 1st 1st 2nd Week Week

Time of harvest (weeks) 13.2 5.3 13.2 2.9 13.2
Number of animals harvested 27,240 19,790 11,307
Average weight at harvest (g) 11.6 8.5 20.6 6.4 23.2
Revenue per harvest ($) 1,576 838 1,179
Total revenue ($) 1,576 2,017 2,129
Harvesting cost per harvest ($) 100 100 100
Total net revenue ($) 1,476 1,817 2,129
Change in total net revenue 23%
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Figure 3.  Optimal Number of Harvests

Figure 4.  Optimal Partial Harvesting (OPH) vs. Optimal Single-batch Harvesting (OSBH)
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with a 90% harvest of the shrimp stock, and let the final harvest occurs at week
13.2. The net revenue associated with this partial harvest schedule is $1,365, which
is smaller than that of a single-batch harvest schedule ($1,476). Hence, a bad partial
harvesting strategy could be worse than single-batch harvesting. This suggests that
using partial harvesting to enhance profitability can be tricky. It points to the impor-
tance of having a reliable management tool, such as the one developed in this study
in order for aqua-farmers to realize the benefits of partial harvesting.

Conclusion

We argue that harvest activities would suddenly alter the status of aquaculture sys-
tems so that impulsive control theory is appropriate for constructing harvesting
models. Using the impulsive control method, we develop an optimal partial harvest-
ing model for shrimp culture as an illustration and derive the necessary conditions
for an efficient harvesting scheme. The model is constructed in a rather general way
so that single-batch harvesting and gradual thinning would emerge as two special
cases where the number of harvests equals one and infinity, respectively. The ana-
lytical results indicate that in the presence of density-dependent growth, partial
harvesting could outperform single-batch harvesting. We also present a numerical
example to illustrate how well-managed, discrete partial harvesting can outperform
single-batch harvesting and thus enhance profitability. The numerical results also
suggest that an economic model of partial harvesting is rather vital in using partial
harvesting as an avenue of improving profitability.

This paper is mainly an application of an existing theory to a new field. The
present analysis can be extended in a number of ways. First, specific cost informa-
tion, such as fixed maintenance costs and variable operating costs other than the
ones considered here can be introduced. Second, appropriate functional forms of
growth and price functions can be specified so as to extract more insights of the har-
vesting decision. Finally, the present model is just for a single-cycle operation.
Efforts can also be made to extend it for continuous-production operation involving
multiple cycles. These topics represent interesting avenues for future research.
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