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Abstract

Evaluating the risk of a particular decision depends on the risk aversion of the decision maker
related to the underlying utility function. The objective of this paper is to use stochastic
efficiency with respect to a function (SERF) to compare the ranking of risky alternatives
using alternative utility functional forms.
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Stochastic Efficiency Analysis Using Multiple Utility Functions

Risk assessment requires coming to grips with both probabilities and preferences for
outcomes held by the decision maker. Chances of bad versus good outcomes can only be
evaluated and compared knowing the decision maker’s relative preferences for such
outcomes. In the context of the subjective expected utility (SEU) hypothesis (Anderson,
Dillon, Hardaker 1977: 66-69), the decision maker’s utility function for outcomes is needed to
assess risky alternatives.

The shape of the utility function reflects an individual’s attitude towards risk. Several
attempts have been made to elicit such utility functions from relevant decision makers in
order to put the SEU hypothesis to work in the analysis of risky alternatives in agriculture.
Usually the results have been rather unconvincing (King and Robison 1984; Anderson and
Hardaker 2003).

Partly to avoid the need to elicit a specific single-valued utility function, methods
under the heading of stochastic dominance or efficiency criteria have been developed. Hadar
and Russell (1969) and Hanoch and Levy (1969) presented the concepts of first-degree
stochastic dominance (FSD) and second-degree stochastic dominance (SSD). FSD is used to
partition alternatives for decision makers who prefer more wealth to less and have absolute
risk aversion with respect to wealth, 7, (w), where — <7, (w)<eo. SSD requires the
additional assumption that decision makers are not risk preferring, i.e. that absolute risk
aversion bounds are 0 <7, (w)<oo. In empirical work it is often found that these two forms of

analysis are not discriminating enough to yield useful results, meaning that the efficient set, or
the alternative(s) that represent the preferred choice within a given range of risk aversion, can

still be too large to be easily manageable (King and Robison 1981, 1984).
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An alternative to FSD and SSD is Meyer’s (1977) stochastic dominance with respect
to a function (SDRF). For SDRF the absolute risk aversion bounds are reduced to

r,(w)<r,(w)<r,(w), and ranking of risky scenarios is defined for all decision makers whose
absolute risk aversion function lies anywhere between lower and upper bounds 7, (w) and
7, (w), respectively. The method has stronger discriminatory power than FSD and SSD,

because of the introduced tighter risk aversion bounds; however, SDRF often results in

ambiguous rankings that suggest that rankings change between the lower and upper bounds.

SERF: An Alternative Procedure

A simpler method of analysis based on the same assumptions about risk attitudes as
SDREF, is illustrated by Richardson, Schumann, and Feldman (2001) and expounded on by
Hardaker, et al. (2004). The method, named stochastic efficiency with respect to a function
(SERF) using risk aversion bounds, works by identifying utility efficient alternatives for
ranges of risk attitudes, not by finding (a subset of) dominated alternatives. SERF partitions
alternatives in terms of certainty equivalents as a selected measure of risk aversion is varied
over a defined range.

The SERF method includes all the advantages of SDRF yet is more transparent, is
easier to implement, and has a stronger discriminating power. These seem to be powerful
advantages that suggest that SERF could extend the power of risk efficiency analysis in the
SEU framework to practical applications in business and policy decision-making. This
method can be an attempt to partially ameliorate the pitfalls of SEU pointed out by Rabin
(2000). The SERF method does not attempt to pinpoint risk aversion levels elicited by

experimentation or estimation to categorize alternatives. Rather, it takes risk aversion levels
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as given and presents a class of rankings based on categories of decision makers within ranges
of risk aversion.

SERF has been demonstrated for two utility functions commonly used for analytical
purposes, the negative exponential and power utility functions. The objective of this paper is
to use SERF to compare the ranking of risky alternatives using alternative utility functional
forms, including composite utilities. The relative importance of choices of utility functions,

or classes of utility functions, for groups of decision makers will be considered.

Methods

Primary assumptions involved in expected utility analyses are those relating to the
distribution of the data and the utility function of the decision maker. Differing assumptions
regarding these can greatly impact decision analysis and efficient sets under alternative risk
aversion levels.

The SERF procedure can be carried out for many specified parametric distributions.
For the purpose of this study, the assumption of nonparametric or discrete uniform
distributions for the alternatives will be used. This assumption simplifies the assignment of
probabilities to the individual data values, and, in large samples, approaches the true
underlying distributions. The drawback of this assumption is that data are limited to observed
values and may be unduly truncated at the observed extremes. Equal probability weighting is
also problematic in the presence of extreme outliers when moment applications are
necessarily utilized since there are no parameters to estimate. Regardless, calculations of
certainty equivalents for each alternative are relatively straightforward.

The additional assumption made is in regards to the utility function. For this study,

several utility functions are considered which are characterized by their respective risk
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aversion coefficients (RACs), or more specifically, their relative risk aversion coefficients

(RRAC:S) represented as r.. Absolute risk aversion coefficients (ARACs) are represented as
r,. The SERF procedure assumes a continuous range of RACs over which to evaluate

efficient sets of alternatives. Since RACs are dependent on the random wealth variable
through the utility relationship, expected RACs are used in the SERF procedure. The
expected RACs are based on the same distributional assumptions made regarding the certainty
equivalents.

Utility functions of interest for this analysis will include the constant absolute risk
aversion (CARA) negative exponential, constant relative risk aversion (CRRA) power,
parameterized restrictions to constant or decreasing absolute risk aversion expo-power (Saha
1993), and decreasing absolute risk aversion (DARA) log utility functions. Additional
information will be presented using the quadratic, exponent, and a hyperbolic absolute risk
aversion (HARA) type utility function. We restrict ourselves to the class of utility functions
typically used in classical SEU analyses that exhibit concavity in the range of risk aversion.

The specific functional forms of the utility functions of interest are

1 Negative exponential: U(w) =—exp(-7,w),

(2)  Power: Uw)= ! wr,
1-7
3) Expo-Power: U(w)=—-exp(pw”), a<l, off >0,
4 Log: Uw)=In(w+c¢), c=0,
. b ,
Q) Quadratic: Uw)=aw— 5 wo,
6) Exponent: Uw)y=(w+c)?, 0<p<l, c=20,
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-y
(7) HARA: U(w):ll(m%wj :

where w represents a random wealth variable and the remaining variables are parameters
specific to each function.

Given an empirical sample, some plausible assumptions about possible efficient
choices involved in a SERF analysis can intuitively be made. Using one of many of the
commonly used utility functions as the assumed utility of the decision maker, it seems
plausible that a risk neutral decision maker would choose the mean value of a series and thus
rank alternatives based on the ordered average values. This assumption can be used in SDD
and SERF procedures.

Other assumptions under the previous conditions can be made. The certainty
equivalent for a given series should not take on values outside the bounds of the observed
minimum and maximum order statistics. Clearly, if there is no information about the true
bounds of the random series, then a decision maker would not choose an indifference fixed
value that is less than the minimum. Similarly, but not as obvious, a risk-loving decision
maker should not choose a value that is above the maximum observation as an indifference
value. This assumes a type of behaviour that the decision maker would not continuously seek
higher indifference values than the random outcome can produce.

The previous assumptions on the bounds and characteristics of an empirical certainty
equivalent are not robust under many combinations of utility functions and assumed
distributions. An empirical sample assumes a truncated distribution when often the variables
in risk analysis can take on a virtually infinite range on the real line. Additionally, a mean for
a small sample may be a poor estimate of the true mean for many distributions. Many utility

functions do not retain the aforementioned characteristics due to functional form. These
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represent behaviours that are not well estimated with nonparametric sample data. It is useful

to be cautious of these limitations when implementing a SERF analysis.

Numerical Analysis

For the purpose of illustration, empirical samples for five alternative hypothetical net
returns, labelled A-E, will be compared with a SERF procedure for alternative utility
functions. These data are given in Appendix Table Al. None of the alternatives exhibit FDD.
Each alternative has a sample mean of 100. Alternatives A and B have sample standard
deviations of 25 and alternatives C, D, and E have standard deviations of 30. These data were
chosen in such a way as to make mean-based ranking ambiguous and mean-variance analysis
generally ineffective at sorting out preferences. Many situations involving data for utility-
based decision-making will not be as intricate as presented here. A sample cumulative
distribution function of the data is shown in Figure 1.

Each sample contains eleven values, which is a size that is typically considered too
small to evaluate distributional assumptions. It would be difficult to elicit an unknown utility
function for this type of sample, and imposing specific distributional assumptions may bias
the premise of utility estimation. Basing an ordering of alternatives on a specific elicited
utility function could produce non-unique rankings, especially if the particular RAC is near a
boundary point in the efficient set and has a large variance due to the small sample size.

For the SERF analysis, initial wealth is assumed to be zero. The wealth exponent
parameter for the expo-power function is set at 0.4 to represent decreasing absolute risk
aversion. For a given RRAC level, any remaining parameters for the utility functions are
iteratively approximated. There are several methods to determine relevant bounds for

stochastic efficiency analyses (see McCarl and Bessler 1989), but in this analysis, bounds can
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be determined based on the outermost crossing points of the alternatives. A relative risk
aversion range of —8 to 8 was used to compare the results across all of the utility functions of
interest.

The SERF charts of these results are given in Figures 2-5. The lines on the chart are
the empirical certainty equivalent values as a function of risk aversion for each alternative.
The overall efficient set for a specified range of risk aversion is the set of uppermost values,
which can be one alternative or a combination of alternatives. Sub-efficient sets are the
uppermost values when considering a subset of alternatives. A relative risk premium between
two alternatives is seen as the vertical distance between those alternatives for a given RRAC.

The overall efficient set for risk neutral and risk averse decision makers with a
negative exponential utility function includes Alternative A in Figure 1. The overall efficient
set includes all alternatives for all risk aversion levels. Most, if not all, of the changes of

efficient sets are made within the previously stated risk aversion range of —8 <r,(w)<8 for

all of the utility functions. Not only can the point of change of overall preferences be
identified, but comparisons of subsets as well as degree of difference can also be elicited.

A comparison of overall efficient sets across utility functions is shown in Figure 6.
The log utility function at this range of risk aversion is too narrow to pick up any perceptible
preferences among the alternatives. The remaining utility functions rank efficient sets within
approximately similar ranges of relative risk aversion. In general, Alternative B is preferred
by extremely risk loving individuals and Alternative D is preferred by strongly risk loving
individuals. Alternative C is preferred by nearly risk neutral decision makers under a power
utility function. Risk neutral to strongly risk averse decision makers seem to prefer
Alternative A.

Interestingly, Alternative E is preferred by both moderately risk loving and extremely

risk averse decision makers. This can be explained by tail-myopic behaviour. Referring back
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to Figure 1, it can been seen that Alternative B is preferred by some risk averse individuals
because the lower tail is truncated and the minimum observed value is greater than that of any
of the other alternatives. This alternative is preferred by moderately risk loving decision
makers because the empirical probability of observing the maximum value is 45%. In
addition, this maximum value is in the approximate 10 and 20% upper tails of Alternatives C
and D, respectively.

It should be noted that the rankings based on the utility functions other than the log
utility are similar because these utility functions are in the same general class. Although the
specific parameterizations represent CARA, DRRA, and DARA utilities, they can all be
considered special cases of the expo-power utility function (see Saha 1993).

As an extension, several other utilities were considered using a SERF analysis. These
included the quadratic, exponent, and HARA utility functions as previously specified. The
range of parameterization of these particular functions makes precise specification of utility
difficult without additional information. The rankings based on the DARA exponent utility

approach the rankings of the log utility as p — 0 and use strictly mean ranking if p=1. The

quadratic and HARA rankings depend on the relationship of the parameters specific to the
utility function. More specifically, both of these can exhibit increasing absolute risk aversion
(IARA), thereby essentially reversing the order of the rankings given by the expo-power type

functions.

Composite Utility

In many cases, the specific form of the utility function, let alone the parameterization,

is relatively unknown apart from general characteristics. Apart from having to choose a

specific utility function, a composite of several utility functions can be used in the ranking
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process for a SERF analysis. Choosing utility functions with the assumption of concavity in
the range of risk aversion and weighting them to create a composite ranking can be useful to
analyze decision maker’s choices under quasi-risk aversion conditions. An example of a
composite ranking using the four utility functions discussed previously can be seen in Figure

7. This type of ranking can be useful in a Baysian analysis of continuing choice ordering.

Conclusions

In the general spirit of risk analysis, the SERF procedure is a useful tool when many of
the components necessary for a SEU analysis are unknown. We have discussed the key
assumptions that drive this type of analysis and have used an example with a few commonly
used utility functions to illustrate the results. When comparing several alternatives
simultaneously, the overall efficient set can be similar across differing utility functions;
however, the class of utility functions and individual parameterizations of each are
fundamental when specific point risk aversion decision results are desired. The SERF method
is preferable when ranges or categories of risk aversion are the desired indicators for an
overall efficient set. There does not need to be a rigorous elicitation of risk preferences from
decision makers to calibrate a choice outcome, nor do bounds on risk aversion need to be
estimated a priori. A relatively full picture of the risk situation at hand can be made explicit

with this procedure.
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Figure 1. Cumulative distribution function of hypothetical net returns for SERF
analysis
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Figure 2. SERF chart for hypothetical net returns given a negative exponential utility
function
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Figure 3. SERF chart for hypothetical net returns given a power utility function
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Figure 4. SERF chart for hypothetical net returns given an expo-power utility function
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Figure 5. SERF chart for hypothetical net returns given a log utility function
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Figure 6. Comparison of SERF efficient sets across utility functions including negative
exponential, power, expo-power, and log utilities
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functions
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Appendix

Table Al. Pseudo Net Returns for SERF Analysis
Obs. A B C D E

1 56.73 44.10 38.28 50.06 70.00
2 72.87 100.00  64.51 63.69 70.00
3 85.28 100.00  80.71 78.67 70.00
4 85.28 100.00  92.28 79.06 70.00
5 102.18  100.00  97.69 95.01 70.00
6 103.90  100.00 100.77 104.82  100.00
7 104.72  100.00 115.43 106.42  130.00
8 107.63  100.00 119.29 116.08  130.00
9 108.10  100.00 123.15 125.74  130.00
10 12331 100.00 12932 13540  130.00
11 150.00 155.90 138.58 145.06  130.00

Table A2. SERF Table of Certainty Equivalents for
Pseudo Net Returns Under an Expo-Power Utility
Function and Discrete Uniform Distribution
RRAC A B C D E
-8 120.86 12390 118.07 121.74 119.93
-7.3333 11942 122.03 117.27 120.67 119.19
-6.6667 117.89  120.06 116.39 119.51 118.35
-6.0000 116.30 118.01 115.44 118.25 117.38
-5.3333  114.65 11590 114.40 116.87 116.28
-4.6667 11294 113.77 113.26 11536 115.00
-4.0000 111.18 111.66 111.99 113.71 113.54
-3.3333  109.38 109.60 110.57 111.89 111.86
-2.6667 107.55 107.61 108.98 109.90 109.94
-2.0000 105.70  105.68 107.16 107.71  107.77
-1.3333  103.82 103.79 105.08 105.33 105.36
-0.6667 101.92  101.91 102.68 102.74 102.75
0 100.00  99.96 99.89 99.97 100.01
0.6667  98.05 97.86 96.66 97.05 97.20
1.3333  96.09 95.54 92.97 94.03 94.45
2.0000  94.11 92.92 88.87 90.98 91.84
2.6667  92.12 89.98 84.48 87.97 89.44
3.3333  90.15 86.73 80.01 85.06 87.29
4.0000  88.21 83.29 75.69 82.32 85.41
4.6667  86.32 79.81 71.70 79.79 83.78
5.3333  84.50 76.45 68.15 77.47 82.38
6.0000  82.77 73.35 65.05 75.38 81.18
6.6667  81.14 70.56 62.39 73.51 80.15
7.3333  79.62 68.11 60.12 71.83 79.27
8 78.21 65.98 58.18 70.33 78.52
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