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Introduction

The emergence of markets for non-biotech grains has created demand for grain testing

and stimulated development of new testing methods.  Buyers who wish to avoid biotech grain

can make use of commercially available diagnostic tests.  These allow detection of specified

transgenic events (DNA or protein) in grain samples with levels of accuracy that have been

verified by USDA’s Grain Inspection, Packers, and Stockyards Administration (GIPSA). While

statistical aspects of grain testing have been examined previously (see, e.g., Remund et al.), there

is relatively little literature on the economic incentives and risks associated with testing for

biotech content. This paper places testing within an economic context.  What is the economic

value of information gained through testing?  What are the tradeoffs between testing costs,

accuracy, and risks to buyers and sellers?   How are risks affected by testing protocols, market

premiums and discounts, and agents’ beliefs about the true concentration of biotech content?

The conceptual model is applied to testing for StarLink corn, a biotech variety not approved for

food use that became inadvertently commingled with other corn supplies in 2000, leading to

product recalls and the disruption of U.S. corn exports.1

The paper begins with a review of statistical concepts and a summary of recent test

results for StarLink.  We then discuss testing within a Bayesian framework, and present a

conceptual model in which sellers can make a strategic choice about whether to test grain prior to

shipment.  Incentives for testing and implications for buyer risks are investigated in a simulation

exercise.  The paper concludes with a short discussion of results.

                                                
1 See Lin, et al. for analysis of the market and trade impacts of StarLink.
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Testing for presence of biotech kernels

In the following discussion, we assume that the buyer’s acceptance of a shipment is

contingent on a test indicating zero (or a very low concentration of) biotech kernels.  Tests for

the presence of biotech kernels involve the binomial distribution.  Let n denote the number of

kernels in a random sample, and let g denote the true concentration of biotech kernels (in a grain

lot from which the sample is drawn).  The probability of exactly x biotech kernels in a random

sample is
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A qualitative test establishes the presence or absence of biotech kernels; that is the type most

often used by grain traders.  (Quantitative tests, which estimate the proportion of biotech kernels

in a sample, are much more costly and time consuming.)  For a qualitative test, x = 0 and the

chance of acceptance is B(0;n,g).  The chance that grain will be rejected due to presence of

biotech kernels is 1 – B(0;n,g).   Figure 1 shows the relationship between chance of acceptance

and sample size based on a single sample plan.

A single large sample serves the buyer's interest well if the buyer is willing to accept a

low concentration of biotech kernels, but not a high concentration.  However, under a single

sample plan, the risk of rejecting lots that are actually acceptable is greater for the seller with a

larger sample size.  Decreasing the sample size would lower this risk.  Hence, increasing the

sample size in a single qualitative test may not serve the best interests of both the buyer and the

seller.
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Figure 1:  Impact of sample size on probability of acceptance.

An alternative is to implement a multiple sample plan.  Suppose there are m independent

samples, each with n kernels.  The buyer agrees to accept the grain if there are no more than r

positive test results (0 ≤ r < m).  In this case, the probability of acceptance is
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where q is the probability of rejecting one sample

),;0(1 gnBq −= .

Application to StarLink

For export shipments to Japan, the official testing protocol for StarLink (developed by

USDA-GIPSA in consultation with Japanese authorities in November 2000) involves three corn

sub-samples (m=3) of 800 kernels each.  This plan is based on sampling and testing
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recommendations of GIPSA and the Food and Drug Administration, but it also reflects the

limitations of production and handling processes and current testing technology.  At present, the

detection sensitivity reaches 0.125 percent (1 StarLink kernel in 800) for most test kits.

Figure 2 shows the chance of accepting grain for alternate values of r.  Setting r=0 allows

none of the three samples to indicate presence of StarLink.  Less stringent requirements (r=1, or

r=2) expose the buyer to more risk, as shown in Table 1.
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Figure 2: Probability of acceptance under multiple sample protocol for corn exports.

When no positive results are allowed (r=0), the buyer has 99 percent confidence that the actual

StarLink concentration (g) does not exceed 0.19 percent.2  Put another way, the chance that the

concentration exceeds 0.19 percent is no more than 1 percent.   For a chosen confidence level,

                                                
2 For the 99% confidence level, the maximum concentration is the value of g that solves B(r;m,q) =  0.01, where q is
the probability of rejection for an individual sample, q=1-B(0;n,g).  This may be represented graphically in Figure 2
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the maximum concentration rises as the requirement becomes less stringent.  When r=3, the

maximum concentration jumps to 100 percent.  When three samples test positive, there can be no

meaningful inference about the maximum concentration of StarLink in a corn shipment.

Table 1.  Maximum StarLink concentrations based on n=800 and m=3

Maximum concentration (%), by
Confidence level

r:  allowed
number of

positive test
results

99%
confidence

90%
confidence

50%
confidence

0 0.19 0.10 0.03
1 0.35 0.20 0.09
2 0.71 0.42 0.20
3 100.0 100.0 100.0

These calculations require no prior information about the distribution of StarLink in corn

being tested.  For a chosen confidence level, the maximum concentration level provides a kind of

worst-case assessment of buyer risk; it may be substantially higher than the expected

concentration of StarLink kernels, given other information.   To illustrate this distinction, we use

information in Table 2 to derive an estimate of the mean StarLink level in corn tested during the

past year.  Based on test results, the overall probability of a sample testing positive was

.007437.
973,17

)3(61)2(40)1(138
=

⋅+⋅+⋅
==

samplesofnumbertotal
positivesofnumbertotalq

The value of g that solves3

007437.0),800;0(1 =− gB

                                                                                                                                                            
by drawing a horizontal line at prob = 0.01; the maximum concentration is determined by the intersection of this line
with an acceptance curve.
3 This can be done using SOLVER in an Excel spreadsheet.
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provides an estimate of the underlying concentration of StarLink kernels.   Using this procedure,

we estimate the concentration at about 0.00093 percent in the corn tested.   This is substantially

less than concentration levels shown in Table 1, which reflect no prior information about the

distribution of StarLink.

Table 2.  Frequency of test results during January 12, 2003 – January 10, 2004*

Number of
sub-samples

testing
positive

(out of 3)

Number of
tests

Share of total
  %

0 17,734 98.670
1 138 0.768
2 40 0.223
3 61 0.339

Total: 17,973 100.000
* Based on the testing protocol for StarLink in export
shipments  (m=3, n=800).  Test results reported by
FGIS and official agencies.  Source: Robert Lijewski,
USDA-GIPSA.

For perspective, estimated StarLink concentration levels were about 10-fold higher in the 2000

crop year, based on GIPSA test results.4

Risks to buyers and sellers: a Bayesian perspective

As outlined above, the chance of accepting a shipment of grain is conditional on g, the

proportion of biotech (or StarLink) kernels in the population from which the sample is drawn.

We now consider a situation in which g is unknown, but buyers or sellers of grain have prior

                                                
4 Source: Larry D. Freese (GIPSA-USDA), personal communication.   It should be emphasized that samples
submitted to GIPSA for StarLink testing are not from randomly selected lots.   Tests are conducted at the request of
the applicant.
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beliefs that can be represented by probability distributions.   Beliefs may be modified (updated)

on the basis of test results.

Assume that a buyer has a tolerance level for presence of biotech kernels (which may be

arbitrarily close to zero) and that grain is tested before purchase.  Based on the test result, the

grain will be either accepted or rejected by the buyer.  The seller does not have perfect

information about the content of biotech kernels, but can assign probabilities to a grain shipment

having high or low levels (relative to the buyer’s tolerance).  Let P(H) denote the (subjective)

probability of a high level, and P(L) the probability of a low level.  Probabilities that the buyer’s

test will indicate ‘accept’ or ‘reject’ are denoted P(A) and P(R), respectively. Outcomes can be

represented as follows:

Test result

Accept (A) Reject (R ) Marginal
Low (L) P(L,A) P(L,R) P(L)Biotech

concent. High (H) P(H,A) P(H,R) P(H)
Marginal P(A) P(R ) 1.0

Joint probabilities are shown within the box.  For example, P(L,A) is the joint probability of a

low concentration and acceptance, and P(L,R) is the joint probability of low concentration and

rejection.  Marginal probabilities sum to one, and joint probabilities sum to marginal

probabilities.

Conditional probabilities are defined via Bayes’ rule.  For example, the conditional

probability of H, given A, is given by

).(/),()|( APAHPAHP =

This represents the buyer’s risk—the risk that grain has a high concentration of biotech content

despite a favorable test result.  Seller’s risk can be interpreted in different ways.  From the
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seller’s perspective, risk could be represented by P(R), the probability of a rejected shipment

(irrespective of the actual concentration), particularly if costs are incurred as a result of the

rejection.  Another interpretation5 views seller’s risk as the conditional probability of rejection

given low concentration:

)(/),()|( LPRLPLRP = .

In that case the test has led to the wrong conclusion, e.g., because of sampling error.  Buyer and

seller risk (in either form) will reflect the testing protocol, the buyer’s tolerance, and prior beliefs

about the distribution of biotech kernels.

Testing and the value of information

From the buyer’s perspective, the value of information gained from a test could be

represented by

)]|()([ AHPHPKV −⋅=

where K is the (possibly subjective) unit value of avoiding high levels of biotech kernels, and the

expression in brackets is the reduction in buyer risk associated with testing.   If the value of

information exceeds the unit cost of the test, then testing prior to purchase makes economic sense

for the buyer.

Now consider the incentives for sellers.  Under what conditions will sellers test grain for

biotech content?  To explore this question we construct an example in which market premiums

and discounts play a role, along with testing costs.   Assume that a seller can deliver grain to one

of two markets.  The first is a premium market (where sales are conditional on test results), and

the second is a reserve market (where tests are not conducted).   Grain shipped to the premium

                                                
5 That is the interpretation given by GIPSA in its web briefing, “Sampling for the Detection of Biotech Grains,” p.7.
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market is tested by the buyer.  If biotech kernels are not detected, the buyer accepts the grain and

the seller earns a premium value, Y ($/mt).  If the grain is rejected due to biotech content, it must

be re-routed to another location where it incurs a discount, D.  Alternately, the seller could avoid

testing by bypassing the premium market and shipping directly to alternate buyers, where the

grain earns a reserve value, Z.6  Before deciding where to ship the grain, the seller could conduct

his/her own test, at cost T ($/mt), to gain information about odds of buyer acceptance in the

premium market.   Figure 3 provides a decision tree of the seller’s problem, with chance nodes

represented by circles and decision nodes by squares.

Test by
seller

A

R

Test by
buyer

Seller payoff

A

R

A

R

A

R
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S2

S3

Y

- D
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Figure 3: Seller’s Problem as Decision Tree

                                                                                                                                                            
http:www.usda.gov/gipsa/biotech/sample2.htm
6 Values denoted Y, -D and Z can be interpreted as net revenue (per unit) for sales to different markets—after
deduction of costs.
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For plausible parameter values there are three seller strategies to consider.7   Strategy S1

is to ship directly to the premium market without pre-testing.  Strategy S2 is to bypass the

premium market and ship to the reserve market.  Strategy S3 involves a test prior to shipping, for

which the seller incurs a testing cost.  If the result is favorable (indicating no biotech content, or

‘accept’), the grain is shipped to the premium market; otherwise it is shipped to the reserve

market.   Under S3, the probability of acceptance in the premium market is P(A2 | A1).  That is,

the probability of buyer acceptance is conditioned by the first test result (known to the seller

only).   Expected payoffs for the three seller strategies are shown in Table 4.

Table 4. Expected payoffs and buyer risks under different strategies.

Seller strategy Seller’s expected payoff Buyer risk
S1 P(A2)⋅Y  –  P(R2)⋅D P(H | A2)
S2 Z Not applicable
S3 P(A1)[P(A2 | A1)⋅Y − P(R2 | A1) ⋅D] + P(R1)⋅Z – T P(H | A2, A1)

Table 4 also shows the buyer risk for each strategy.  (This is not applicable when the

premium market is bypassed, as in S2.)   The buyer’s risk is actually lower under S3, i.e.,

   )|(),|( 112 AHPAAHP <

because under this strategy the grain has been tested twice, and probabilities of ‘high’ levels of

biotech kernels are reduced accordingly. This hinges on our assumption that parameters of the

underlying probability distribution are not known with certainty, so that successive test results

can lead to revision of (subjective) risk assessments.

                                                
7 We assume Y > Z, etc.  In the tree diagram, dominated strategies are indicated by ‘\\’.  For example, it would make
no sense for the seller to test grain and, if the test result were favorable, ship to the reserve market where price is
lower.
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Pre-testing by the seller (S3) works to the advantage of the buyer in the premium market,

by lowering risk.   However, the seller’s optimal strategy depends on multiple factors, including

the premium offered by the buyer (Y), the discount if grain is rejected (D), the reservation price

(Z), and the testing cost (T) and testing protocol.   Pre-testing is not always optimal from the

seller’s perspective.

Figures 4 and 5 illustrate how the premium (Y) could affect expected seller payoffs,

holding other parameters fixed.   In each figure, cross-over points are marked where returns are

equalized across strategies.  Thus, payoffs for strategies S1 and S2 are equalized at Y=b; payoffs

for S1 and S3 are equalized at Y=a; and payoffs for S2 and S3 are equalized at Y=c.  In Figure 4,

the range of premiums follows an order where c<b<a.  Note that the payoff for S2 is independent

of the premium (i.e., the function has zero slope).

In Figure 4, there is a range of premiums (c ≤ Y ≤ a) for which strategy S3 (pre-testing) is

optimal.  Below that range strategy S2 is optimal, and above it strategy S1 is optimal.  When the

premium is too low (Y < c), the seller bypasses the premium market.  When it is too high (a <

Y), the seller maximizes expected return by shipping to the premium market without pre-testing.

Figure 5 illustrates a different situation—one in which no premium can induce pre-testing by the

seller.  That would occur if testing costs were prohibitively high, for example.  (Note that cross-

over points are now in a different order (a < b < c), relative to Figure 4.)
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Seller strategies carry different implications for buyer risks, as shown in these figures.

However, the buyer and seller do not share the same information.  They may have different prior

beliefs about the distribution of biotech kernels, and results from the seller’s own tests (prior to

shipment) are private information.  There are aspects of a principal-agent problem in this

situation.   The principal (buyer) cannot observe whether the agent (seller) has tested grain prior

to shipment, and hence does not have equally good information about the risk of high

concentration.  The buyer influences the incentives for pre-testing through the choice of premium

(and testing protocol), but must consider two factors.  If the buyer’s premium is too low, the

seller will be driven to an alternative market (participation constraint).  If the premium is too

high, the seller will participate without pre-testing, exposing the buyer to higher risk (incentive

compatibility constraint).8  In the next section, the tradeoff between participation and buyer risk

will be explored in a simulation analysis.

Testing for Starlink: A Simulation Analysis

The following analysis uses simulation to represent a universe of potential grain sellers,

each with different prior information and opportunity costs.   The likely concentration of

StarLink kernels (as perceived by potential sellers) is represented by a Weibull distribution9.

This distribution is characterized by two parameters: β, the shape parameter, and θ, the scale

                                                
8 See Gardner, pp. 271-298, for discussion of principal-agent problems using game theory.
9 The Weibull distribution was chosen for illustrative purposes.  Its probability density function (pdf) has the form

0),;( )/(1 >= −− xexxf x βθβ
βθ
ββθ

with β>0 and θ>0. The cumulative distribution function (cdf) is given by

01),;( )/( >−= − xexF x βθβθ .
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parameter.  Choosing β=0.4 and θ=3x10-6 produces a distribution that is broadly consistent with

StarLink test results for the past year.10  However, in the simulation we consider a range of

values for the scale parameter.  This is meant to reflect differences in the prior beliefs of sellers,

with smaller values of θ representing more refined information about the concentration of

StarLink in grain available for sale.  In the simulation, 500 values of θ are drawn from a uniform

distribution,

θ∼UNIF(3x10-6, 3x10-5).

Sellers may also differ in terms of their reservation price (opportunity cost).  It seems plausible

that sellers with more refined information (lower value of θ) would have a higher reservation

price—e.g., to ensure recovery of higher costs associated with quality management.  For that

reason, we assume that Z, the seller’s reservation price, is a random variable that is negatively

correlated with θ.  Z is also drawn from a uniform distribution,

Z ∼  UNIF(0 , 10).

The assumed correlation coefficient is –0.5.  Other parameters are fixed.  They include T, the

unit testing cost ($/mt), and D, the unit cost associated with rejected shipments ($/mt).  Initially

we assume T=0 and D=$25.  The buyer is assumed to apply the standard testing procedure for

export shipments (3 samples of 800 kernels each), and the threshold between ‘low’ and ‘high’

concentrations is 0.01%.11

The simulation is implemented in an Excel spreadsheet using @Risk software.  For each

drawing of the random variables (θ, Z), the spreadsheet calculates the range of buyer premiums

                                                                                                                                                            
(Bain and Engelhardt, pp. 116-117.)
10 These parameter values were chosen to be consistent with an expected concentration level of E(x)=0.001%.  The
implied cumulative probability of StarLink concentrations less than 0.01% is 0.983, which is reasonably close to the
percentage of samples testing negative for StarLink in the past year (Table 2).
11 This is equivalent to 1 kernel in 10,000, which is the limit of detection for currently approved test kits.
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that would support different seller strategies, as illustrated above.  Risks to buyers are also

calculated based on the seller’s prior information and (when applicable) test results. 12

Simulation results are summarized in Figures 6-8.  Each figure shows results for three

different testing protocols, of which ‘A0’ is the most stringent (allowing none of the three test

samples to be positive for StarLink), and ‘A2’ the least (allowing two samples to test positive).

Figure 6 shows how the number of sellers varies with the size of the premium.13  For each testing

protocol, higher premiums attract a larger share of potential sellers to the premium market.  For

the most stringent protocol, a $10 premium attracts about 40% of potential sellers; less stringent

protocols attract higher shares.   Participation is complete (100% of potential sellers) for all

protocols when the premium reaches $20.

Premiums paid by buyers in the premium market (such as Japan) for StarLink-free corn

might differ, depending on end-use.  For food-use corn, Japanese buyers presently are willing to

pay $8 to $10 per metric ton premium for non-biotech corn that is produced, handled and

distributed under identity preservation to avoid potential StarLink commingling.  This premium

level does not apply to feed-use corn.  However, the U.S.-Japan testing protocol for StarLink

applies to both food- and feed-use corn.

                                                
12 Conditional probabilities are calculated with discrete approximations.  For example, the chance of acceptance
given ‘low’ levels of StarLink (relative to buyer’s tolerance) is given by

),800;0(1),3;()])1(()([)|(
1

hjBqwhereqrBchjFchjFLAP
k

j
⋅−=⋅+⋅−−+⋅≈ ∑

=

.

In this calculation, the range of ‘low’ concentration is divided into k equal increments of length h, and c is a lower
bound arbitrarily close to zero (e.g., c=0.00001).   F(j) is the Weibull cdf.  Calculations of P(A | H) are similar.
Given conditional probabilities, other relevant probabilities are derived via Bayes’ rule and adding-up properties.
13 In Figure 6, ‘participation rate’ represents the share of sellers who sell to the premium market.
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Of the sellers who ship to the premium market, not all choose to test grain prior to

shipment.  Figure 7 shows that the share of sellers who pre-test is highest under the most

stringent testing protocol.  The share of sellers who pre-test declines with higher premium levels,

so that under all protocols there is insufficient incentive for pre-testing when the premium

reaches $25.

Figure 8 shows the combined impact of seller numbers (participation rates) and testing

decisions on buyer risk.  Under the most stringent protocol (A0), average buyer risks increase

with the premium.  However, under the least stringent protocol (A2), buyer risk falls slightly (for

premiums between $5 and $10) before stabilizing.  This modest decline in buyer risk is due to

the expanded number of sellers.

A more accurate test for StarLink: impact of lot size and testing cost

For comparison, we conducted a simulation using a different testing protocol—one based

on a single sample of 10,000 kernels.  This represents the most sensitive of commercially

available tests for StarLink.  Previously, we assumed that testing costs were zero; that is in line

with the use of the lateral flow strip test, a protein-based method that is stipulated in the U.S. and

Japan StarLink testing protocol.  The more sensitive micro-titer well test kit can detect 1

StarLink kernel in 10,000, but this costs more and takes 2-4 hours to complete. The retail cost is

around $195 to $200, and the cost charged by private laboratories varies from $35 to $100 per

test.  A more typical range is between $45 and $75 per test (Kendall).

The size of the corn lot also affects the per-unit cost.  Typical lot size varies from about

800 bushels (20.3 metric tons) for a truck load, to 3,570 bushels (100 short tons) for a hopper car,
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and to 50,000-55,000 bushels (1,330 metric tons) for a barge.  Thus, test cost per metric ton

ranges from $3.33 for truck, $0.74 for hopper car, and $0.05 for barge.

Simulation results are shown in Figures 9-11.  Impacts of the premium on the number of

sellers, share of sellers who pre-test, and buyer risk vary by lot size.  Sellers appear to have little

incentive to ship to the premium market when the premium falls below $20 per metric ton (Fig.

9).  The number of sellers rises as the premium exceeds $20/mt, but this varies by lot size.  The

number of sellers is highest for barge-size lots, as the test cost is spread over a much larger grain

volume.  Conversely, the number of sellers is lowest when testing is by truckload.

Sellers find little incentive to pre-test for the presence of StarLink corn in their shipments

if the buyer’s premium falls below $15 per metric ton, given positive testing costs (Fig. 10).

However, there is interest of pre-testing for barge and hopper car shipments if the premium

exceeds $15 or $20 per metric ton.  The hike is particularly stiff for barge shipment--over 90

percent of the sellers would pre-test for the presence of StarLink if the premium exceeds $20/mt.

Sellers have no incentive to pre-test for truck shipment even if the premium reaches $30/mt due

to high per-unit testing costs.

Buyer risk is inversely related to share of sellers who pre-test for the presence of StarLink

kernels (Fig. 11).  In the case of truck shipments, higher per-unit test cost discourages the sellers

from pre-testing; as a result, buyer risk becomes greater.  In contrast, lower per-unit testing costs

for barge shipments provide extra incentive for the sellers to pre-test, which lowers buyer risk.
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Concluding remarks

Tests for the presence of biotech grain expose buyers and sellers to new risks.  In

combination with premiums and discounts, these risks can be an important aspect of procurement

and marketing decisions.  Buyers who wish to exclude biotech grains can influence their risk

through their choice of testing protocol (e.g., sample size, single vs. multiple sample plans).

Buyer risk is also influenced by the size of the price premium offered for non-biotech purchases.

Higher premiums can actually add to buyer risk, either because of participation effects (adverse

selection of sellers) or because of reduced incentives for seller pre-testing.   Risks facing sellers

must be viewed in the context of marketing alternatives.  Incentives for sellers to test grain prior

to shipment depend on a number of factors: applicable premiums and discounts, testing costs,

and prior beliefs about the concentration of biotech kernels.

Simulation analysis provides a flexible means for investigating these effects—

particularly when there is uncertainty about underlying distributions.  In our experiments,

simulation was used to represent a universe of potential sellers, each with different prior beliefs

and opportunity costs.  Ceteris paribus, sellers with more refined information about the ‘true’

concentration of biotech kernels have less incentive to test grain prior to shipment.  Pre-testing is

more advantageous when priors are diffuse.

Estimated concentrations of StarLink in tested corn (based on results collected by official

agencies) are now substantially lower than in 2000, when contamination of processed foods was

first reported.  However, testing protocols remain in effect for export shipments to Japan, and

some domestic manufacturers maintain more stringent tests.   Commercial test kits can now

promise detection of one StarLink kernel in ten thousand, but at a cost that limits their appeal for
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bulk grain handlers.  This points to the inherent difficulty of satisfying a ‘zero-tolerance’

standard for unapproved biotech events.
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