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ABSTRACT 

Agricultural economists rely on aggregated data at various levels depending on data 
availability and the econometric techniques employed. However, the implication of 
aggregation on economic relationships remains an open question. To examine the impact 
of aggregation on estimation, Monte Carlo techniques and data are employed on 
production practices. 
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I. INTRODUCTION 

Applied work by agricultural economists have increasingly utilized aggregated or 

averaged data sets, however the statistical properties and the biases introduced by such 

data has yet to be adequately explained. More importantly, implications on the economic 

behavior and relationships predicted by estimates obtained from aggregated samples 

remain ambiguous. This paper investigates the potential impact of aggregation using 

Monte Carlo methods and real data on estimation of production functions. 

The specific level of aggregation often depends on the research question being 

addressed. For example, developments in agricultural technology have refocused 

attention on estimation of the primal production function, which often rely on data 

aggregated by field levels. Often though, the level of aggregation faced by the 

agricultural economist depends on the data available which represents numerous levels of 

aggregation. For example, the USDA’s Agricultural Chemicals and Production 

Technology: Recommended Data Products (USDA 2005) dataset is typically averaged by 

field level observations, while the Agricultural Chemicals dataset is aggregated by either 

crop reporting district or state. The Agricultural Resource Management Survey (ARMS) 

has been aggregated either by farm typology or by production regions, and data is 

aggregated from a variety of survey instruments to produce state and national level 

observations.   

The demands of the econometric techniques employed may also decide the 

necessary level of aggregation in a dataset. For instance, while the data in the 

Agricultural Chemicals dataset are appropriate for simple ordinary least squares 

estimation, these data cannot be pooled over time because observations in one sample 



period cannot be matched with observations in subsequent or preceding periods. Thus, 

panel techniques that estimate firm and time series techniques are not supported by the 

data. To rectify this difficulty, these field or firm level datasets are typically aggregated to 

a larger unit that maintains confidentiality of sources. 

Clearly, aggregation is often necessary and cannot be avoided in agricultural 

economics. The problems associated with aggregation are not new to economics and date 

back to Theil (1954), however, nor have they been completely resolved.  Stoker (1993) 

provides an excellent general discussion of the empirical problems related to aggregation 

with respect to individuals.  Felipe and Fisher (2003) focus on the issue of aggregation in 

production functions and provide both an historical and methodological discussion of the 

problem.   

This paper addresses whether aggregation affects the statistical results of 

estimation using Monte Carlo analysis and data from the Agricultural Chemicals survey. 

Results from both Monte Carlo methods and data analysis provide convincing support 

that aggregation leads to biased estimates. The next section reviews the problem of 

aggregation and discusses some of the relevant literature. Section III reviews the 

theoretical aspects of aggregation and specifically it’s relation to the classic error-in-

variables problem. Next the estimation procedure and empirical results are discussed in 

section IV.  Concluding remarks are offered in section V as well as consideration of 

possible extensions.   

II. AGGREGATION IN ECONOMIC ANALYSIS 

The phrase “aggregation bias,” originally coined by Theil (1954), refers to the 

estimation problem of an aggregate variable, namely when an aggregate parameter 



estimate differs from its true value. His work using regressions based on simple average 

aggregated data revealed slope estimates that were in fact equal to the individual 

estimates with an additional covariance term. Hence, the aggregation bias was equivalent 

to the covariance between the aggregate variables and the individual level variables.   

While many studies have attempted to deal with aggregation, including the 

development of several econometric innovations, many have chosen to ignore the issue. 

This is particularly true in studies that estimate aggregate production functions. Only 

under highly restrictive conditions on individual or firm level behavior will aggregate 

parameter estimates be consistent with the individual parameters (Theil 1954). Many 

criticisms have ensued of aggregate studies that fail to acknowledge that a problem may 

be present in their results due to aggregation problems or a failure to associate the 

aggregation bias as a potentially serious problem. 

Despite the fact that aggregate production functions have little theoretical 

foundation compared to their microeconomic counterparts, they remain prevalent in the 

literature. At the individual or firm level, micro production functions are well behaved.  

However, aggregates of micro-level production functions into a single aggregate function 

involve many difficulties, not the least of which is a difficulty in interpreting the 

properties of an aggregate production function. Recent work has focused on better 

describing the microeconomic properties of the aggregate production function. 

 Koebel (2002) described the microeconomic implications of aggregated 

production functions questioning whether the same optimization framework used for 

disaggregated production function can be used for their aggregated counterparts. The 

theoretical model outlined provided support for the notion that the use of aggregated 



goods and prices will not conflict with orthodox microeconomic theory, though a loss of 

information does occur in the aggregation process. A possible consequence of this 

includes biased estimates. The empirical results presented in Koebel (2002) are less 

optimistic than the theoretical model. Using panel data from 1978-1990 of 27 German 

industries, the author estimates the input demand system and profit function. He finds 

that not all microeconomic properties apply to the estimated aggregated function, such as 

convexity and homogeneity of degree one.   

 The need for empirical analysis continues, however, as several difficulties remain 

to be solved.  A particular problem in empirical analysis of aggregation is that micro and 

macro parameters remain largely unknown. Typically, least squares estimates are 

assumed to coincide with the micro relations true value.  However, macro relations are 

typically approached as a sum of a “true value” composed of both aggregation bias and 

sampling error. Rather than resorting to mere ad hoc explanation, empirical analysis of 

the statistical implications from using aggregated data is likely the best method of 

answering these unresolved issues.  

Many recent empirical studies that examine the problem are focused in the 

investment demand or consumer demand literature. Gordon (1992) used industry 

aggregated and disaggregated data from the Canadian manufacturing sector to estimate 

equations on the costs of adjusting inputs in production. His results suggest using 

aggregated data will result in estimated adjustment cost functions that are greater than 

industry level estimates (hence an upward bias). Park and Garcia (1994) investigate the 

effects of aggregating micro-level data on acreage response equations. Their data was 

obtained from Illinois crop reporting districts from 1960 to 1988. They find that the 



problem of aggregation is less severe than the problem of specification error in the micro-

level data. Although their econometric response equations imply that aggregation bias is 

present in the state level data, as opposed to the crop reporting district level data, they 

find that the aggregation bias largely depends on the degree of homogeneity of farms at 

the CRD level. However, the affect on statistical properties from aggregation is mostly 

ignored. Gilbert (1986) examines how the use of averaged data effects the testing of the 

efficient market hypothesis. He finds that not only does averaging data complicate 

estimation, but also leads to inefficiency. Chung and Kaiser (2002) investigate the 

presence of aggregation bias using cross-sectional data on U.S. liquid milk advertising 

and household consumption. Their parameter estimates on the price, income and 

advertising variables indicated that the aggregated macro model were not only biased, but 

performed poorly when compared to an alternative disaggregated micro model.   

The above studies are just a sampling of the research attempting to deal with 

issues of aggregation. While all have contributed to our comprehension of the problem, 

albeit in different ways, the need for better understanding specifically in the context of 

statistical properties of aggregate estimators is still warranted. This paper further 

examines the issue of going from micro-level data to macro-level data in production 

analysis. 

III. THEORY AND METHODS 

We start by formulating the regression model within a measurement error 

framework (Fuller 1987).  Specifically, we are interested in estimating a regression model 

t t ty x= β+ ε    (1) 



where ty  is an endogenous variable hypothesized to be a linear function of a set of 

predetermined exogenous variables, tx , and tε  is the resulting residual from the 

estimated relationship. Given this formulation we hypothesize a set of averages based on 

some grouping of the original data 
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where gN  denotes the count or number of observations in group g . The relevant question 

is then whether [ ]gE E⎡ ⎤β = β⎣ ⎦  or [ ]gE E⎡ ⎤β → β⎣ ⎦ . 

Following the measurement error literature, we return to the original sample 
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where we are simply replacing the original values with a measure (some average value of 

both the dependent and independent variable) plus a measurement error. Under typical 

assumptions when the errors of each measure are uncorrelated replacement of the actual 

data with proxies attenuates the regression coefficients. However, in this case, the 

assumption that the errors are uncorrelated may be erroneous. 

Consider the bivariate case of a constant term and a single regressor; if the 

explanatory variable has been badly measured then the least squares coefficient will be 

biased towards zero. Extension to multivariate regressions with only a single badly 



measured variable reveals that the coefficient on that variable is still attenuated, while the 

others are biased but in unknown directions. Fuller (1987) defines the size of the bias as 

the reliability ratio which is given by 
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where the numerator is the true variance and the denominator is the total variance.   

IV. ESTIMATION PROCEDURE 

To examine the possible effects of aggregation on the estimates, we first turn to 

Monte Carlo techniques. We start by generating a sample of 200 observations based on 

random draws from a uniform distribution of three variables. Initially we assume that the 

true β  vector is a vector of ones including a term for the intercept.  Based on the random 

draw and this β  vector, we generate a sample of dependent variables by adding a vector 

of 200 random normal deviations. This combination (the random vector of exogenous 

variables and the resulting endogenous value) represented our true sample.  

Given this sample, we used ordinary least squares to estimate a sample 

observation for β . Next, we aggregated the sample by taking the average of every group 

of n  observations. We then apply ordinary least squares to the aggregated sample, 

resulting in an estimated vector β% . Given these two estimates we form two error vectors, 

one for the difference between the full sample estimates of β  and the true unity vector 

and the other between the aggregated estimate β%  and the unity vector, denoted by μ  and 

μ~ , respectively. Under the measurement error problem, we expected these errors to be 

unbiased (which we take to be symmetric around zero). 



Table 1 presents the results for the Monte Carlo estimation using values of 5, 10, 

and 20 for g , hence aggregating every five, ten, and twenty observations.  In order to test 

whether the vectors μ  and μ~  were unbiased or not, we used Hotelling’s 2T statistic, an 

extension of the univariate t-statistic, to test 00000
~,~,: μμμμμμμμ ≠≠== versusH , 

where 0μ  is a 13×  vector of zeros.1  This was completed for three different sample sizes: 

100, 500 and 1,000.     

From Table 1, several results are clear.  First, it appears that the full sample is not 

biased, an expected result.  However, the various aggregated samples produce mixed 

results.  When the sample size is 100, aggregating every five observations does not 

appear to bias the results, however aggregating every 10 and 20 results in rejection of the 

null hypothesis.  Additionally, the magnitude of the test statistic increases with the level 

of aggregation.  This may suggest that higher levels of aggregation result in increasing 

bias. Results are similar when the sample size is 500.  However, when the sample size is 

increased to 1,000 rejection of the null hypothesis occurs for all levels of aggregation.  

Hence, a potential cause for this result is the increasing measurement error that occurs 

over a larger sample size which has been aggregated.   

To examine if aggregation bias persists in real data, we turn to the Agricultural 

Chemical dataset for corn production in 1991. This data set provided 1082 observations 

across 10 states after observations containing zero yields were dropped from the 

analysis.2 Overall, 253 observations for the inputs contained zeros. To circumvent the 

issue of estimating a logarithmic production function containing zero-level observations 
                                                           
1 See Rencher (2002) for a good discussion on Hotelling’s 2T statistic. 
2 The 10 states included were: Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Nebraska, Ohio, 
South Dakota, and Wisconsin. 



on the inputs, we follow the technique described in Moss (2000) where the zeros are 

replaced by 0.1, a small positive number.3  

Using the traditional Cobb-Douglas specification, the production function 

provides estimates of corn yields as a function of nitrogen, phosphorous, and potassium 

γβα
321 xxAxy =   (5) 

where y is the level of corn, 1x  is the level of nitrogen, 2x  is the level of phosphorous, 

3x and is the level of potassium, and A  is the constant term. A linear production function 

was also estimated.   

To examine the implications of aggregation bias on the data set, first the full 

sample production function was estimated. Next, observations were aggregated according 

to state and the aggregated production function was then estimated. According to the null 

hypothesis of no aggregation bias, the estimated parameter vectors for both sets of 

observations should not be significantly different from one another. That is, we wish to 

test ββββ ~:~: 1 ≠= HversusH o , where β  is the estimated vector of parameters from 

the full sample and β%  is the estimated vector of parameters from the state-aggregated 

sample. A Hotelling’s 2T statistic was used to test the null hypothesis of equality across 

the estimated parameter vectors. 

Table 2 presents the results for this estimation procedure for both the linear 

production function and the Cobb-Douglas production function. Based on the test 

statistic, we can strongly reject the null hypothesis that the estimated parameters are 

                                                           
3 Moss (2000) reports that as an observed input level approaches zero a preferred treatment of such 
observations is to substitute a small positive number as opposed to a bootstrapping technique. 



statistically equivalent. This implies that aggregating across states imparts a general bias 

in the estimated coefficients. However the bias is not systematic, that is, initial results do 

not indicate the direction of the bias, upwards or downwards. 

V. CONCLUSION 

 The use of averaged or aggregated data cannot be avoided by the agricultural 

economist, and cannot likely be avoided by any applied economist.  Driven by privacy 

constraints, econometric techniques, or mere data availability, the use of aggregated data 

is commonplace.  In spite of this, the statistical properties of parameter estimates from the 

use of aggregated data in production analysis remain unresolved.  This paper provides 

evidence that the use of averaged data results in biased parameter estimates.   

Monte Carlo experiments indicate that the error terms from an aggregated sample 

were significantly different from zero.  This result conflicts with one of the basic Gauss-

Markov assumptions, namely that the error terms have an expected value of zero, and 

hence indicates biased results.  Turning to the Agricultural Chemical dataset also provide 

evidence that aggregated data results in biased parameter estimates.  Namely, parameter 

estimates from a disaggregated dataset are not statistically similar to an aggregated 

version.   

These results have profound implications for agricultural policies and farm 

decisions based on results from an aggregated dataset.  For example, precision agriculture 

has allowed producers to manage much smaller tracts of land by permitting fertilizer 

application rates down to the yard.  However if yield and input ratios are decided by a 

production function estimated from averaged data then the potential for mis-specifying 

the optimal level of fertilizer becomes a serious issue. 



This paper addresses the implications of using aggregated data on production 

practices.  Much further consideration is warranted, however.  For instance, robustness of 

the results can be reached through increasing sample size asymptotically.  Further 

investigation on aggregating by crop reporting district or field level observations should 

be conducted.  Additional estimators should also be considered other than OLS.  For 

example, Richter and Brorsen (2006) show the FGLS estimator to be successful in 

reducing the aggregation bias that occurs in the estimation of school quality measures. 

Finally, determining the direction of the bias will help in developing methods and 

possibly new estimators to correct for the problem. 

 



Table 1. Monte Carlo error estimates for full sample and aggregated samples 
 Sample Size 

 N=1001 N=5002 N=1,0003 

 Level of Aggregation Level of Aggregation Level of Aggregation 

Error 
Vector 

Full 5 10 20 Full 5 10 20 Full  5 10 20 

β0-βt .0061 .0495 .1083 .0190 .0146 .0511 .0400 -.1010 .0088 -.0750 -.0717 -.1501 

β1-βt -.0062 -.0741 -.1502 -.1195 -.0132 -.0083 -.0070 .1255 -.0072 .0658 -.0114 -.0143 

β2-βt .0134 -.0171 -.0823 .0672 -.0161 -.0954 -.0860 .0811 -.0051 .0925 .1582 .3155 

T2 
statistic 

2.600 2.414 9.462 11.1846 4.020 3.991 9.002 14.3823 2.627 11.239 10.594 50.408 

1The critical value of the 2T  statistic is 8.257 for 3 variables and 200 observations. 
2The critical value of the 2T  statistic is 7.922 for 3 variables and 500 observations. 
3The critical value of the 2T  statistic is 7.857 for 3 variables and 1,000 observations. 
 



Table 2. Linear and Cobb-Douglas parameter estimates 
 Functional Form of Production Function 
 Linear Function1 Cobb-Douglas Function2 
Input Full Sample State Aggregation Full Sample State Aggregation 

Constant 94.266 
(2.697) 

88.415 
(19.126) 

4.318 
(.0488) 

4.159 
(.4483) 

Nitrogen 0.1501 
(.0202) 

0.4854 
(.2236) 

.0737 
(.0111) 

.1985 
(.0917) 

Phosphorous -.0739 
(.0301) 

-1.312 
(.8089) 

-.0103 
(.0081) 

-.2440 
(.1456) 

Potassium .0287 
(.0228) 

0.4488 
(.3750) 

.0042 
(.0064) 

.1104 
(.0710) 

T2 statistic 2709.37 2747.63 

1The critical value of the 2T  statistic is 9.488 for 4 variables and 1082 observations. 
2The critical value of the 2T  statistic is 23.545 for 4 variables and 10 observations. 
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