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ANALYSIS AND PREDICTION OF WATER TREATMENT 
COSTS AT THE DV HARRIS PLANT IN THE UMGENI 
CATCHMENT AREA. 
 
D.B. Dennison1 and M.C. Lyne2 
 
 
 
This paper has two objectives: first, to identify the main contaminants responsible for high 
treatment costs in the Umgeni catchment area, and second, to predict treatment costs from 
observed levels of contaminants.  A partial adjustment model of treatment costs is estimated 
for the DV Harris plant, which draws water from Midmar Dam, using ordinary least 
squares regression and principal component analysis.  The model highlights important policy 
issues and explains 61% of the variation in chemical treatment costs.  Environmental 
contaminants have a marked impact on treatment costs. Treatment costs increase when levels 
of alkalinity, sodium and turbidity fall. Conversely, costs rise with higher levels of dissolved 
oxygen and water stability. Paradoxically, clean water - typical of Midmar Dam - is 
expensive to treat. Treatment costs also rise when concentrations of the algae, Chlorella, 
decline.  Apparently the level of Chlorella varies inversely with the level of other, more 
harmful, contaminants. 
 
SAMEVATTING: ONTLEDING EN VOORSPELLING VAN WATERBEHANDE-
LINGSKOSTE BY DIE DV HARRIS-AANLEG IN DIE UMGENI OPVANGSGEBIED 
 
Hierdie artikel het twee doelwitte : eerstens om die belangrikste kontaminante wat vir 
hoë behandelingskoste in die Umgeni opvangsgebied verantwoordelik is te identifiseer 
en tweedens om behandelingskoste van waargenome kontaminantepeole te voorspel. 'n 
Parsële aanpassingsmodel van behandelingskoste word vir die DV Harris-aanleg, wat 
water van die Midmardam onttrek, gepas met die gebruik van gewone kleinste 
kwadrate regressie en hoofkomponente-analise.  Die model beklemtoon belangrike 
beleidskwessies en verklaar 61% van die variasie in chemiese behandelingskoste. 
Omgewingskontaminante het 'n belangrike effek op behandelingskoste.  Behandelings-
koste neem toe met dalings in peile van alkaliniteit, natrium en troebelheid.  Aan die 
ander kant styg koste met hoër peile van opgeloste stuurstof en waterstabiliteit.  Dis 
paradoksikaal dat skoon water - wat tipies in Midmardam aangetref word - duur is om 
te behandel.  Behandelingskoste styg ook met dalende konsentrasies van die Chlorella 
alge.  Die Chlorella peile varieer blykbaar omgekeerd eweredig tot peile van ander, 
meer skadelike kontaminante.   
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1. INTRODUCTION 
 
The enrichment of scarce water resources with plant nutrients such as 
phosphorus and nitrogen, generally known as eutrophication, creates many 
problems for development in South Africa (O’Keeffe et al., 1992;  Haynes & 
Viljoen, 1985).  The main consequence of eutrophication is abundant algal 
growth.  This study has two objectives: first, to identify the main 
contaminants responsible for high treatment costs in the Umgeni catchment 
area, and second, to predict treatment costs from observed levels of 
contaminants.  Treatment costs refer to financial costs incurred in ensuring 
that the water is potable.  In 1995, Umgeni Water spent R 8 046 252 on the 
purification of drinking water (Umgeni, 1995). 
 
This paper describes a partial adjustment model to analyse treatment costs, 
and presents results estimated for the DV Harris plant which draws water 
from Midmar Dam.  Similar studies are planned for other treatment plants in 
the Umgeni valley where poor water quality poses a far more serious 
problem.  Although Midmar Dam is characterised by relatively clean water, it 
was selected for the initial study in order to test the effectiveness of the 
techniques used to analyse treatment costs.  Umgeni Water is currently 
developing a model that relates algae levels to various environmental factors. 
The results of the economic and algae/environment models will be combined 
to explore links between land use activities, water quality and treatment costs. 
Reliable information about the origin of high treatment costs is required to 
inform both policy and planning decisions. 
 
2. THE PROBLEM 
 
Policy-makers can attempt to influence the demand for, or supply of, scarce 
water resources (Mirrilees et al., 1994).  Management involves mechanisms 
such as quotas, property rights, water markets and other allocative 
institutions. However, these are beyond the scope of this study.  In managing 
supply, “water authorities and engineers have traditionally tried to alleviate 
shortage by making more and better resources available” (Mirrilees et al., 
1994: appendix A.1-2).  In other words, water managers are concerned with 
both the quantity and the quality of water as determinants of the available 
water supply.  This study focuses on the quality aspect.  If water is of poor 
quality it may not be readily or realistically available for use, and treatment 
may be very time consuming or prohibitively expensive. 
 
2.1 Causes of water quality deterioration 
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Whereas the quantity of water is largely determined stochastically by natural 
phenomena, the quality of water is greatly influenced by human activities. 
These are known as anthropogenic effects (Breen et al., 1985) and include: 
 
Land use patterns: Changes in farming practices, formal and informal 
settlements, and industrial growth have an impact on water quality. 
Flow management: Water quality in a river is governed by the interaction 
between nutrient load and river processes.  Interruptions to the free flow of a 
river, either by impoundment or abstraction, affect the quality of its water. 
Impoundments can affect water quality both positively, by acting as nutrient 
and sediment traps, and negatively, by causing high concentrations of 
nutrients.  Abstractions too, can increase the nutrient load by reducing the 
rate of flow (Mirrilees et al., 1994). 
 
Effluent discharge: Increases in effluent discharged from sewage treatment 
plants and industry can have a detrimental effect on water quality by 
increasing the load of nutrients and pollutants. 
 
The three main sources of  local water pollution as described by Umgeni 
Water (1995) are: 
 
Industrial waste: Oils, solvents, acids, alkalis and metals. 
 
Agricultural waste: Nutrients from fertiliser run-off, pesticides and suspended 
solids from soil run-off. 
 
Domestic effluent: Disease-bearing faecal bacteria, nutrients and organic 
material.  For policy purposes, these sources are usually categorised into two 
classes: 
 
Point source pollution enters the water-way at a particular traceable point, e.g. 
industrial effluent and domestic effluent being released from a sewage 
treatment plant. 
 
Nonpoint source pollution originates from diffuse sources that are not easily 
identifiable or distinguishable, e.g. nutrients from fertiliser run-off and sewage 
run-off from informal settlements. 
 
According to Dickens (1996), point and nonpoint sources are equally 
important in the Umgeni catchment.  The main contributors to point source 
pollution are sewerage works and industrial waste whereas nonpoint 
pollution is attributed to informal settlements stretching along the banks of 
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the Msunduzi and Mgeni rivers, and to numerous timber, sugarcane and 
dairy farms found in the area. 
 
2.2. Consequences of water quality deterioration  
 
There are several consequences of water pollution. The first of these is 
aesthetic, with unsightly litter, oil scums and foam patches resulting from 
pollution.  Second, water becomes  stagnant and aquatic life cannot survive in 
these conditions.  The third consequence of poor water quality is the health 
risk.  Water-borne bacteria and viruses detected in the Umgeni catchment 
include those that cause cholera, typhoid, dysentery and infectious hepatitis 
(Umgeni, 1995). 
 
Eutrophication is another well-documented result of the human impact upon 
aquatic ecosystems (Wetzel, 1983). It refers to the process of nutrient 
enrichment, originating mainly from treated and untreated sewage and 
agricultural run-off (Umgeni, 1995), and an associated increase in primary 
nutrient production (O’Keeffe et al., 1992).  A symptom of eutrophication is 
the over-abundant increase in algae, aquatic plants or both ( Bruwer, 1979). 
The following problems have been experienced as a result of eutrophication 
(Bruwer, 1979; Palmer 1980; Haynes and Viljoen, 1985): 
 
Increased cost of water treatment to potable standards.  Costs increase due to 
increased demand for treatment chemicals and decreased length of filter runs. 
All the usual treatment chemicals (section 2.3) are used in greater quantities 
and activated carbon may also be necessary to eliminate taste and odour 
problems caused by blue-green algae.  Filters get clogged with algae and 
treated water is wasted on frequent backwashing. 
 
The production of anaerobic hypolimnia in lakes.  This occurs in warm, deep lakes 
and when large numbers of algae die at the same time, consuming oxygen in 
the water as they decompose.  This has adverse effects on lake biota - 
especially oxygen dependent organisms - and lake chemistry. 
 
Aesthetic problems include both the problem of large unsightly algal blooms, 
and the ‘rotten-egg smell’ (hydrogen  sulfide) which is characteristic of 
deoxygenated water. 
 
Interference with the recreational use of water bodies.  Algal blooms interfere with 
the recreational use of water bodies and degrade the beauty of the area.  Blue-
green algae may cause skin irritations and gastro-enteritis in swimmers. 
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Loss of livestock as a result of algal toxins produced by certain algae. 
 
Fish deaths in saline lakes due to toxin producing algal blooms. 
 
Adverse effects on adjacent real estate development.  Property developments next 
to water bodies may suffer rapid depreciation if the water quality deteriorates 
causing aesthetic problems; for example the Marina da Gama, in Muizenburg, 
where unsightly blooms and bad odours became problematic (Bruwer, 1979). 
 
Of concern in this analysis is the fact that water pollution exacerbates 
eutrophication which leads to increased algal growth and high treatment costs 
to ensure the provision of potable water.  A brief description of the treatment 
process is relevant at this point as it lends perspective to the models presented 
in section 4. 
 
2.3. The treatment process at DV Harris 
 
Water extracted from dams and rivers via pipelines and tunnels is passed 
through wire screens to remove any solid objects.  As the water enters the 
treatment plant a sample of it flows through a series of recording instruments. 
These measurements determine the appropriate dosage of treatment 
chemicals. The amount of sediment suspended in the water is a key 
determinant of its treatment cost because it defines the level of polymer 
needed to coagulate suspended particles and dirt into floc (Umgeni, 1995). 
Lime may also be required to adjust the pH to a level at which the polymer 
works optimally.  Bentonite - a type of clay - must be added if the water is ‘too 
clean’, i.e.  if there are too few sediment particles for the floc to form 
effectively (Graham, 1995). Powdered activated carbon is added when 
necessary to remove bad tastes and odours caused by algae and other 
contaminants.  Clear water is skimmed off and passed through graded sand 
filters which remove all remaining suspended matter. Finally, chlorine is 
added to kill any remaining microbes (Umgeni, 1995). Chlorine is usually 
applied in gaseous form and may be mixed with ammonia when the water 
has a long way to travel.  Ammonia helps to extend the effectiveness of the 
chlorine gas (Graham, 1995). 
 
Bentonite improves the efficiency of polymer when the water is ‘too clean’.  In 
effect, bentonite is a substitute for polymer.  Figure 1 shows that changes in 
treatment costs at the DV Harris plant follow changes in the combined cost of 
bentonite (B) and polymer (P).  This result was predictable because Midmar 
Dam is characterised by relatively clean water. 
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3. DATA SOURCE  
 
Data used in this study were sourced from Umgeni Water.  Observations were 
recorded at regular intervals over a period of six years, 1990 to 1995.  Water 
quality data and dosage rates were supplied by Umgeni’s Water Quality 
Department.  Water chemistry and algae data are accredited by the South 
African Bureau of Standards and ISO 9000.  Cost data, measured at 1995 
prices, were supplied by their Purchasing Department. Prices relate to the 
brand of chemicals used most frequently as substitutes involve similar costs 
per unit of water treated (Graham, 1995).  Costs were expressed per megalitre 
(Ml) of water treated, and refer only to expenditure on chemicals.  The cost of 
backwashing filters was excluded because Umgeni Water does not make short 
term adjustments to the time spent backwashing.  All observations recorded 
at the Midmar site were expressed in monthly terms to coincide with monthly 
measures of chemical usage.  Unfortunately, chemical dosage data were 
recorded only from May 1991 to December 1995, reducing the number of 
valid observations from 71 to 52. 
 
4. METHODOLOGY AND RESULTS 
 
4.1 Variable selection 
 
Descriptive statistics were calculated and checked by Umgeni staff to ensure 
that the data had been correctly captured.  The observations spanned 79 
different algae and 51 environmental variables.  In order to isolate the 
contaminants most closely associated with cost, zero-order correlation 
coefficients were computed and those with significant coefficients were 
selected for further analysis.  The literature was also checked to ensure that 
algae and other contaminants recognised as being problematic were not 
omitted (Collingwood, 1980; Palmer, 1980 and Walker, 1983). 
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Figure 1: Deviations in the total cost of all chemicals and in the cost of 

Polymer plus Bentonite 
 
The variables selected for analysis are presented in Table 1.  Although cost 
was significantly correlated with biological oxygen demand and sunlight 
hours, these variables were omitted owing to a large number of missing 
values.  Nitrite, a potential contaminant, was also excluded because there was 
no variation in the level of nitrite observed at Midmar Dam.  
 
Table 1: Correlation coefficients for important algae and environmental 

variables 
 
Variable 
 

 
 

Units Correlation 
with cost 

Chlorella (CHLEL) cells per ml -0.4590** 
Crucigenia (CRUCI) cells per ml -0.3049* 
Gonium (GONIU) cells per ml 0.2870* 
Alkalinity (ALKAL) mg/l CaCO3 -0.5232** 
Sodium (NA) mg/l -0.3114** 
Percentage Dissolved 
Oxygen 

(PDO) % 0.4193** 

Secchi (SECC) m 0.3252** 
Stability (STAB) 10-4S-2 0.4482** 
Temperature (TEMP) o C 0.3864** 
Turbidity (TURB) NTU  -0.3692** 
Pumping (PUMP) Ml 0.3537** 
Trend Variable (NUM) Month 0.1211 

Notes: *  implies significance at the 5% level of probability 
 ** implies significance at the 1% level of probability 
Biological systems are inherently interrelated, as similar species react in 
similar ways under the same conditions, and all species compete for available 
nutrients.  The dynamic nature of this system means that the relationship 
between individual algal species and treatment costs cannot easily be 
predicted. 
 
Alkalinity is expected to have a negative impact on the cost of treating 
Midmar water. As alkalinity increases so the quantity of lime needed 
decreases, decreasing the cost of water treatment.  
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When the level of sodium is low, the level of dissolved charged particles is 
also low and renders the polymer inefficient.  This necessitates the addition of 
bentonite (Graham, 1996) and explains the inverse relationship between 
sodium and treatment costs at the DV Harris plant.  
 
Stability is a measure of the stability of the water column.  In summer, when 
the top layer of water is warmer than water at the bottom of the dam, the 
water stratifies reducing currents and increasing stability. In winter, when the 
top layer of water cools, temperature gradients weaken and prevailing winds 
cause convection currents.  These currents stir up the sediment from the 
bottom of the dam.  This suggests a negative relationship between stability 
and treatment costs.  However, the effect is reversed when the water is 
particularly clean because bentonite has to be added for effective treatment. 
This situation is typical of Midmar Dam and explains the positive correlation 
between stability and treatment costs. 
 
Turbidity measures the amount of light either absorbed or scattered by 
particles suspended in the water sample.  Consequently, turbidity rises with 
the level of sediment found in an impoundment.  While this would appear to 
suggest a positive relationship between turbidity and treatment costs, the 
effect is reversed at DV Harris because water from Midmar Dam is ‘too clean’ 
and bentonite has to be added to make the flocculent effective.  Secchi reports 
the depth at which a metal disc lowered into the dam is last visible.  It is 
therefore an inverse measure of suspended solids and is expected to impact 
positively on the cost of treating water that is ‘too clean’. 
 
As anticipated, temperature is positively correlated with treatment costs 
because it captures seasonal effects.  Treatment costs increase in summer 
when higher levels of runoff add to nutrient loads and pollutants found in the 
storage dams. 
 
The variable PUMP, which is positively correlated with treatment costs, 
measures the quantity of water pumped from the Mooi River to Midmar 
Dam. Past experience has shown that treatment costs rise when pumping 
occurs, but the exact reasons for this have yet to be established (Freese, 1995). 
Similarly the causal relationship between percentage dissolved oxygen and 
treatment costs is not well understood.  The trend variable (NUM) measures 
long-term changes in treatment costs and was retained for analysis in order to 
isolate the variables responsible for short-term variations in treatment costs. 
A distributed lag model has intuitive appeal for analysing water treatment 
costs because cost incurred in one period is a function of nutrient loads in 
previous periods. In this case, the distributed lag model can be rationalised as 
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an autoregressive partial adjustment model (Gujarati, 1988: 515; Kelejian and 
Oates, 1989) and estimated using ordinary least squares regression (Gujarati, 
1988: 519). The partial adjustment model postulates that actual treatments are 
intended to satisfy minimum rather than optimum standards of water quality. 
Consequently, the desired or optimum level of treatment and its associated 
cost Y* is unobservable: 
 
 Yt* = bo + b1Xt + Ut (1) 
 
Where  
 
Xt represents the level of one explanatory variable in time period t. 
 
Nerlove (cited by Gujarati, 1988: 520) expresses the partial adjustment model 
as follows: 
 
 Yt - Yt - 1 = d(Yt* - Yt - 1) (2) 

 
where d, such that 0<d<1, is known as the coefficient of adjustment, where Yt - 
Yt - 1 is the actual change, and Yt* - Yt - 1 the desired change.  If d = 1, it means 
that actual cost is equal to the optimum cost, i.e. actual cost adjusts to the 
optimum level in the same time period.  If d = 0, it means that nothing 
changes since the actual cost at time t is the same as that observed in the 
previous time period. Typically, d is expected to lie between these extremes 
because treatments are aimed at meeting minimum rather than optimum 
standards of water quality. 
 
Rearranging the terms in equation (1) and substituting into equation (2) yields 
the partial adjustment model in its estimable form: 

 
 Yt = dbo + db1Xt + (1 - d)Yt - 1 + dUt 
 
4.2 Results 
 
Results of the model estimated for the DV Harris plant are presented in Table 
2. Explanatory power is reasonably good (R2=64%) but the t-values are 
extremely low. This is a classic symptom of the multicollinearity anticipated 
in the model (Gujurati, 1988: 299).  The variable LCOST represents treatment 
costs lagged by one period.  In terms of the partial adjustment model, the 
coefficient estimated for this variable represents the share of the optimum 
level of treatment which is not achieved during the current period. 
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Principal component analysis was employed to overcome the problem of 
multicollinearity (Chattterjee & Price, 1977).  This technique converts the 
original variables into uncorrelated variables called principal components, 
PC’s, which are linear combinations of the original variables: 
 

PCi = ai1X1 + ai2X2 + . . . + aikXk  
 
where 
 
 PCi  =  ith principal component 
 aij  =  component loadings3 
 Xj =  original explanatory variables 
 
Table 2: Regression coefficients estimated for contaminants before 

removing multicollinearity 
 

Explanatory Variables Coefficients (bi) t-values 
Constant 23.053758 2.29** 
CHLEL -0.003275 -1.39 
CRUCI -0.001291 -0.67 
GONIU -0.007458 -0.25 
ALKAL -0.381269 -1.51 
NA -0.456056 -0.42 
PDO 0.029775 0.53 
SECC 0.470827 0.52 
STAB 0.146322 0.55 
TEMP 0.033538 0.23 
TURB 0.069904 0.59 
PUMP 0.001924 0.24 
NUM -0.004266 -0.18 
LCOST 0.428797 2.57** 
R2 (%) 64.06  
F 5.07**  

 
Notes: * implies significance at the 5% level of probability 

 ** implies significance at the 1% level of probability 
 
The principal components must satisfy two conditions; they must be 
orthogonal and the first component (PC1) should account for the maximum 
                                                           
3 PSS normalises factor loadings such that the squared loadings sum to the eigen value.  The factor loadings 

were manually adjusted to that the squared loadings summed to unity. 
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proportion of variation in the original variables and each subsequent PC 
should account for the maximum remaining variation in the original 
variables.  
 

The regression models were then re-estimated using the principal components 
as explanatory  variables and standardised COST (ZCOST) as the dependent 
variable. No attempt was made to interpret the principal components.  They 
were employed only to combat multicollinearity so that the separate or partial 
contribution of each contaminant (to treatment costs) could be identified for 
policy purposes.  To accomplish this goal, the models presented in Table 3 
were expressed in terms of the original variables following the procedure 
described by Chatterjee and Price (1977) and Nieuwoudt (1972).   
 
Table 3: Regression coefficients estimated for principal components 
 

Explanatory Variables Coefficients (ai)  t-values 
Constant 0.000025 0.00 

PC1 0.366849 7.73** 
PC2 -0.166153 -2.45** 
PC3 0.003146 0.04 
PC4 -0.162119 -1.87 
PC5 -0.017304 -0.18 
PC6 -0.089502 -0.84 
PC7 -0.065376 -0.53 
R2 61.16  

 
Notes: * implies significance at the 5% level of probability 
 ** implies significance at the 1% level of probability 
 
This procedure uses the component loadings to transform the regression 
coefficients estimated for the principal components into standardised 
estimates (bi) for the original variables.  Successive principal components were 
dropped until the sign and magnitude computed for each estimated 
coefficient stabilised. Following this approach, seven principal components 
were retained, accounting for almost 90 per cent of the variation in the 
original variables. 
 
Table 4 presents the standardised regression coefficients computed for the 
original explanatory variables.  The t-values were computed as  
 

bi
Var (bi )
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where 

Var bi) =  PC loadingii

k
Var i( (( ) * ( ))2

1=
∑ α   

 
where 
 
k = the number of principal components retained. 
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Table 4: Standardised regression coefficients estimated for contaminants 
after removing multicollinearity 

 
Explanatory Variables Coefficients (bi) t -values 

CHLEL -0.16847 -4.16** 
CRUCI -0.12149 -1.25 
GONIU 0.09440 0.98 
ALKAL -0.23122 -3.82** 
NA -0.12236 -2.34* 
PDO 0.14089 2.37* 
SECC 0.02910 0.73 
STAB 0.12893 2.58* 
TEMP 0.02739 0.59 
TURB -0.07056 -1.60 
PUMP 0.01914 0.22 
NUM 0.04146 0.47 
LCOST 0.18820 4.29** 
R2 61.16  

 
Notes: * implies significance at the 5% level of probability 
 ** implies significance at the 1% level of probability 
 
These standardised coefficients (bi) are useful for policy purposes because 
they are independent of the original units of measurement and therefore show 
the relative importance of each explanatory variable to changes in cost 
(Nieuwoudt, 1972). However, for predictive purposes the standardised 
variables were converted to original scale using the method proposed by 
Kendall (1957).  The bi’s were multiplied by Sy/Sxi (the standard deviation of 
the dependent variable divided by the standard deviation of the independent 
variable) and the constant term was calculated as the difference between the 
mean values of observed and predicted costs.  Table 5 presents the regression 
coefficients computed for the original variables measured in their original 
units. 
 
The Durbin h statistic computed for the final (corrected) model did not 
provide a conclusive test for the absence of autocorrelation.  However, the 
Geary Runs statistic fell within its 95 per cent confidence limits so 
autocorrelation was not considered to be a significant problem (Gujurati, 1995: 
420). 
 
Although the final model presented in Table 5 exhibits some loss in 
explanatory power when compared to the original model, it is clear that the 
original model was severely affected by multicollinearity. In particular, the t-
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values created the false impression that none of the contaminants had any 
significant effect on treatment costs. 
 
Despite the loss in predictive power, the final model was considered to be a 
more robust predictor of treatment costs owing to the absence of 
multicollinearity.  Figure 2 shows a reasonable match between actual and 
predicted costs. 
 
Table 5: Unstandardized regression coefficients estimated for 

contaminants before and after removing multicollinearity 
 

Explanatory  
Variables 

Original 
Model 

t -values Final Model t -values 

Constant 23.053758 2.29** 32.15031  
CHLEL -0.003275 -1.39 -0.00261 -4.16** 
CRUCI -0.001291 -0.67 -0.00209 -1.24 
GONIU -0.007458 -0.25 0.02415 0.98 
ALKAL -0.381269 -1.51 -0.44077 -3.82** 
NA -0.456056 -0.42 -0.94854 -2.34* 
PDO 0.029775 0.53 0.04711 2.37* 
SECC 0.470827 0.52 0.12156 0.73 
STAB 0.146322 0.55 0.14393 2.58* 
TEMP 0.033538 0.23 0.01915 0.59 
TURB 0.069904 0.59 -0.03552 -1.60 
PUMP 0.001924 0.24 0.00106 0.22 
NUM -0.004266 -0.18 0.00752 0.47 
LCOST 0.428797 2.57** 0.19772 4.29** 
R2 (%) 64.06  61.16  
Durbin h -  2.16  

 
Notes: * implies significance at the 5% level of probability 
 ** implies significance at the 1% level of probability  
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Figure 2: Predicted versus actual treatment costs at the DV Harris Plant 

(Constant 1995 prices) 
5. DISCUSSION  
 
The results suggest that real treatment costs at the DV Harris plant diminish 
with an increase in the quantity of Chlorella in Midmar Dam (Figure 3).  It 
would seem that the quantity of Chlorella varies inversely with the quantity of 
one or more substitutes, and that the (unobserved) substitutes may pose a 
serious management problem.  (For example, Chlorella may be consuming 
contaminants that would otherwise contribute to an increase in treatment 
costs.)  More research is needed to unmask the harmful substitutes that vary 
inversely with Chlorella. 
 
Figure 4 illustrates the negative relationship between alkalinity and treatment 
costs at DV Harris.  Surprisingly, alkalinity is not significantly correlated with 
the cost of lime but is correlated with the cost of polymer and bentonite.  The 
cause of this relationship is not obvious and requires further investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Treatment costs versus Chlorella 
 
 



Agrekon, Vol 36, No 1 (March 1997)  Dennison & Lyne 
 
 

 39 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Treatment costs versus Alkalinity 
Treatment costs rise with increasing stability (Figure 5) and decreasing 
turbidity. These relationships and the negative effect of increased sodium 
levels on treatment costs highlight the paradox of treating water that is ‘too 
clean’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Treatment costs versus stability 
 
Percentage dissolved oxygen bears positively on treatment costs at DV Harris 
plant, as seen in Figure 6.  The reasons for this positive relationship are 
unclear and require further investigation by water treatment experts.  Lagged 
cost has no policy implications.  Its coefficient suggests that 80 per cent (i.e. 1 - 
0,1997) of the “full” cost required to achieve optimal (rather than minimal) 
water quality is incurred in the space of one month. 
 
 



Agrekon, Vol 36, No 1 (March 1997)  Dennison & Lyne 
 
 

 40

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Treatment costs versus percentage dissolved Oxygen 
6. CONCLUSION 
 
The study identifies some important factors contributing to high treatment 
costs at the DV Harris plant. Environmental contaminants have a marked 
impact on treatment costs.  Treatment costs increase when levels of alkalinity, 
sodium and turbidity fall. Conversely, costs rise with higher levels of 
dissolved oxygen and water stability. Paradoxically, clean water - typical of 
Midmar Dam - is expensive to treat.  Treatment costs also rise when 
concentrations of the algae, Chlorella, decline.  Apparently the level of Chlorella 
varies inversely with the level of other, more harmful, contaminants. This 
result, and other relationships identified by the model, highlight several 
policy issues which require further investigation.  Interaction effects were not 
considered in the study and may also warrant further research. 
The estimated model explains 61% of the variation in chemical treatment costs 
and predicts actual costs well (except during occasional peak cost periods).  It 
could be used as a management tool to simulate savings in treatment costs 
achieved by altering the level of individual contaminants.  Of course, regular 
updating with current data will be necessary to ensure that the results remain 
relevant. 
 
NOTES: 
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