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Proof of Proposition 5 – Comparative Statics Results 

With a uniform distribution of types ( )H   , and thus in the uncovered market when both GM and 

non-GM products are produced, market demands are, respectively, ˆ
gD   and ˆ

nD    , so that total 

demand is T n gD D D     . Upon recalling the arbitrage relations of competitive equilibrium, that is, 

 0 0
n gp p    

 1 0
g gp p        

  1 1 ( )n gp p F R      

we have  
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
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In what follows we simplify notation and omit the functional dependence on R  by writing ( )F R F , 

( )f R f  and ( )s R s . Also, we define k    , 
0
gA u p    , and 

0
gP p , so that    

ˆ
(1 )

k

Fa s
 


 

AF k

Fas



 . 

  Aggregate consumer surplus here is 2 21 ˆ (1 )
2

CS a s s    
 
 . Substituting and simplifying obtains 

2 2

1
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k k
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F F
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a s s

    
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     
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 
 

. 

Hence, the welfare function is  
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2 2
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where ( )P  is producer surplus. The optimality conditions for welfare maximization (yielding the 

optimal standard purity *R  and the competitive farm-level equilibrium price *P ) are 

(1) 
1
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a s
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 
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2 2 2

2

2 2

2 2
1

( ) ( ) 0
2 (1 ) (1 )

R

k k k k f k
A f A

f fF F F F FF
W R s R s

a s F s Fs s

        
         

              
  
 
 

. 

Upon substitution and simplification we obtain 

(3)            ˆ ˆ ˆ1 (1 ) 0 1 (1 ) 0
2

R

af
W s R R s s R R s

F
     

                         

   . 

Consider now the comparative statics effect of the parameter k    . Differentiating the optimality 

conditions in (1) and (2) and expressing the results in matrix form yields 

k RkRR RP

k PkPR PP

R WW W

P WW W

    
          

. 

Solving by Cramer’s rule obtains 

1 Rk RP Rk PP Pk RP
k

Pk PP

W W W W W W
R

W W

  
 

 
 

1 RR Rk RR Pk PR Rk
k

PR Pk

W W W W W W
P

W W

  
 

 
 

where 0
RR RP

PR PP

W W

W W
   ,  0RRW    and 0PPW    by the second-order conditions of the welfare 

optimization problem (saddle point).  
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 We now compute the partial effects that enter these comparative statics expressions. 

Differentiating the optimality conditions in (1) and (2) yields 

2 2

1 1
( )PR

k
A

k f fF
W R s

a s a FF s

 
 

 
     

which can be simplified to  

 ˆ(1 ) ( )PR

f
W s R s

Fs
      

 
 . 

Evaluating this partial effect at the optimality conditions, such that (3) holds, we obtain 

 ˆ(1 ) 0PR

f
W R

Fs
   . 

Next, differentiating (1) we find 

 
1

0PkW
aFs

  . 

And differentiating (2) we obtain 

 
 

3 2 3 2 2

1 1 1
( ( )

(1 ) (1 )
Rk

kf k k f k f
W A fs f R s R s

a F s FF s F F sFs

  
          

    

 

which simplifies to 

 2

2

1 ˆ(1 ) (1 ) (1 )
(1 )

Rk

f
W R s s s R

s sF
       
 
 . 

Evaluating this partial effect at the optimality conditions, such that (3) holds, we obtain 

  2

2

(1 ) (1 ) ( ) (1 )1 ˆ
(1 ) ( )

kR

R R s s R s s sf
W

s s R sF

      

  
   

. 

Thus, a sufficient condition for 0kRW   is (1 ) ( )R s s R s   , which does hold because R s  and 

1R  . Hence, we conclude that 0kRW  .  

The foregoing partial effects allow us to sign the comparative statics effect on farm price: 

0RR Pk PR Rk
k

W W W W
P


 


. 
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But    k Rk PP Pk RPsign R sign W W W W  . Note that 

0 1
( )PP gW p

as
   . 

Because 0 0( ) ( ) 0g gp S p     (the profit function is convex) and 0RkW  , to conclude that 0kR   it 

suffices to show that 
1

0Rk Pk RPZ W W W
as

   . From earlier derivations, 

  2

2

(1 ) (1 ) ( ) (1 )1 1 1ˆ ˆ(1 )
(1 ) ( )

R R s s R s s sf f
Z R

s s R s as aFs FsF
 
      

   
   

 

which can be simplified to yield 

2 2

2 2

1 1 (1 ) (1 )ˆ 0
( )(1 )

f s R s s
Z

a R sF s s

   

  
  

 

and so we can conclude that 0kR  . Recalling that k    , we have therefore established parts (i) and 

(ii) of Proposition 4.  

The comparative statics analysis for the parameter k  is readily adapted to the comparative statics 

of the “GM aversion” parameter a . Specifically, 

Ra PP Pa RP
a

W W W W
R





 

RR Pa PR Ra
a

W W W W
P





. 

The partial effects of interest here are 

 
2

1 1
0PaW AF k

aa Fs
     

1
0Ra RW W

a
    

and so we find 

0RR Pa
a

W W
P  


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0Pa RP
a

W W
R


 


   

which establishes part (iii) of Proposition 4. 

Finally, concerning the parameters u  and  , we note that they enter the problem only through 

the term 0
gA u p    . For the comparative statics of this term we have 

RA PP PA RP
A

W W W W
R





 

RR PA PR RA
A

W W W W
P





. 

The partial effects of interest here are 

1
0PAW

as
    

and 0RAW   because RA PRW W   and we showed earlier that 0PRW  . Thus we can immediately 

conclude that 0AP  . The sign of AR  is the sign of   RA PP PA RPZ W W W W  . By using RA PRW W   

we find  RA PP PAZ W W W  , and by noting that 0( )PP g PAW p W    we get  0( ) 0RA gZ W p   , and 

so we conclude that 0AR  . Recalling again that 
0
gA u p    , this concludes the comparative statics 

of parameters u  and   (part (iv) of Proposition 5).   ■ 


