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Abstract 

This paper estimates a model of a farm that treats the choice of crops, livestock, and irrigation as 
endogenous.  The model is composed of a multinomial choice of farm type, a binomial choice of 
irrigation, and a set of conditional land value functions.  The model is estimated across over 
2000 farmers in Latin America.  The results quantify how farmers adapt their choice of farm 
type and irrigation to their local climate.  The results should help governments develop effective 
adaptation policies in response to climate change and improve the forecasting of climate impacts.  
The paper compares the predicted impacts of climate change using both endogenous and 
exogenous models of farm choice. 
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1. Introduction 

This paper develops a Ricardian farm model that allows farmers to choose the type of 

farm and irrigation based on the net productivity of each choice.  Although the 

agriculture literature has carefully developed approaches to study the adoption of 

irrigation technology (Caswel and Zilberman 1986; Dinar and Yaron 1990; Negri and 

Brooks 1990; Dinar and Zilberman 1991; Dinar, Campbell, and Zilberman 1992), the 

literature has not explored how adoption may be related to climate.  There have been 

several agronomic studies in Latin America of selected crops in a selected country 

(Downing 1992; De Siquerira et al. 1994; Magrin et al. 1997; Hofstadter et al. 1997; 

Conde et al. 1997) that suggest individual crops would be sensitive to warming.  But 

this agronomic literature does not explore how farmers themselves would react to climate 

change.  Mathematical programming (MP) has been used to explore how predicted yield 

losses from climate change would cause American farmers to change crops (Adams et al. 

1994) and switch between crops and livestock (Adams et al. 1999).  However, the MP 

approach has only been developed for the US and it places all the burden of including 

adaptation on the analyst.  To the extent that the analyst is unaware of substitutions 

farmers can make or is unaware of reasons farmers cannot make substitutions, there is a 

possibility of error. 

This paper presents an alternative methodology for measuring adaptation to climate 

by relying on cross sectional evidence.  Cross sectional evidence has been widely used 

to measure the link between land value (or net revenue) and climate (Mendelsohn et al. 

1994; 1996; 1999; 2001; Mendelsohn and Dinar 2003; Sanghi 1998; Seo et al. 2005; 

Kurukulasuriya et al 2006; Kurukulasuriya and Mendelsohn 2006a; Seo and Mendelsohn 
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2006).  These “Ricardian” results provide a consistent welfare measure of the long run 

impacts of climate on agriculture.  However, the Ricardian studies do not provide 

insight into how farmers are adapting to climate.  By explicitly modeling adaptation, 

this paper seeks to explain the Ricardian results and also bridge the gap between the (MP) 

approach and the Ricardian approach.     

The theoretical model of the farm allows a farmer to choose among crops, livestock, 

and irrigation to maximize profit.  Although many farmers in developed countries either 

specialize in crops or livestock, many farmers in developing countries choose to do both 

activities.  We first explore whether farmers who face different climates tend to choose 

different types of farming.  Following Kurukulasuriya and Mendelsohn 2006b, the 

model is extended to include the choice of irrigation.  We then explore the conditional 

net revenue the farmer should expect given the choice of farm type and irrigation.   

The paper is divided into five parts. The next section develops the theory. The third 

section describes the survey of over 2000 subsistence and commercial farmers across 7 

Latin American countries and other data sources.  The fourth section discusses the cross 

sectional results.  The fifth section presents forecasts of impacts from a set of future 

climate scenarios.  We compare the forecasts one would make assuming these choices 

are endogenous with the results if one assumed the choices were fixed.  We conclude the 

paper with the policy implications and the limitations of the paper. 

2. Theory 

We assume that farmers choose amongst three types of farms: crops only, livestock only, 

and a combination of crops-livestock.  For each of the farm types that have crops, the 

farmer can also choose to do dryland farming or use irrigation.  Given these choices, the 
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farmer combines inputs to make outputs that maximize land value.  We assume that the 

farmer will choose the combination of farm type and irrigation that maximizes expected 

net revenues.   

For example, in Figure 1, we show a hypothetical relationship between farm type 

and climate.  The picture suggests that each farm type is ideal for a particular climate 

range.  As climate changes, farmers switch from one farm type to another.  The overall 

response function captures this switching.  However, by explicitly modeling the 

switching, analysts can see what changes farmers are making to stay on the maximum 

profit locus. .   

The profit each farmer i obtains from choosing farm type j (j=1, 2, or 3) is the 

following:  

 

)()( 1 jjij KKV επ +=                      (1) 

 

where K is a vector of exogenous characteristics of the farm.  For example, K could 

include climate and soils.  We identify the choice of farm type with crop prices that 

reflect the attractiveness of planting crops versus livestock.  The profit function is 

composed of two components: the observable component V and an error term, ε. The 

error term is unknown to the researcher, but may be known to the farmer. The farmer will 

choose the farm type that gives him the highest profit. In other words, the farmer will 

choose farm type j over all other farm types k if: 
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More succinctly, farmer i’s problem is: 
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The probability jiP  of the jth  farm type being chosen is 

 

)V(KV    wherejk   ])()(Pr[ jij11 =≠∀−<−= kjjikiji VVKKP εε      (4) 

 

Assuming 1ε  is independently Gumbel distributed and kkkik KV αγ += , the 

probability that farmer i will choose farm type j among the 3 farm types is (Chow 1983; 

McFadden 1981): 
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The parameters can be estimated by Maximum Likelihood Method, using an 

iterative nonlinear optimization technique such as the Newton-Raphson Method. These 
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estimates are CAN (Consistent and Asymptotically Normal) under standard regularity 

conditions (McFadden 1999).  The probability of choice is identified by both cross price 

terms for crops and livestock and adding up constraints across the probabilities. 

Conditional on choosing crops, the farmer can also choose irrigation.  As with the 

farm type model, we assume that the farmer chooses irrigation only if it is more 

profitable. We estimate a dichotomous choice model of irrigation, Y, where Y=1 is 

irrigation and Y=0 is dryland farming:  

 

 ϕβ += XYi
1                   (6) 

 

where X is a k-vector of regressors for the irrigation choice and φ is an error term.  The 

vector X includes soils and climate.  The irrigation choice is identified by the soil clay.  

Clay soils generally make irrigation difficult because the soils become water logged.  

In the third stage, we estimate a conditional profit function for each type of farming 

based on the available exogenous variables, Z:  

jj
ij

i =+Ζ=∏ Y if μγ                     (7)   

where Yj is a latent variable explaining the choice of farm type/irrigation, Πj is the net 

profit of farms of type j, Zj is an m-vector of regressors that determine land value, γj is an 

m-vector of coefficients for farm type j, and the error terms ε, φ, and μj are jointly 

normally distributed, independently of X and Z, with zero expectations.  

φ ~ N(0,1)                                           (8a) 
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      μj ~ N(0, σ))                                           (8b) 

corr(ε, μj) = ρ1                                                            (8c) 

corr(φ, μj) = ρ2                                                            (8d) 

 

where ju =error from the third stage, jε =error from the first stage, jϕ =error from the 

second stage, jσ =standard error from the unconditioned land value regression, 

jr =correlation between the choice error and the land value regression error. 

Because of selection bias, it is possible that the unobserved profitability of a choice 

is correlated with the selection of that choice (Heckman 1979).  Since the farmer 

maximizes net revenue conditional on the choice of farm type, the error in the land value 

equation may be correlated with the errors in the choice equations. According to Dubin 

and McFadden (1984), with the assumption of the following linearity condition:2 
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The conditional profit functions can be consistently estimated as: 

                                            
2 See Bourguignon et al. (2004) for the details of the selection bias corrections from the multinomial 
choice. They find that Dubin and McFadden’s method is preferable to the most commonly used Lee method, 
as well as to the Dhal’s semi-parametric method in most cases. Monte Carlo experiments also showed that 
selection bias correction based on the multinomial logit model can provide fairly good correction for the 
outcome equation even when the IIA hypothesis is violated. 
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where the third term on the right hand side is the correction term and wj is the error term. 

In this analysis, we employ land value as the measure of net productivity.  With 

perfect competition for land, free entry and exit will drive excess profits to zero on the 

margin. (Ricardo 1817)  In this case, land rents will equal net income per hectare.  

Land value will reflect the present value of the net income of each farm: 

 dteV rt
tland

−
∞

⋅= ∫
0

*π                                         (11)   

, where r  is the market interest rate. (Mendelsohn et al. 1994)   

Land values provide a better measure of climate response because they reflect the 

expectation of net revenues across many years.  In contrast, annual net revenues reflect 

annual outcomes that vary year by year such as weather and prices.  Since we are 

interested in this analysis in climate not weather impacts, the land value measure is more 

relevant.  The land value measure also captures the farmer’s expectations about other 

things that might change in the future.  For example, if farmers expect that technical 

change will enable them to cultivate the same plot more productively in the future, it will 

be reflected in land value.     

In this model, the expected value of a farm, W, is the sum of the probabilities, Pk, of 

each farm type times the conditional net revenue of that farm type.  That is: 
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The change in welfare, ΔW, resulting from a climate change from CA to CB can be 

measured as follows. 

 

                                                                      )(-)( AiBii CWCWW =Δ        (13)                  

 

3. Data and Background 

Farm surveys were pretested and then finalized3.  Each survey was translated to Spanish 

or Portuguese depending on the country.  Farm surveys were collected by country teams 

from seven countries in Latin America4. The seven countries include: Argentina, Brazil, 

Chile, Colombia, Ecuador, Uruguay, and Venezuela.  Random samples of districts were 

selected to observe a set of farms over a wide range of climates within each country.  In 

each country, 15-30 clusters were selected and 20-30 households were interviewed in 

each cluster.  Cluster sampling was done to control the cost of the survey.  The farm 

surveys ask questions about farming activities, including crop and livestock production 

and costs.  The survey was conducted from July 2003 to June 2004. Surveys also record 

the climate and weather related perceptions of the farmers.  Altogether, a total of 2003 

                                            
3 Survey forms are available from the authors.  
4 We wish to thank Flavio Avila for managing the 7 country data collection process.  We 
also wish to thank the team leaders of the collection process in each country: A. Albin, R. 
Bruno, J. Gonzalez, P. Granados, L. Irias, P. Jativo, J. Lozanoff, R. Pacheco.  
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farms were surveyed. 

Climate data come from two sources: temperature observations came from US 

Defense Department Satellites and the rainfall observations came from ground station 

data of the World Meteorological Organization.  The satellite temperature measures 

proved superior to the weather station observations at least for rural areas of the world 

(Mendelsohn et al 2005).  The satellites can observe the entire surface of the earth 

whereas many rural areas do not have a weather station nearby and so require 

interpolation.  Unfortunately, the satellites cannot directly measure precipitation and so 

the weather station data is the best that can be done at the moment.   

Soil data were obtained from the FAO digital soil map of the world CD ROM. The 

data was extrapolated to the district level using Geographical Information System. The 

data set reports 116 dominant soil types organized into 26 major groups. We extract 

texture and slope of the soils at the district level. 

The analysis relies upon land values and farm characteristics as reported by the 

interviewed farmer.  In many parts of Latin America, land has been reallocated by the 

government.  Land use is also restricted in many cases.  For example, farmers in Brazil 

face official limitations on land clearing.  The analysis was not able to control for all of 

these imperfections in the land market.  However, separate analyses comparing 

Ricardian regressions that use land values and net revenues for the dependent variable 

lead to very similar results, suggesting the land value data is consistent and unbiased. 

4. Empirical Results 

The study identified three types of farms in the region: crop only, livestock only, and 

crops/livestock together.  We further break down farms that grow crops by whether or 
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not they use irrigation.  Table 1 measures how many farms of each type were in the 

sample.  Over half of the farms have both livestock and crops, almost one third of the 

farms rely solely on crops, and only 13% of the farms just raise animals.  Only 26% of 

the farms with crops use irrigation.  Three fourths of the farms growing crops use 

dryland farming.   

Our first analysis seeks to explore how different exogenous factors and specifically 

climate affect the choice of farm type.  We conduct a multinomial logit omitting the 

choice of livestock-only farms for comparison.  The results are displayed in Table 2.  

All eight climate coefficients are significant in the cop-only regression and all but the 

linear term on summer temperature are significant in the mixed crop-livestock regression.   

In order to help interpret the climate coefficients, Table 3 presents the marginal log odds 

ratios for annual temperature and precipitation.  Crop-only farms are less common in 

places with warmer annual temperatures and the effect is significant at the 5% level.  In 

contrast, precipitation does not influence the choice of crop-only versus livestock only 

farms.  In contrast, mixed crop-livestock farms are more frequent in warmer places and 

this effect is significant.  The results imply that livestock-only farms are more likely in 

warmer places.  The results suggest that farmers tend to choose mixed crop-livestock 

farms and livestock-only farms in warmer locations while farmers choose crop-only 

farms in cooler locations.  Surprisingly, farmers facing higher precipitation are mre 

likely to choose livestock-only farms and less likely to pick crop-only farms.   

Soil types Acrisols, Kastanozems, Phaeozems, and Solonetz reduce the likelihood 

that crops are grown whereas Gleysols and Lithosols soils increase the probability of 

growing crops.  Controlling for soils and climate, the Andean countries are more likely 
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to engage in growing crops than the Southern Cone region.  This may reflect regional 

differences in agricultural or land use policy or regional differences in the demand for 

meat (which may be higher in the Southern Cone countries).  The coefficient for maize 

price is positive and very significant.  Maize is a high valued crop. Farmers with higher 

maize prices are consequently more likely to choose crops-only.  In contrast, the higher 

price of potatoes has a negative effect.  In this case, potatoes are a low valued crop.  If 

farmers are reduced to growing potatoes, they are more interested in livestock.  The 

tomato price is negative for the mixed farms implying that mixing vegetables and 

livestock is not profitable.  

The next analysis examines whether or not a farmer adopts irrigation, given that he 

has chosen to grow crops.  In Table 4, we present two logit regressions of irrigation, one 

for farms with crops-only and one for farms with crops-livestock.  Note that the 

coefficients for the two models are statistically different.  The irrigation choice is not the 

same for crop-only and mixed farms.  Ideally, we would have liked to have included the 

availability of water supplies and a measure of capital constraints.  Unfortunately, 

neither variable was available.   

There are many significant explanatory variables in the choice of irrigation equation 

for the crops-only farms.  For example, summer precipitation and winter temperature are 

significant determinants of whether irrigation is chosen.  In addition, the irrigation 

choice depends on soil types.  Farms with soil type Acrisols are less likely to choose 

irrigation whereas farms with soil type Fluvisols are more likely to choose to irrigate.  

The soil variable used to identify the irrigation choice regression, clay texture, is negative 

but not significant in the crop-only regression.  The selection terms were not significant 
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implying there is no sample selection bias. 

 The results for the crop-livestock sample in Table 4 are quite different from the 

crop-only results.  Summer precipitation is larger and more significant and both winter 

temperature and precipitation are significant.  Only soil type Fluvisols had a positive 

and significant coefficient.  The identifying variable, texture clay, is negative and 

significant as expected.  Clay is difficult for irrigation because it leads to water logged 

fields.  The selection terms are again insignificant implying there is no selection bias 

problem in the irrigation equations.  

Looking at the marginal effects of annual climate on irrigation in Table 5, we see 

that farms in warmer locations are much less likely to choose irrigation. Although 

irrigation allows crops to survive higher temperatures, the relative profitability of 

irrigation falls as temperatures increase.  Consequently, farmers are more likely to 

irrigate in cooler places.  Farmers in locations with more rainfall are also less likely to 

irrigate.  The marginal contribution of irrigation to net revenue (compared to dryland 

farming) falls as precipitation increases.  Farmers do not need irrigation in places with 

high precipitation.   

The third stage of the model estimates the conditional net income for each farm 

type.  There are five different farm types identified in Table 6: crop only dryland, crop 

only irrigated, crop-livestock dryland, crop-livestock irrigated, and livestock only.  

Summer temperature is significant in the two crop-only and livestock-only regressions. 

Winter temperature is significant in the livestock-only and mixed dryland farms. Summer 

precipitation is significant in all but the mixed dryland farms.  Winter precipitation is 

significant only in the crop-only dryland and livestock-only regressions.   In farms that 
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grow crops, the temperature squared coefficients are all negative (except for an 

insignificant coefficient on winter temperature for crop-only irrigated farms) implying a 

hill-shaped relationship.  However, for the livestock-only farms, the winter temperature 

squared coefficient is large and positive implying a U-shaped relationship. The summer 

precipitation squared coefficients are largely negative (except for mixed irrigated farms) 

implying a hill-shaped relationship.  The winter precipitation squared coefficients are 

largely insignificant except for a positive value for crop-only farms and a negative value 

for livestock only farms.  These results suggest that the marginal impact of temperature 

and precipitation will depend on the climate facing the individual farm and will vary 

across the sample.    

Table 6 also reveals that soils play a unique role in the net income farmers earn 

from each farm type.  For example, Acrisols significantly increase the value of irrigated 

crop-only farms but are insignificant in all other regressions.  Cambisols also increase 

the value of irrigated crop-only farms but also livestock-only farms.  In contrast, 

Luvisols only increase the value of crop-only dryland farms and Planosols increase the 

value of crop-only dryland farms but decrease the value of irrigated crop-only farms and 

mixed dryland farms.  The Andean dummy shows that crop only and mixed dryland 

farms in the Southern Cone are generally more profitable.  Finally the selection terms 

are insignificant which suggest that the net revenue regressions are not vulnerable to 

sample selection problems.  

 

  Table 7 presents the marginal effects and elasticities of annual temperature and 

precipitation.  Crop-only farms in warmer locations have significantly lower net 
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incomes.  These results support the earlier observation that farmers tend to choose 

crops-only in cooler locations.  The precipitation has a significant effect only on 

livestock-only farms.  Livestock-only farms earn higher incomes in wetter locations.  

For the remainder of the farm types, the annual precipitation effects are mixed and 

insignificant.   

The temperature elasticities in Table 7 indicate that livestock farms are the most 

sensitive to warmer temperatures.  Latin American livestock operations depend heavily 

on beef cattle which tend to be heat sensitive, a result also found in African livestock 

management (Seo and Mendelsohn 2006).  Dryland crop farms are also sensitive to heat 

as they tend to be located in warm places.  Irrigated crop farms are less sensitive 

partially because they are in cooler locations and partially because the irrigation reduces 

their vulnerability.  The mixed farms are insensitive to temperature partially because 

they have a great deal of substitution possibilities to compensate for heat.  

Table 7 also reveals that the net income of livestock-only farms is very sensitive to 

precipitation with an elasticity of 3.  Precipitation has very little effect on the net 

incomes of the other farm types.  One should not infer from these results that 

precipitation has no effect on individual crops.  Part of the reason precipitation is having 

such little effect is that farmers can switch from one type of crop to another as 

precipitation varies.   

5. Climate Change Impacts Simulations 

In this section, we explore what consequences the cross sectional results imply if climate 

changes in the future.  There are caveats one must keep in mind to make such forecasts.  

First, we assume that comparing a cool farm to a warm farm today is the same as having 
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a farm experience a cool climate today versus a warm climate in the future.  If there are 

important missing variables in our analysis that are correlated with climate, the 

predictions will be biased.  Second, we assume that other changes in future conditions 

will not affect our climate predictions.  For example, changes in technological advances, 

growth, and land use will not alter climate impacts.  In practice, these future changes are 

both likely to occur and likely to have an effect on climate impacts.  Future analyses 

should take these changes into account, but this is beyond the scope of this paper.  We 

consequently limit ourselves to examine the impact of climate change on the current 

agricultural system.  Third, we assume that prices will not change in any of these future 

scenarios even if supply changes dramatically.  Partially, this can be justified because 

prices are determined in a world market and regional changes are not a good predictor of 

global changes.  However, if prices change, this will tend to reduce the welfare impacts 

predicted in this analysis.  Fourth, the analysis does not consider carbon fertilization 

effects.  The increase in carbon dioxide is expected to be beneficial to plants in general 

and to specific plants in particular.  Carbon fertilization is not taken into account in these 

forecasts although it will clearly increase productivity. 

In order to see what impact future climates might have on Latin American 

agriculture, we examine three climate scenarios generated by Atmospheric Oceanic 

General Circulation Models (AOGCM’s).  The three models we rely upon provide a 

broad array of outcomes from a mild wet scenario to a very hot and dry scenario.  

Specifically, the three models are the Parallel Climate Model (PCM) (Washington et al. 

2000), the Center for Climate System Research (CCSR) (Emori et al. 1999), and the 

Canadian Climate Centre (CCC) (Boer et al. 2000).  The climate projections of these 

three models for Latin America are presented in Table 8.  The PCM is the mildest 
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scenario with small amounts of warming, small increases in summer precipitation, and 

large increases in winter precipitation.  The CCC is the harshest scenario with 

substantial warming and reductions in summer precipitation.  The CCSR scenario lies 

between these other scenarios.  Temperature increases steadily over this century across 

all three models.  Precipitation increases and decreases over time in no apparent pattern.        

For each climate scenario, we make two predictions.  In one prediction, we assume 

that the decision to choose farm type and irrigation is exogenous and will not change.  

In the second prediction, we assume these choices are endogenous and will change with 

each climate scenario.  That is, we predict how each climate scenario will change the 

probability each farmer will choose each farm type (using the coefficients in Tables 2) 

and the probability of adopting irrigation (using the coefficients in Tables 4).  

Combining these results with the changes in the conditional land values yields an 

expected change in the land value for each farm for both the exogenous and endogenous 

cases. 

Table 9 shows the current distribution of farm types for the sample (the exogenous 

case) and how that distribution would change over time (the endogenous case) for each 

climate scenario.  The substantial warming associated with CCC and CCSR would 

cause the number of crops-only farms to shrink as early as 2020.  According to these 

two scenarios, this effect would get stronger over time so that by 2100, almost one fourth 

of the crops-only farms would be gone in the CCC scenario and one eighth of these farms 

would be gone according to the CCSR scenario.  According to the CCC and CCSR 

scenarios, the crop-only farms would become crop-livestock farms and   livestock only 

farms. .The PCM scenario, however, provides a different forecast of impacts.  With the 
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milder and wetter PCM scenario, livestock farms would diminish, and crop-livestock 

farms would replace them.   

Table 10 shows how irrigation choices would change with warming.  All the 

climate scenarios predict an increase in irrigation for crop-only farms and a decrease in 

irrigation for mixed farms but the changes are generally not significant.   

Table 11 shows what happens to conditional land values for each farm type-

irrigation possibility.  According to the CCC scenario, the land value of all farm types 

except livestock-only will fall with warming.  The effect is particularly severe for crop-

only dryland farms whose land values fall by almost half by 2100.  Crop-livestock farms 

are the only exception in the CCC scenarios and their land values increase by one third by 

2100.  The CCSR scenarios yield qualitatively similar results to the CCC scenarios but 

the magnitudes of the effects are about half the size and consequently less significant.  

The results for the PCM scenarios, however, are quite different.  The land values of 

crop-only dryland farms increase in the PCM scenario while net revenues in all other 

farm types fall.  These PCM predictions, however, are not significantly different from 

zero.  

 Combining the results from Tables 9, 10, and 11, the overall expected climate 

impact on the value of farms is calculated in Table 12.  The expected value of future 

climate scenarios for the exogenous approach uses the current probabilities of each farm 

type and irrigation with the future conditional land values.  The difference between the 

future predicted land value and current expected land value is the welfare effect of 

climate change.  

The baseline expected value of a farm in the sample is about $3400/ha.  
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Examining the endogenous predictions first, the expected value of a Latin American farm 

steadily falls over time with the CCC scenario until by 2100, the expected value falls by 

28%.  With the CCSR scenario, expected values also fall but the magnitude of the effect 

is smaller (19% by 2100).   Finally, with the PCM scenario, the expected value initially 

increases by 10% by 2020, then fall back to current values.  The milder wetter scenario 

predicted by the PCM model has little impact on Latin American farmers overall.     

Table 12 also displays the 95% confidence interval around these final results.  

These were computed using bootstrapping with 200 draws.  The PCM results are 

initially significant in 2020 and then become insignificant.  The CCC results are not 

quite significant at first but become so by 2060.  The CCSR results are only significant 

in 2100. 

Finally, Table 12 provides the results for models that treat choice as exogenous 

versus endogenous.  The exogenous model predicts larger damages and smaller benefits 

than the endogenous model in all scenarios.  The magnitude of the difference increases 

with time.  Capturing each farmer’s ability to adapt to climate change by adopting 

different farm types and irrigation reduces the vulnerability in agriculture. The gap 

between the endogenous model and exogenous model is especially large in the CCC 

scenario. 

6. Conclusion 

This study expands on empirical agricultural models of irrigation choice to examine how 

such choices are influenced by climate.  The paper models the choice of whether to 

grow crops, own livestock, and install irrigation and tests whether these choices are 

influenced by temperature and precipitation.  The purpose of the model is to quantify 
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some of the adaptations that farmers make to adjust to climate.  Using cross sectional 

evidence, the paper models how Latin American farmers have adapted to the range of 

climates across the continent.  Surveys of over 2000 farmers provided detailed 

information about crops, livestock and irrigation choices.  Relying on a three stage 

integrated model of a farm, the choice of farm type, irrigation, and conditional land value 

were all calculated.   

 The results show that the choice of farm type and irrigation are very sensitive to 

climate.  Farmers are more likely to pick crops-only in cooler temperatures whereas they 

will choose livestock in dryer locations.  Farmers are more likely to choose a crop-

livestock combination in hot locations.   Farmers will tend to irrigate in locations that 

are both cool and dry.  Of course, irrigation also requires access to water sources.   

    Conditional land values are also dependent on climate.  Cooler than average 

temperatures increase land values for all farm types except irrigated crop-livestock farms.   

Increased precipitation raises land values for all farm types.  However, the net revenues 

of some farm types respond more to cooler and wetter conditions than others.  The net 

revenues of livestock farms are especially sensitive to both temperature and precipitation.  

The net revenues of dryland crop-only farms are very sensitive to cooler temperatures.   

 Applying these cross sectional results to future climate scenarios reveals some 

interesting outcomes.  If the future climate scenario is very hot and dry, expected land 

values will fall by a third by 2100.  Dryland crop-only farming will be especially hard 

hit and the amount of irrigation will fall substantially.  Crop-livestock operations will be 

hurt but less so.  If the scenario is hot and dry but not as severe, the impacts will have 

the same qualitative direction but the magnitude of the effect will be much smaller.  
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However, if the scenario is mild warming and wetter conditions, crop-only farms will 

increase in value and overall farm value will rise.  Only livestock will be reduced in the 

future.  The impacts of climate change consequently depend a great deal on the climate 

scenario.   

 The overall results suggest that farmers will do a great deal of adaptation in 

response to climate change.  The results indicate that they will change whether they 

grow and own livestock and whether or not they will rely on irrigation.  The exogenous 

model predicts higher damages and smaller benefits than the endogenous model. The gap 

between the models increases over time due to the increasing adaptive behavior and 

increasing climate impacts over the long term.  These adaptive decisions which have 

been assumed to be exogenous in a great deal of the climate impact literature must be 

treated endogenously. 

 There are a number of caveats that must be kept in mind in interpreting these 

results.  First, there was no information about water resources in the analysis and so this 

important variable was omitted.  Second, the effect of carbon fertilization was not 

captured in the analysis since all the farms in the sample were exposed to the same level 

of carbon dioxide.  Carbon fertilization is likely to improve future crop productivity and 

thus may offset some of the harmful effects predicted in this analysis.  Third, the 

influence of technical change is not captured in this study.  Future productivity increases 

may also offset some of the losses predicted in this analysis.  Further, technological 

advances in crop breeding could create future crops that are more heat tolerant.  Such 

possible effects are not considered.  Fourth, the paper assumes that commodity and labor 

prices would not change with climate.  If prices do change, the welfare impacts will be 
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smaller.  Finally, the analysis assumes that farmers in the future will be able to adapt as 

readily as farmers in the present.  That is, the study assumes that the adaptations one 

currently sees from place to place can be done across time as climate change unfolds.  

All of these factors should be considered when projecting the future outcomes of climate 

change.         
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Table 1: Number of Farms of Each Type 
 

 Dryland Irrigated All 
Crop Only 360 277 637 

Crop and Livestock 948 179 1127 
Livestock Only 268 1 269 

All 1576 457 2003 
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Table 2: Multinomial Logit Model of Farm Type Selection 
 

 Crops Only 
Both Crops and 
Livestock 

Var. Est. Chi-sq Est. Chi-sq 
Intercept -1.939 0.74 -1.787 0.69 

Summer Temperature 0.717 9.21 0.333 2.23 

Summer Temperature2 -0.038 34.79 -0.024 14.98 

Summer Precipitation -0.040 60.73 -0.029 34.02 

Summer Precipitation2 0.000 40.40 0.000 22.54 

Winter Temperature 1.020 92.60 1.000 95.56 

Winter Temperature2  -0.015 25.04 -0.017 31.44 

Winter Precipitation  -0.026 18.73 -0.022 13.72 

Winter Precipitation2 0.000 6.23 0.000 7.03 

Soil Acrisols -0.018 12.02 -0.018 15.61 

Soil Gleysols 0.016 2.71 0.001 0.02 

Soil Lithosols 0.008 2.48 0.008 2.43 

Soil Kastanozems -0.014 4.48 -0.005 0.71 

Soil Phaeozems -0.010 7.71 -0.013 13.46 

Soil Solonetz -0.016 5.10 -0.015 5.04 

Maize Price 1.095 15.66 1.233 19.71 

Potato Price -21.434 56.30 -0.820 4.46 

Tomato Price -0.828 1.98 -5.031 20.43 

Andean Dummy 2.460 81.49 2.105 62.06 

Commercial Dummy -0.025 0.06 -0.129 1.73 

** denotes the statistics estimate is significant at the 1% level.
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Table 3: Bootstrap Marginal Climate Effects on Farm Type Selections 
 
  Crop Only Crop and Livestock Livestock Only 
Baseline 27.5%

(25.7%, 29.5%)

50.3% 

(48.6%, 53.2%) 

22.4%

(18.2%, 24.9%)

Temperature (C˚) -1.6%

(-2.0%, -0.9%

0.5% 

(0.0%, 1.3% 

1.0%

(0.2%, 1.5%)

Precipitation (mm/mo) -0.13%

(-0.15%, -0.07%)

0.01% 

(-0.02%, 0.07%) 

0.11%

(0.05%, 0.15%)

* Numbers in parentheses are 95% confidence intervals.
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Table 4: Logit Model of Irrigation 
 

 Crop Only Farms 
Both Crop and Livestock 
Farms 

Var. Est. Chi-sq Est. Chi-sq 
Intercept 2.411 1.67 0.654 0.24 

Summer Temperature 0.021 0.01 0.058 0.11 

Summer Temperature2 -0.003 0.14 -0.002 0.08 

Summer Precipitation -0.011 6.06 -0.020 21.54 

Summer Precipitation2 0.000 0.65 0.000 13.11 

Winter Temperature -0.274 6.24 0.143 2.91 

Winter Temperature2  0.011 9.97 -0.006 5.40 

Winter Precipitation  -0.006 2.34 -0.010 6.72 

Winter Precipitation2 0.000 0.08 0.000 0.85 

Soil Acrisols -0.023 6.40 -0.009 1.45 

Soil Cambisols -0.019 2.59 -0.002 0.06 

Soil Ferralsols -0.005 1.11 -0.001 0.07 

Soil Gleysols -0.014 1.48 0.014 2.85 

Soil Fluvisols 0.025 13.30 0.025 17.91 

Texture Clay -0.303 1.57 -0.485 4.60 

Andean dummy 0.139 0.12 -0.850 6.82 

Selection mixed -0.552 1.69  

Selection livestock 0.138 0.26  

Selection crops -0.260 0.30 

Selection livestock 0.670 2.71 

    

    

** denotes the estimate is significant at1% level and * at 5% level. 



 32

Table 5: Bootstrap Marginal Effects on Irrigation Choice 
 

 Crop Only Both Crop and Livestock 
Baseline Prob. 46.2%

(40.8%, 49.4%)

19.8%

(17.5%, 21.9%)

Marginal Temp Effects -0.6%

(-2.9%, 0.9%)

-0.5%

(-1.3%, -0.2%)

Marginal Prec Effects -0.2%

(-0.3%, -0.1%)

-0.2%

(-0.2%, -0.1%)

* Numbers in parentheses are 95% confidence intervals. 
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Table 6: Conditional Ricardian Model 
 

 Crop Only Dryland Crop Only Irrigated Livestock Only 
Var. Est. T-stat. Est. T-stat. Est. T-stat. 
Intercept -3331.45 -0.81 -2275.49 -1.05 -5970.85 -2.90

Summer Temperature 439.59 1.61 729.83 2.74 427.52 2.03

Summer Temperature2 -16.80 -2.14 -18.81 -2.27 -3.13 -0.58

Winter Temperature 340.28 1.61 -322.90 -1.34 -745.58 -6.80

Winter Temperature2  -11.39 -1.59 5.50 0.68 16.97 6.82

Summer Precipitation 19.41 2.66 34.34 3.08 52.24 6.80

Summer Precipitation2 -0.03 -2.38 -0.07 -2.33 -0.16 -6.04

Winter Precipitation  -11.85 -2.81 16.10 1.43 9.33 3.44

Winter Precipitation2 0.04 2.48 -0.06 -1.09 -0.05 -3.75

Soil Acrisols 14.12 1.41 94.95 2.22 2.92 0.97

Soil Cambisols 2.05 0.16 57.86 1.54 27.65 4.36

Soil Gleysols -9.51 -0.90 21.98 0.70 4.16 1.22

Soil Phaeozems -16.04 -1.12 -30.84 -2.80 

Soil Kastanozems 2.29 0.23 -4.58 -0.48 2.06 0.75

Soil Luvisols 18.06 2.13 8.82 0.99 

Soil Planozols 11.70 2.58 -1830.86 -2.73 2.97 1.50

Andean dummy -2940.12 -6.03 996.55 1.04 -669.79 -1.01

Selection irrigation -321.22 -0.41  

Selection dryland -2275.49 -1.05 

Selection crop  -739.20 -1.70

Selection crop/livestock  9.58 0.02

Adjusted R-sq  0.28  0.19  0.41 
** denotes the estimate is significant at 1% level and * at 5% level. 
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Table 6: Conditional Ricardian Model: Continued 
 
 Mixed Non-Irrigated Mixed Irrigated 
Var. Est. T-stat. Est. T-stat. 
Intercept -1091.42 -0.98 -847.00 -0.46 

Summer Temperature 82.26 0.66 245.37 1.16 

Summer Temperature2 -2.13 -0.58 -5.01 -0.76 

Winter Temperature 352.23 5.70 54.59 0.35 

Winter Temperature2  -12.45 -6.75 -4.05 -0.89 

Summer Precipitation 5.97 1.70 -12.54 -1.18 

Summer Precipitation2 -0.01 -1.17 0.05 2.27 

Winter Precipitation  -0.10 -0.04 -2.59 -0.33 

Winter Precipitation2 0.00 -0.31 -0.03 -0.86 

Soil Acrisols -3.17 -0.85 2.20 0.21 

Soil Cambisols -2.29 -0.51 4.39 0.52 

Soil Gleysols -6.53 -1.04 -0.06 0.00 

Soil Fluvisols -1.00 -0.09 3.75 0.49 

Soil Kastanozems 1.12 0.19 -11.79 -0.40 

Soil Luvisols 2.47 0.74 -6.54 -1.02 

Soil Planosols -5.43 -2.26 -1.84 -0.40 

Andean dummy -1373.39 -5.33 -728.35 -1.31 

Selection irrigation 665.19 1.47   

Selection dryland -243.93 -0.64 

Selection crop   
Selection crop/livestock   
   
Adjusted R-sq  0.21  0.34 

** denotes the estimate is significant at`1% level and * at 5% level. 
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Table 7: Bootstrap Marginal Climate Effects and Elasticities on Conditional Income 
 

Farm Type Temperature Precipitation Temperature Precipitation 
 Marginal Effects Elasticities 

Dryland Crop Only 

-188 

(-314, -92)

0 

(-10, 5)

-1.59 

(-2.71, -0.95)  

0.03 

(-0.69, 1.11)

Irrigated Crop Only 

-210 

(-346, -35)

21 

(-13, 62)

-1.05 

(-1.88, -0.18) 

0.65 

(-0.39, 1.61) 

Crop/livestock Dryland 

-5 

(-80, 49)

4 

(-7, 9)

-0.06 

(-1.09, 0.69) 

0.36 

(-0.78, 0.95)

Crop/livestock Irrigated 

-24 

(-38, 93)

-7 

(-38, 11)

-0.28 

(-0.44, 1.21) 

-0.46 

(-2.93, 0.66)

Livestock Only 

-61 

(-122, 67)

15 

(4, 23)

-1.90 

(-4.41, 1.91) 

2.98 

(1.09, 4.41)

* Numbers in parentheses are 95% confidence intervals. 
* Climate elasticities (% change in net revenue per percentage change in climate 
variable) are in parenthesis. 
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Table 8: AOGCM Climate Scenarios 
 
 NOW 2020 2060 2100 

Temperature Summer (˚C) 

    CCC 19.9 +1.5 +2.8 +5.0 

CCSR 19.9 +1.2 +2.1 +3.1 

PCM 19.9 -0.1 +0.7 +1.4 

Temperature Winter (˚C) 

    CCC 16.4 +1.3 +2.6 +5.2 

CCSR 16.4 +1.4 +2.3 +3.2 

PCM 16.4 +1.2 +1.9 +2.6 

Precipitation Summer (mm/mo) 

    CCC 162 -2.5% -11.7% -12.3% 

CCSR 162 +1.9% +2.5% -2.5% 

PCM 162 -3.1% +2.5% +1.9% 

Precipitation Winter (mm/mo) 

CCC 75 -2.7% -5.3% +1.3% 

CCSR 75 +1.3% -4.0% -6.7% 

PCM 75 +32.0% +32.0% +22.7% 
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Table 9: Bootstrap Probabilities of Each Farm Type with Climate Change 
 

  Crop Only Crop- Livestock Livestock Only 
Baseline 63.1%

(51.1%, 77.3%)

27.0%

(11%, 43%)

7.9%

(2.9%, 12.9%)

2020 
CCC -6.3%

(-7.5%, -5.1%)

+2.9%

(0.9%, 4.9%)

+3.3%

(1.7%, 4.9%)

CCSR -5.0%

(-6.2%, -3.8%)

+2.3%

(2.1%, 2.5%)

+2.7%

(2.5%, 3.2%)

PCM 2.4%

(-0.4%, 6.2%)

+2.0%

(-0.2%, 4.2%)

-4.7%

(-7.9%, -1.5%)

2060    
CCC -11.4%

(-14.6%, -8.2%)

+6.1%

(0.9%, 11.3%)

+4.7%

(4.0%, 8.7%)

CCSR -7.0%

(-9.6%, -5.4%)

+4.7%

(1.5%, 7.9%)

+2.2%

(0.2%, 4.2%)

PCM -1.1%

(-4.3%, 2.1%)

+4.1%

(1.3%, 6.9%)

-2.7%

(-4.9%, -0.5%)

2100    
CCC -23.1%

(-29.2%, -17.1%)

+7.5%

(-2.5%, 18.2%)

+13.7%

(3.7%, 23.4%)

CCSR -12.7%

(-17.1%, -8.3%)

+6.5%

(1.3%, 11.7%)

+5.4%

(0.6%, 10.2%)

PCM -2.1%

(-5.5%, 1.3%)

+5.3%

(2.5%, 8.3%)

-2.8%

(-4.8%, -0.8%)

*Calculated from coefficients in Table 2.  
* Numbers in parentheses are 95% confidence intervals.  
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Table 10: Bootstrap Irrigation Probabilities with Climate Change 
 

 Now 2020 2060 2100 
Crop Only  

CCC 32.6% 
(13.3%, 51.6%) 

+1.4%
(-2.8%, 5.6%)

+4.5%
(-4.3%, 9.1%)

+8.0%
(-8.4%, 16.2%)

CCSR 32.6% 
(13.3%, 51.6%) 

+1.3%
(-1.9%, 4.5%)

+2.7%
(-2.9%, 5.6%)

+3.8%
(-8.4%, 13.0%)

PCM 32.6% 
(13.3%, 51.6%) 

+1.8%
(-1.8%, 5.4%)

+1.8%
(-1.2%, 3.2%)

+3.0%
(-0.4%, 6.4%)

Crop and 
Livestock 

CCC 23.5%
(9.5%. 37.6%)

-1.3%
(-2.7%, 0.1%)

-2.2%
(-4.4%, 0.0%)

-5.5%
(-11.1%, 1.1%)

CCSR 23.5%
(9.5%. 37.6%)

-2.1%
(-3.5%, -0.7%)

-2.2%
(-4.2%, -0.2%)

-2.6%
(-5.8%, 0.6%)

PCM 23.5%
(9.5%. 37.6%)

-2.6%
(-5.3%, 0.0%)

-3.4%
(-6.2%, -0.6%)

-2.8%
(-5.0%, -0.6%)

*Calculated from coefficients in Table 4.  
* Numbers in parentheses are 95% confidence intervals. 
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Table 11: Bootstrap Impact of Climate Change on Conditional Land Values   
 

  Crop Only 
Dryland 

Crop Only 
Irrigated 

Crop-
Livestock 
Dryland 

Crop-
Livestock 
Irrigated 

Livestock 
Only 

Baseline 4312 

(469, 7734) 

4443

(1409, 7493)

2325

(1185, 3390)

2832 

(1409, 4233) 

2083

(985, 3178)

2020   

CCC -408 

(-668, -142) 

-201

(-525, 80) 

-104

(-206, -2)

-198 

(-518, 120) 

+152

(-148, 454)

CCSR -342 

(-565, -122) 

-125

(-384, 104) 

-121

(-223, -19)

-119 

(-369, 141) 

+106

(-94, 307)

PCM +661 

(-260, 1465) 

-248

(-491, 159)

-102

(-222, 18)

-441 

(-1201, 339) 

-310

(-733, 116)

2060      
CCC -927 

(-1535, -326) 

-409

(-1369, 564)

-277

(-477, -77)

-426 

(-673, 128) 

+327

(-324, 933)

CCSR -585 

(-925, -245) 

-219

(-876, 459)

-214

(354, -73)

-21 

(-262, 229) 

+216

(-126, 556)

PCM +457 

(-357, 1145) 

-291

(-523, 138)

-136

(-273, 2)

-379 

(-766, -3) 

-274

(-624, 86)

2100      
CCC -1919 

(-3349, -508) 

-931

(-2190, 1212)

-650

(-1060, -240)

-582 

(-1084, -80) 

+740

(-265, 1890)

CCSR -1057 

(-1756, -355) 

-516

(-1142, 538)

-334

(-556, -112)

-117 

(-597, 365) 

+403

(-97, 907)

PCM +365 

(-145, 1155) 

-348

(-745, 288)

-204

(-345, -73)

-317 

(-743, 121) 

-231

(-644, 169)

*Calculated from coefficients in Table 6. 
* Numbers in parentheses are 95% confidence intervals.   
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Table 12: Climate Change Impacts on Expected Land Value 
 

 
Exogenous Impact 
($/ha) 

Endogenous Impact 
($/ha)  

Exogenous  
% change 

Endogenous  
% change 

Baseline 3412 3412   
2020  
CCC -237 (-480, -1)  -185 (-750 to 32) -6.9% -5.4%
CCSR -196 (-397, -2)  -143 (-563 to 45) -5.7% -4.2%
PCM 159 (-392, 695)  +332 (4 to 868) 4.7% 9.7%
2060  
CCC -538 (-1101, 41)  -463 (-1465 to -26) -15.8% -13.6%
CCSR -323 (-527, 32)  -350 (-868 to 34) -9.5% -10.3%
PCM 58 (-414, 525)  +80 (-133 to 378) 1.8% 2.3%
2100  
CCC -1122 (-2185, 129)  -957 (-2460 to -98) -32.9% -28.0%
CCSR -601 (-1143, 30)  -648 (-1473 to -63) -17.6% -19.0%
PCM 1 (-383, 525)  -36 (-316 to 517) 0.1% -1.1%

95% confidence intervals are in parentheses.  They were estimated using 200 bootstrap 
repetitions. 
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Figure 1: Ricardian Model of Net Income and Precipitation  
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