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FOREWORD

The debate over whether there is a downtrend in the long-term

net barter terms of trade between primary commodities and

manufactures is long-standing. There has been a recent upsurge of

interest in this topic with modern time-series techniques being

applied to the data. The work reported here uses a fairly new

statistical approach called Structural Time Series which, it is

claimed, overcomes the shortcomings of techniques used in earlier

studies.

The International Commodity Markets Divisi3n has an ongoing

interest in this topic, because of its important policy

implications, and therefore supports research in this area by its

own staff or, as in this case, by consultants.



AN ANALYSIS OF THE AGGREGATE LONG-TERM BEHAVIOR OF

COMMODITY PRICES

Pier Giorgio Ardeni and Brian Wright
University of California, Berkeley

1. INTRODUCTION

The statistical debate on the net barter terms of trade between primary

commodities and manufactures has received a great deal of attention in the recent

years. Starting from the Prebisch-Singer hypothesis, the empirical research has

focused on the long term movements in commodity prices as well as their cyclical

variations. Many studies (Spraos (1980), Sapsford (1985), Thirlwall and Bergevin

(1985), Grilli and Yang (1988)) have concluded that there has actually been a

deterioration in the net barter terms of trade, although to a lesser extent than

predicted by Prebisch (1950) and Singer (1950). Works of Cuddington and Urz62a

(1987, 1989), on the other hand, have given no support to the deterioration

hypothesis, by emphasizing the cyclical variation of secular movements in commodity

prices around a steady level.

Notwithstanding this recent flourishing of empirical evidence on long term

movements in commodity prices, the debate is still unsettled, as the statistical

methodologies that have been used have several shortcomings, some of which make

the results unreliable. Spraos (1980) fitted a simple log-linear time trend variable to

the data in a regression estimated via OLS. Sapsford (1985), interpreted the results

of Spraos (who found no negative trend in the postwar period) in the light of a possible

"omitted" structural break in 1950. By introducing a dummy variable and correcting

for serial correlation through the Cochrane-Orcutt technique, Sapsford has been able

to recover a negative trend in the net barter terms of trade on post-war data, too.

Thirlwall and Bergevin (1985), using quarterly data for disaggregated commodity price
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indices on the postwar period, have also fitted exponendal time trend models, finding

evidence of idther constant or deten.rating terms of trade. Grilli and Yang (1988),

using a series of newly constructed price indices, have estimated a simple time trend

model (cofrecting for serial correlation) finding significant downward trends in the net

barter terms of trade.

As Cuddington and Urzda (1987, 1989) noted, all these studies (if we exclude

Grilli's and Yang's) appear to have overlooked the importance of the serial correlation

reflected in the price series. In the absence of any inspection of the statistical

properties of the univariate representations of the series, all inferences that have been

drawn are potentially subject to spurious regression problems. In a regression of a

variable against a dme trend and a constant, the distribution of the OLS estimator

does not have finite moments and is not consistent if the error process is

nonstationary (Plosser and Schwert (1978)), and tests of a time trend are biased

towards finding one when none is present, if the disturbance is nonstationary (Nelson

and Kang (1986)).

The problem appears thus to be the appropriate description of the error process

and, therefore, of the series at hand. Cuddington and Urzda (1987, 1989), following

the identification approach suggested by Box and Jenkins (1976), find that most of the

series they analyze appear to be nonstationary in the mean. For their study of the

Grilli and Yang indices they reject the deterministic trend model in favor of a

stochastic trend one by testing the null hypothesis of non-stationarity in the price

series using the tests proposed by Dickey and Fuller (1979) and Perron (1988).

Excluding a one-dme jump that they assume occurred in 1920, they conclude that no

deterioration has occurred in the net barter terms of trade from 1900 to 1983.

Unfortunately, the limits of their approach tend to weaken the force of their

conclusions. In the first place, the simple analysis of the correlograms of the series is

not, per se, sufficient evidence in favor of a certain model, since there can be several
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other models that are consistent with a given set of data. In the second place, tests of

unit roots like Dickey and Fuller's (and their corrected versions as suggested by

Perron) have been proven to have low power against close alternatives.

In summary, the evidence on the net barter terms of trade between primary

commodities and manufactures appears, quite mixed. While the evidence of a

deterioration seems incomplete and incorrect on several statistical grounds, the

hypothesis of a trendless evolution does not look robust either. The purpose of the

present study is to analyze commodity prices by using a fairly new statistical

approach that overcomes the shortcomings of the recent literature suggested above.

This approach to time series modeling goes under the name of Structural Time Series

and tries to model explicitly what we can caU the "structural" components of a time

series, i.e. the trend, the cycle, and the residual (irr ;_ular) components.

The Structural Time Series approach has been proposed by Harvey and others

in a number of papers (Harvey and Todd (1983), Franzini and Havey (1983), Harvey

(1985), Harvey and Durbin (1986)). The idea is to formulate a time series model

direcdy in terms of trend, cyclical and inegular components. Since it is often difficult to

understand which properties different ARIMA specifications will have in terms of

potential decompositions into "secular", "cyclical" and "irregular" components, the

alternative is thus to express unobserved components models that have these

components. ecplicitly built into their structure.

This approach requires no preliminary assumptions about the properties of the

series, e.g. stationarity of the first differences which underlies the decomposition

method proposed by Beveridge and Nelson (1981) and used by Cudngton and Umia

(1987, 1989). Moreover, a structural time series model can be trnsformed into ai

ARIMA model which can thus be interpreted as the reduced (restricted) form of the

structural model. AU the "components" of the series are assumed tO follow an
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individual pattern and are independent and statistically uncorrelatedl. Technically,

structural time series model can be cast in a state-space framework, and estimated

through the Kalman filter. Estimates of the individual components can be obtained

through a Kalman Smoothing algorithm.

In this study we analyze the Sggregate commodity price index (CPI)

constructed by Grilli and Yang (1988). They proposed also two alternative deflators:

the U.S. Manufacturing Price Index (USMPI) and the United Nations Manufacturing

Unit Value (UNMUV) based on internationally traded manufacturing prices.

The paper is organized as follows. In the next -oction the Structural Time

Series approach is briefly outlined. The remainder is then devoted to the statistical

analysis of the aggregate deflated commodity price index (CPI). We show that the

autocorrelation funcdon of the log of the deflated index is consistent with a stationary

ARMA representation and that the evidence of non-stationarity in the data is not as

clear-cut as previously claimed. We then perform unit root tests in some univariate

representations. Whereas for the Dickey-Fuller tests we can reject the hypothesis of

a root of unity, for the Augmented Dickey-Fuller tests (with 4 lags) we are unable to

reject the same hypothesis. Several structural and ARIMA models are then

estimated and compared. The former appear to have better fit and forecasting

performance than the latter. Moreover, the deterministic trend model proves superior

in terms of fitting to the stochastic trend model, although in both cases the trend

appears to be significantly negative over the entire time series.

2. THE STRUCTURAL TIME SERIES APPROACH .

The approac! roduced by Box and Jenldns (1976) is based on the idea that a

"parsimonious" model from the class of autoregressive integrated moving average

Iln the Beveddge and Nelson decomposition method, the trend and the cycLical components have the
same variance, i.e. they are perfectly correlated.
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(ARIMA) process can be identified on the basis of the correlogram and the sample

partial autocorrelation function of the observed series. The data are thus used to

identify a suitable model, although this can have properties that are difficult to

interpret ;s terms of underlying components.

The strictural approach, on the other hand, is based on the idea that a model

containing unobserved components can be fitted to the data. As Harvey states it, "the

structural times series model is not intended to represent the underlying data

generation process. Rather, it aims to present the [stylized] "facts" about the series

in -erms of a decomposition into trend, cycle, seasonal, and irregular components"

(1985, p. 225).

Let yt be the observed variable (in logs). The basic structural model can be

written as 1/

(1) Yt =lLt +t +e, t=L...

w.here t, is a trend componient, V, is a cycle component and e, is an irregular

component. We assume that , is a stationary linear process, e, is a white noise

disturbance with variance or, and all the components are uncorrelated with each other.

The linear trend can be written as

(2) ,t = jt-l + ft-l + t=l...,T

(3) + t

where i1, and 4, are independent white noise processes with variances a, and a

respectively. The cyclical component can be modeled as

(4) rNt=p o) 1ixr-mot : *,*O x,o:5P•1. 
LVt] Psin,% Cos,% LV -iJ+[@ 0L XCO0 pJ

ziere we follow Harvey (1985).
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where C, and so are uncorrelated white noise processes with variances d. and o2.

respectively (V' appears by construcdon). Here X can be thought of as the frequency

of the cycle and p as the damping factor of the amplitude. Although this formulation

appears rather peculiar, it allows a great variety of processes. The cycle can be

rewritten as

(5) (l-2pcosAL+02V)V, = (1-pcosAL), +(p sin A)<

which is an ARMA (2,1) (L is the lag operator). If . = 0, it reduces to an AR (2)

with complex roots, whereas if either A = 0 or A=a, then iv, -AR(1). Also we

assume that a. = cr.

The basic stutura model (1), (2), (3), (5) can be written in state space form.

The state or transition equation is:

rt. 1 I 0 o ][ j r[i, 1
(6) Pt =0 1 0 0 1 +4

0 0 pcos psin x iv. + .
y. 0 0 -psinX pcos)jr 

or, more compactly

(7) at =S +;.

where a, =[ ,. V, V], and so on. The measurement equation is

(8) Y=[I 0 1 0{ Pj+et = ZA +et

The parameters A,p,0,2,02 can be estimated by maximizing the likelihood of the

observed sample with respect to these parameters, through the Kalman filter.

Maximum likelihood esdmators can be obtained either in the dme do.iain or in the
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frequency domain. The time domain procedure is based on the state space

representation above (see Harvey (1981)).

A comparison of different non-nested models can be made on the basis either

of the maximized likelihood function or of the prediction error variance (PEV) 6p

which is the steady-state variance of the one-step-ahead prediction eror. The R'D 

defmed as (Harvey (1984)):

apT 2
(9) R= 2 =-T 2/ (Ayt - AY)

t-2

where T* is the number of residuals and T is the total number of observations, is a

standardized measure of the goodness of fit reflected in a.2 .

Once the estimates of X unknown parameters are obtained, the Kalman filter

gives the minimum mean squared estimates of the state vector at dme T, i.e. the level,

the slope and the cyclical components. The estimate of N will be the final estimate of

the long run growth rate of y,, while the estimate of 1 LT Will be the final estimate of

the level of the trend. Estimates of the unobserved components can then be obtained

for the whole sample period by Kalman smoothing.

One of the essential characteristics of this model is that it is a local

approximation to a linear trend. The level and the slope change slowly over time

according to a random walk process. Also, the disturbances in the cyclical component

make the cycle stochastic, so that its patter too varies over time. Equations (6), (7),

and (8) also imply an ARIMA representation for y,:

(10) Y A2 a (L2A j t =

(10a) Yt I R' _'- + An' I +(I - L)O -<02 0' e
le (( I - L D2
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(lOb) Y, _ + @(L)>" +e,

where A - (I - L) is the iirst difference operator, ¢(L) is a 2-nd order polynomial in

L, O(L)oo=(I-0 1L) o+0 2 co and 4, is an IMA(l,1) process, since 4, =rI,t + -1.

The first component of the right hand side of (lOb) is the trend, whereas the second is

the cyclical component. It must be noticed that in order for the minimum mean square

estimates of the two components to have finite variances the two polynomials A2 and

¢(L) should not have any root in common. This means that changes in the cyclical

component occur independendy from the changes in the trend component . Expression

(lOb) shows that the structural dme series model can be thought of as an unobserved

component ARIMA model (UCARIMA) as discussed by Engle (1978) and Nerlove,

Grether and Carvalho (1979).

The general ARIMA representation of the trend plus cycle model is therefore

an ARIMA (2, 2, 4) with no constant term. The two unit roots come from the fact that

both the level and the slope of the trend follow a random walk Thus, if (it = 0, i.e. the

slope is constant, y, will be an ARIMA (2, 1, 3). Provided that c2 > 0, y, will then be

stationary in the first differences. A model where a = a=2 _2 =0 will correspond to

(1 1) '&y,= ,+%,

which Nelson and Plosser (1982) dubbed as difference stationary In this case, al

the variance of the process is attributed to the (stochastic) trend level. Convmersely, if

2 = = o, =0, i.e. all the variance is attributed to the irregular component, the

model reduces to

(12) Y. = I + P3t +e

This is also the model that Cuddington and Urzda (1987, 1989) select.
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which Nelson and Plosser (1982) called trend stationary. Here, p, is a deterministic

linear trend plus a constant driftf a,2 > 0, then y, is an ARMA (2, 2).

If the cycle ', is just an AR(2), and C = O(constant slope), then y, is an

ARIMA (2, ', 2). However in this case as well as in the previous ones, it is an

ARIMA mode! with. restrictions on the parameters. An ARIMA (2, 1, 2) has 5

parameter to be estimated while the basic structural model, with y2 = o2 = 0 has only

4.

3. TRENDS AND CYCLES IN THE AGGREGATE COMMODrTY PRICE INDEX

3.1 ANALYSIS OF THE CORRELOGRAMS.

Both the logarithm of the commodity p..ce index (CPI) deflated by the US

Manufacturing price index (USMPI) and the log of CPI deflated by the UN

Manufacturing unit value index (UNMUV) visibly show some decline over the whole

period 1980-1986, particularly the latter. However, they show a great deal of

randomness, too. There are peaks in the 1910's, in the '20's, the '50's, and the '70s

(Figures IA).

In what follows, we will focus on log (CPW/UNMUV), hereafter LPV, on the

ground that it appears as a better candidate for a real world commodity price index

than log (CPVIUSMPI). Although the United States has certainly played a central role

in the international trade in commodities during the whole century, a world-trade-

weighted price index seems more representative. Mvloreover, since Cuddington and

Urzda made the same choice, we would like to have a reference for an appropriate

comparison of the results. 1 /

The correlogram of LPV decays rather slowly, and at lag 14 it is not

significantly different from zero. However, for longer lags, there is a substantial

negative autocorrelation (see Figures 2A and 2B). Individual values are not

1/ The possibility of greater bias in the manufactured goods index than in
the primary commodities index due to quality changes has to be
acknowledged, which means a downwards bias in the deflated series.
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significant, but there seems to be a long "wave" with a trough at lag 25. Just as the

visual inspection of the series suggests that LPV is not mean-stationary (Figure IA),

the rather slow decay of the correlogram of LPV indicates the possibility that first

differencing may be needed in order to achieve stationarity. However, although LPV

may not be mean-stationary, it does not seem to be a simple random walk.

The correlogram of the first differences of LPV (DILPV) shows peaks or

troughs at lags 2, 10, 16, 25, 36 significant at lags 2, 10, and 16 (Figure 2C). This

seems to rule out the possibility that the process generating the LPV series is

actually an ARIMA (0,1,1), i.e. a random walk with an MA(1) error component, since

for such a process the autocorrelation function is zero at lags greater than 1.

Moreover, the sample autocorrelation function from DILPV is not positive at lag 1 and

is not zero at all higher lags, as we would expect if LPV was following a simple

random walk process. (For this case, however, the plot of the first differences (Figure

IB) strongly implies mean-stationarity, in line with the assessment of Cuddington

and Urzda (1989)). In sum, neither LPV nor its first differences appear to follow a

simple random walk, and their time series procef¶ses seems to he considerably more

complex.

Denote the autocorrelation at lag r from the d-th difference of a stochastic

process as Pd(s). For the basic structural model (1), a restriction like pl('s)=O for

r 2 2 implies that iV, = 0, that is, the process has no cyclical behavior. If we do not

impose such a restriction, then we can have a number of stochastic processes that are

stationary but whose first difference are consistent with the actual correlogram of the

first differences of LPV. Moreover, having a negative value of pl(l) is perfectly

compatible with the structural model in (1). In fact, since by construction e, and 11, are

unconrelated, p,(l) has to be less than or equal to zero (see Appendix 1).
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Consider again the basic structural model (1) and suppose, for simplicity, that

o2,q = a2 = c~ = so that (1) can be written as

(13) y =-L+Pt+vt,,

that is, the model reduces to the trend-stationary model in (12), since V, is stationary

by construcdon. In its most general form, Nr, can be, as we have seen above, an

ARMA(2,1). Since any ARMA(p,q) model can be approximated by an AR(m), with m

large, then we can approximate V, with a higher order AR(p) model. For a stationary

AR(p) process we know that (Box and Jenkins, (1976, p. 54)):

(14a) P.(T) = PO (C - ) + 2P.(s-T-2) +...zp pjf - P)

and that, upon solving the Yule-Walker p equations:

P. (1) = 1 + *2 PX() +--.+ *pp, (p - 1

(14b) p. (2) (1) + ¢2+..ppo (P - 2)
I...

P.o(P) =VP(P~ )+ P2 p(p -2) + ... + +p

we can get the autocorrelation coefficients in terms of the autoregressive parameters.

In matrix form

(14c) P=P-I#

where P is a vector of p autocorrelation coefficients, * is a vector of p autoregressive

parameters and P is the pxp matrix:

(1 - 2) - po'

-(C +o ) (1-+4) 0... 0 
... ... ... ... ...

L p-p p-2 * 1-A 1
IE 'V, is an AR(p), so is y,. The autocorrelation function of Ay, will thus satisfy

the same difference equation as that of ,, but starting at z = 1. It turns out that we
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can express the autocorrelations of the first differences in terms of the

autocorrelations of the levels arvey (1985, p. 219), see also Appendix 2)

(15) PI p ( - 1))
2(l -PO ())

The correlograms of LPV and DILPV are shown in Table 1. As we can see,

the sample autocorrelation function of DILPV shows significant negative values at

lags 2 and 16 and a positive one at lag 10. We have chosen an AR(16) process as a

possible candidate able to pick those features. An AR(16) is a process of sufficiendy

high order (p is almost T/5) that can capture the significant correlation at lag 16. Thus,

we have estimated eq. (13) with W, - AR(16), getting the following values for the

j =.716; 02= -.164; 03 =.089; 04= -.019; 05 = -.014;

06= -.014; 07 =.085; 08= -.030,; 9 =.018; ¢10 =.174;

I= -077; 012 = -. 138; ¢X3 =.121; 014 =.016; 015 = -.234;

*-= -. 039.

From the estimated coefficients we have computed the theoretical autocorrelations

and, from these, the theoretical autocorrelation function p, (:) for the first differences of

y. Values are listed in Table 1. Interestingly, the three peaks at lags 2, 10, and 16

are picked rather well by the theoretical autocorrelation function of the first differences

of y, with a deterministic trend and cyclical AR(16) disturbances (Figure 2D), and it

can be seen that the pattern is not dissimilar to that of the observed correlogram in

Figure 2C

In sum, the conclusion is that first differencing is not necessarily needed and

that a difference-stationary model of the ARIMA type is probably not the best

description of the actual piocess since it would require a positive autocorrelation at lag

1 and zero autocorrelations at higher lags for the first differences. On the contrary, the
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autocorrelation at lag 1 is negative (although small), whereas some of the

autocorrelations at higher lags are nonnegligible, and the overall pattern is not

inconsistent with the structural model in (1) with a deterministic trend and cyclical

disturbances. Moreover, what the example above shows is that, although the

correlogram of LPV may indicate the need for differencing, the correlogram of DILPV

is quite at odds with that. Since the correlogram of DILPV seems to fit different

processes, we may conclude that the mere inspecdon of the correlogram of LPV is not

enough to justify first differencing. Obviously, the mean-stationarity of DILPV does

not imply that LPV is nonstationary, as the first differences of any stationary process

are stationary in any case.

3.2 TESTING FOR NONSTATIONARITY

The issue of whether the trend plus cycle model (with a stationary cyclical

component and a linear trend) is appropriate depends primarily on the stationarity of

the error process. If the disturbances in eq. (13) are to have a single unit root, in fact,

then the difference stationary model (11) would be more appropriate, the latter being

just a nested model of a more general specification including a linear trend variable

(16) =L+Pt+v.

where AV, is a stationary ARMA process. This is the way Cuddington and Urzda

actually specify their research hypothesis (1989, p. 433), although they do not actually

test their specification against eq. (16) as the null. Instead, they test it against the

null of a unit root.

In the approach introduced by Dickey and Fuller (1979, 1981) unit root tests

are performed under the null hypothesis that one root is unity against the alternative

that is not. For an AR(1) representation like y, = py.-1 + e, the distribution of the

OLS estimator of p is not standard under the null hypothesis of p = 1 and the "t -

statistics" do not follow a Student t distribution (Fuller (1976)). Dickey and Fuller
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(1979) have computed the limiting distributions for the "t-statistcs" of the A's in the

following three models:

(17) Ay, =Pyt.- +YAY,- +Ct

(18) Ay, =I+pyt-I +y. t +e,

(19) Ay, = A+Pt+pyt_j +yAy.-1 +e,

where e, is white noise, under the null hypothesis of p = 0. Here Ii is a constant

drift, while t is a linear trend. The alternative hypothesis, in the three cases, is that

p *0 . Similarly, augmented Dickey-Fuller tests are tests on the "t-statistics" of the

;'s in the following:

(20) Ay1 = py1 -. + y yt.-i + e,

(21) Ay, = IL + PY.-I + yi Ayt- + e,
i-l

(22) AY, =IL+Pt+Py. + y 1i Ayt-i + 1t
i-l

where more lagged differenced terms are included to capture the dynamics (and to

insure the i's are white noise). The limiting distributions, under the null of p = 0, are

the same as above. -/

I/Several unit-rot ts have baen introduced in the recent literature, e.g. Sargan and Bhargawa (1983),
Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988), Pawon (1989). Most of them
are based on Diccey's and Fulles tabulated distnbutions.
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We have performed the Dickey-Fuller unit-root tests on LPV under the three

representations in eq. (17) - (19), getting the following results (1t indicates the

esdmated "t-statisdc" of p):

Cridcal Values

Eq.(17) HO:p=° HA:P*O ° =-2.13 -2.60(1%) -1.95(5%)

Eq.(18) Ho:p=O HA:P*O i=-2.15 -3.51(1%) -2.89(5%)

Eq.(19) HO:p=° HA:P*O i = 3.79 -4.04(1%) 3.45(5%)

We are able to reject H. in the estimation of (17) and (19) at the 5% but we fail to

reject it in (18). Also, i is significant in (19) but not in (18), while ji is significant in

(19). Therefore nonstationarity, if there is any, is only borderline and, overall, we may

confidently reject the hypothesis that LPV has a unit root on the basis of the Dickey-

Fuller tests.

Nevertheless, the Augmented Dickey-Fuller (ADF) tests give quite a

different result. The ADF tests performed on LPV under the three representations in

eq. (20) - (22) with p = 4, in fact, give the following results (the null and altemative

hypotheses the same are as above):

Eq.(20) i51.71

Eq.(21) t -1.43

Eq.(22) i=-2.78

In all three cases we fail to reject the null hypothesis of a unit root. Therefore,

although the latter tests seem to indicate quite uniformly that LPV is nonstationary,

these results are overall quite unsatisfactory. It is not sitmply that the two sets of

tests are at odds./but that unit root tests are difficult to reject (and to interpret).

-On the other hand, white-noise Box-Ljung Q tests on the residual of each of the six equations could
not reject the null that these were indeed white-noise, at the 5% significant level.

15



Although the case for stadonarity is actually quite strong since we are able to reject

the null of nonstationarity in two cases, these tests lack power. 1/

In summary, the preliminary investigation of the data, based both on the

correlograms and on the statistical tests, shows that the evidence of non-stationarity

in the aggregate commodity price index is mixed. Although first differencing may be

advocated in order to avoid the risks of incorrect inferences due to the presence of unit

roots, the dangers of overdifferencing are as grave, (as shown by Plosser and Schwert

(1978)), particularly in such a borderline case. It is therefore desirable to have a

procedure that would bypass the trade-off between differencing and not differencing.

One such a procedure is the structural time series approach we will explore next.

3.3 ESTIMATION, TESTING AND MODEL EVALUATION OF THE BASIC STRUCTURAL

MODEL

One of the attractive features of the structural time series approach is that

estimaton and testing of the basic structural model outlined in eq. (1) - (4) require no

preliminary assumptions about the characteristics of the underlying data generating

process (e.g. stationarity). Moreover, it seems desirable to have a model that allows,

at least in theory, the explicit modeling of the cyclical movements displayed by the

series (which showed up, for instance, in the fitting of a deterministic trend model with

autoregressive disturbances in the previous section).

The basic structural model, as cast in state-space form in eq. (6) - (8), can be

estimated in the time-domain through the Kalman Filter, which gives maximum

likelihood estimates of the structural parameters a, a,2, G2 ,). and p (for details

see Harvey and Todd (1983)). A comparison of various models that are non-nested

lihe unit root test performed by Cuddington and Urzda based on Perron (1988) is conditional on the
presence of a one-time jump in the drift in 1921. If the series is non-stationary in the mean, it is
actualy quite difficult to distinguish a one-time jump from the continuously wandering pattern of a
stochasdc non-mean-reverting process.
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can be made on the basis either of the maximized likelihood function, or of the

prediction error variances, or of the RD

We have esdmated several different versions of the following models: (a) the

stochastic trend model without the cyclical component, i.e. with i, = 0;

(b) the trend plus cycle model, that is, with stochastic trend, stochastic slope

and stationary cycle;

(c) the cyclicsl trend model y, = p +e,, where 1, = +- +Wt-I +8,, and

,B, and aV are the same as before;

(d) the trend plus cycle model as in (b) with the imposition of an AR(1) cycle,

i.e. k =0 ork = ;

(e) the trend plus cycle model with deterministic linear trend and constant

slope, i.e. a, = A =0;

(f) the trend plus cycle model with constant average growth rate (constant

slope), i.e. q = 0;

(g) the stochastic trend model with constant slope and no cyclical component.

In summary, the seven models can be looked at as restricted versions of the

basic structural model (1) - (4), if we exclude model (c) where the cycle is "built into"

the trend component.

Results for LPV over the sample period (1900-1986) are shown in Table 2.

The period of the cycle corresponding to a frequency of x radians is given by 2r / X

years. The white-noise test is given by the Box and Ljung Q statistic:

(23) Q=VT(T +2)±(T -1) r2 (@)
v1

where T* is the number of residuals and r(r) is the rth autocorrelation in the residuals

and T is the total number of observations. In a model with n parameters, Q has x2
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distribution with P-n+1 degrees of freedom under the null hypothesis. In Table 2A,
1/

we chose a value of p = 18 . The heteroscedasticity test is given by

rT 1m+k
(G) H=[ X(v /f ) (v2 / f;)

t-Tkl t+

where k=T-T* and m=T*/3 or the nearest integer to it (see Harvery (1985)). Here, v,

is the one-step-ahead prediction eoror and f, is the estimate of its variance (both vt

and f, are obtained from the Kalman filter). The H statistic is approximately

distributed as an F with (m, m) degrees of freedom. Harvey (1985) recommends a

choice of m=T/3. In our case m=28.

Several interesting features emerge from the estimation results. Whenever

the cyclical component is not explicitly set to zero (models (a) and (g)), it has

substantial variance. The period of the cycle, however, is very variable.

All the models are satisfactory with respect to the diagnostic Q (serial

correlation) and H (heteroscedasticity) tests, despite their different goodness of fit.

The maximized log of the likelihood function is not too different across the models,

while the prediction error variance and the RD are quite variable. The variance

parameter of the slope, a2, is always found to be zero. The variance of the irregular

component a2, also, is always found to be basically zero (if rounded off at the fourth

decimal), although it must be noticed that a positive value is consistent with the

negative (but insignificant) value of r(1), the sample autocorrelation at lag 1 of the

first differences of LPV.

Models (d) and (e), i.e. the stochastic trend-stochastic slope-AR(l) cycle

model and the constant trend-constant slope-cycle model respectively, are the ones

to be preferred in terms of goodness of fit (they have reasonable R2D and lowest

PEV). Interestingly, the variances of the level (c) and the slope (t2) are found to be

/Whrver a pmmer has been estimated as zero, we did not count iL
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MODEL FEATURES RESTRICTIONS WITH RESPECT
TO B.S.M. (1) - (4)

(b) Stochastic trend None
Stochastic slope
Cycle

(a) Stochastic trend v9=0 =>qs=0
Stochastic slope ' 0
No cycle

(g) Stochastic trend 1r,0 =* = O
Constant slope =0
No cycle

(d) Stochastic trend %=o
Stochastic slope
Cycle-AR(1)

(e) Constant trend F = C _ 0
Constant slope = 0
Cycle

(f£) Stochastic trend at =0
Constant slope
cycle
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zero in the former model, and the cycle basically follows an AR(l) process in the latter

model, so that the two estimated models are fundamentally the same. The fact that

these two models are prefened is, in itself, evidence in favor of the trend stationary

model (12). In both cases, in fact, the trend is estimated as a linear deterministic one,

with a non-zero constant drift.

The superiority of the deterministic trend models is confirmed by their better

goodness of fit. The stochastic trend models with no cycle (a) and (g) reduce to a

random walk plus drift model, since a2 = 0 in both cases. The gain over the random

walk plus drift model, however, is very little (as measured by the RD). The stochastic

trend plus cycle model (b) and (f) indicate that a better goodness of fit can be obtained

by including a cyclical component in the model, but stll the gain over the random walk

plus drift is not that satdsfactory (up to a 9% better fit). A far better goodness of fit is

obtained by the cyclical trend model (c), although it is still inferior to deterministic

trend models (d) and (e).

nTe fact that the cyclical trend model fares better than the trend plus cycle

model implies that the trend and the cycle components (if stochastic) cannot be

separated (see Harvey (1985, p. 223)). The rate of change of the trend is decomposed

into a long-run component, a transitory cyclical component and a random component.

However, since 02 is zero and ao is basically zero also, the rate of change of the trend

is thus equal to a constant term plus the cyclical component. Rewrite the cyclical

trend model:

PtV + 4,

I, ARMA(2,1)

if o2n < O,then
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11.-=1i.t1 + *8 + W'-1 = tLo + Pt + i51, Wtl- `2 o + Pt +Iwt Y-I
1.0

so that

(25) Y=1o+ Pt+

that is, y, is an ARIMA (2,1,2) with a deterministic linear trend and a drift.

The difference between this model and the deterministic trend model implied by

the estimated models (d) and (e) is subtle but dramatic. Both models (d) and (e), in

fact, reduce to

(26) Y1 ' Lo+pt+' 1

that is y, is an AR(1) with a deterministic linear trend and a drift. Therefore, both

model (c) and model (d) or (e) imply a model with a linear deterministic trend and a

drift but two different error processes. In the first case, the error process is stationary

in the first differences, while in the second it is stationary in 'evels. Thus, the two

models are nested. However, if one had to choose on the basis of the unit-root tests

alone, the choice would have probably been for the former, whereas on the grounds of

the better fit and the smaller PEV we would certainly prefer the latter.

In any case, the estimation results show that a cyclical pattern in the LPV

series is clearly present, either built within the trend, or in addition to a deterministic

trend. The level and the slope of the trend together with the cyclical pattern are

estimated by a smoothing algorithm. The final estimates at the end of the sample

period are given by the Kalman filter (see Table 2B). In our case, in all the models the

slope of the trend remains constant over time. At 1986, the components of the trend

have been estimated as follows:

LEVEL (AT) SLOPE (h)

-.1427 -.0060

[.0851] [.00171
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The figures in brackets are RMSE's. Since the observations are in logarithms, the

estimated level of the trend at 1986 was exp (-.1427) = .867, while the growth rate of

the trend was -0.6% per year.

These end-of-period state coefficients are those resulting from model (d).J

They imply a negative value of the trend at 1986 with a negative slope of -0.6% a year.

Such values are confirmed by the estimated coefficients of the constant and the slope

for model (e): starting from a value of exp (.3768) = 1.46, the trend has decreased

along the 87 years of the sample at a rate of -0.6% per year, to end in 1986 at the level

of exp (-.1415) = .86.

The esimated components for models (d), (e), and (b) are shown in Figure 3,

4, and 5 respectively. Comparing the estimated trends from the various models, it is

noteworthy that all specifications indicate evidence of a secular deterioration in the

real commodity price index all over the sample and no one-time drop in any year. This

seems to confirm the thrust of the Prebisch - Singer hypothesis of a persistent steady

worsening of the net barter terms of trade (apparently modified by cyclical

movements) as opposed to some one-time shift (perhaps due to the resetting of the

international trade conditions after the world wars).

Interestingly, these findings are completely at odds with Cuddington and

Urzda's (1989), which give no support to the deterioration hypothesis. In their work,

neither the trend-stationary model nor the difference-stationary model show any

evidence of secular deterioration in commodity prices. There are two possible

explanations for such differences. The first is that Cuddington and Urzda use a dummy

variable to account for an apparent one-time downward shift in the mean after 1920.

1 1The state coefficients resulting from model (c), as well as those from model (a), are not very
informative since they are given by the actual values of the level and the slope at the end of the

2Again, in the case of model (c), the plot of individual components is not very informative. As a
matter of fact, we don't have "individual" components, since the cycle is built within the trend and the
two cannot be sepanted. The plot of the trend coincides with the actual values of the series.
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However, although a visual inspection of the plot of the commodity price index series

might suggest such a shift, one could argue that other one-time shifts may have

occurred, e.g., in 1930, 1950, 1973 or even 1982. Also, a shift may have occurred in the

years pre-1900, and the 1982 shift may have been just the beginning of a new twenty-

year downward slump. In other words, it seems arbitrary to isolate a single one-time

jump in a series that over the long-run varies widely.

The second difference arises from the different approach to the analysis of

economic time series. Cuddington and Urzda, following the Box-Jenkins identification

approach, are led to the conclusion that first differencing is needed. The difference-

stationary model seems superior to the trend-stationary one (although the actual

significance of the latter is obscured by the inclusion of a dummy variable). However,

the DS molel itself appears to be unable to capture all the characteristics of the

series, and this is mainly because of the narrowness of the OLS fitting of ARMA

models. If, in fact, one has to choose on the basis of the significance of the coefficients

alone (and keeping in mind the "parsimony" criterion), then the price for simplicity will

necessarily be paid in terms of richness of the model. Moreover, the assumption that

differencing leads to stationarity is not one to be taken for granted. Although the

correlogram of the first differences may die out in the classical fashion, there may be

other features of the series that are not captured in a parsimonious ARIMA model.

The structural time series approach tries to explain the characteristics of the

observed correlograms with unobserved components which have some desired

properties, namely the trend (long-run component), the cycle (transitory cyclical

component), and the irregular component. Since it requires no preliminary

assumptions on the characteristics of the series (e.g. stationarity of the first

differences) it avoids the dangers of incorrect inferences arising from assuming a unit

root when none is present. The fact that we were able to find such components both in

a stochastic-trend model and in a deterministic-trend one confirms that a similar
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decomposition is actually a reasonable one, being supported by the data. Also, the

evidence of a significant downward sloping trend in either specifications is certainly in

favor of the secular deterioration hypothesis and confirms that the finding of

Cuddington and Urzia (1989) of no such deterioration is due to the incorrect treatment

of the characteristics of the series and to the decomposition arising from that

treatment.

3.4 UNRESTRICTED ARIMA MODEL ESTIMIATION

As a matter of comparison, we have estimated several ARIMA models to

check whether the standard ARIMA-model selection methodology could have led to

the selection of models displaying the same characteristics as the one estimated

through the structural time series approach. As we have seen above, the structural

model corresponds to an ARIMA model in which the AR and MA parameters are

subject to binding restrictions. Given these restrictions, from any structural model it

is thus possible to recover an ARIMA model. The question is whether these

restrictions would lead to any improvement over the correspondent unrestricted

model. If they do, the structural model will prove superior in displaying the desired

characteristics, which could have not been uncovered in the unrestricted estimation.

A natural way to compare unrestricted and restricted ARIMA models is the

estimated prediction error variance. In the restricted model, this is the one-step-

ahead prediction enror variance estimated by the Kalman filter. In the unrestricted

ARIMA model, the prediction error variance is simply the variance of the disturbances

(the squared SSE).

The estimation results for a number of ARIMA models are presented in Tables

3A and 3B. Models in Table 3A correspond to the following forms. For d = 0,

(I-o, L - 2 L2 )y, = + ,t + (1 -OIL -0 2L2 )et,
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i.e, an ARMA (p, q) with constant ,u and linear trend t, with p 5 2 and q S 2. For

d=1,

(1- j L- 2 L2 )Ay, = + Pit + (1- OIL - 02L2 )e,

i.e. an ARIMA (p, 1, q) with constant p and linear t, and p 5 2 and q • 2. Models in

Table 3B correspond to the same forms, with no linear trend included.

On the basis of the prediction error variance, one would choose an ARIMA (2,

1, 2) frum Table 3B (&2=0.0109) and either an ARIMA (1,1,2) with trend

2= 0.0107) or an ARIMA (2, 1, 2) with trend (2= 0.0108) from Table 3A.

However, since the "t-statistics" associated with the coefficients are too low, we

would drop some of the coefficients, and choose models where all the estimated

parameters are significant. In the ARIMA (1, 1, 2) with trend in Table 3A, the

estimated ,B is not significant. By dropping it, we get the ARIMA (1, 1, 2) in Table 3B

with &2 =0.116. Conversely, if we drop the second-order lag MA parameter, we get
p

an ARIMA (1,1,1) with trend, but this turns out to have a non-invertible MA

polynomial (the same happens if we exclude the linear trend).

A slightly better fit could be obtained by dropping the time trend from the

ARIMA (1,1,2) and estimating it in levels, i.e. with an ARMA (2,2). This gives a

62= 0.115. No other ARMA model without tr.nd fares better. Conversely, a betterp

fit can be obtained with an ARMA (2, 1) with trend (&2 = 0.112) but, still, the MA

coefficient is barely significant. Thus, if we stick so the significance of all the

estimated parameters the best we can get is, for the models with no trend, an ARMA

(0, 2) (but &2 =0.0162) or an ARMA (1,0) (with C2 = 0.0123, but ai is not

significant.). An ARMA (2, 1) with trend gives C32=0.0112 (but 0, is barely

significant) whereas an ARMA (1, 0) with trend yields 2 =0.C1 14, with all the

coefficients highly significant.
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In conclusion, the apparent trade-off between overall fitting and significance of

the individual coefficients tends to make the choice of a good model rather arbitrary.

The problem with ARIMA-model selection is exactly that, in looking for an adequate

parsimonious representation, many different processes may actually yield similar fits,

even though they can have very different properties. ARMA models obviously imply

very different processes from ARIMA models, just as models with linear trends are

very different from models with no trends. Since many of the estimated models seem

actually to pass the white-noise test on the residuals, when the estimated prediction

error variances are the same, then the choice really boils down to some "a-priori"

beliefs regarding the true nature of the process. But this is one reason why we can

claim the ARIMA-model selection as being unsatisfactory.

Consider, for instance, the estimated ARMA (1, 2) model in Table 3B:

(1-.94L)y, = constan t + (1+.07L+.3L2 )E1 .

By multiplying both sides by a common factor (1-L) (if, in fact, both Yt and £, have

this factor in common, it cancels out) we have

(1-.94L)(1- L)y, = constant = + (1-L)(l+.07L+.3L 2 )r, .

Now consider the estimated ARIMA (1, 1, 2) model in Table 3B

(I-.68L)(l-L)y, = constant+(l+.82L+.22L 2 )e, .

By multiplying both sides by the common factor (1-.94L) we get

(I-.68L)(1-.94L)(I- L)y, = constant+(1-.94L)(1+.82L +.22L2 )E1

that is

(*) (1-1.62L =.6392L2)(l - L)y, = constant + (1+.82L + 22L2)(l-.94L)e, .

Now, take the estimated ARMA (2,2) model in Table 3B and multiply it through by

(I -L):

(**) (I - 1.72 L+. 71L2)(1- L)y, = constan t + (1+.86L+.24 L2 )(1 -L), .

Although the ARMA (2, 2) shows a slightly better fit, (*) and (**) are approximately

the same since

26



(I - 1.62L+.64L2 ) - (1-.71,)(1-.95L) = (I - 1.72L+.71L2 ).

The actual difference between the two polynomials is really small and, if the MA root

of .94 is approximated to 1, then the ARIMA (1, 1, 2) and the ARMA (2, 2) are

almost undistinguishable. Thus, if one is to choose on the parsimony criterion alone

(and maybe a priori is strongly in favor of non-stationarity), then he would maybe

choose the ARIMA (1, 1, 2) model as a good approximation of the underlying process.

However, the two models indicate two different views of the world: the ARMA model

outlines a persistent cycle around a smooth trend, while the ARIMA one indicates a

random walk with a small cyclical variance, where all deviations are persistent.

To conclude, it is interesting to compare the results from unrestricted ARIMA

models with the one coming from the restricted ARIMA representations deriving from

the structural estimations. As we have seen above, the deterministic linear trend

model with AR(1) disturbances was the one with better overall fit (= 0.0103).

The unrestricted estimation of such a model, however, gives a prediction error

variance 11% larger (&2 = 0.0114). The random walk with drift gives a p =0.0123,

the same as the one given by the structural trend model (as it should be). The cyclical

trend model had a 2 = 0.0109, as does the unrestricted ARIMA (2,1,2). Thus, not

only does the structural model yield estimates of the "components" that have a

meaningful interpretation, but also it proves superior in terms of actual fit to the data.

3.5 MODEL RELIABILITY AND FORECASTING ACCURACY

With the estimated parameters obtained through the Kalman filter we can

make predictions of future values, together with their conditional mean square errors,

from the state-space form. These predictions can be made either within the sample or

in a post-sample period. The sum of squares of the one-step-ahead prediction errors

will give a measure of forecasting accuracy and this measure, too, can be used in order
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to compare alternative non-nested models. Also, prediction errors in the post-sample

period can be compared with the prediction errors within the sample. A statistic to

test whether the prediction errors in the post-sample period are significantly greater

than the prediction errors within the sample period is given by a Chow-like test, which

is distributed as an F with (1,T) degrees of freedom, where t is the number of post-

sample observations considered, and T* is the number of residuals (as before).

We have reestimated the three structural models (b), (c), and (d) over various

subsample periods. One reason to do this was to check the stability of the models

over different time intervals: a dramatic change in the estimated parameters would

have certainly implied substantial unreliability of the models under investigation.

Over the whole sample 1900-1986, model (b), the stochastic trend with stationary

cycle model, w.e the one with least satisfactory fit (RD =.03, a2 =.0125). Model (c),

the cyclical trend model, had quite a good fit (R 2 =.15, 2 =.0109), whereas model

(d), the trend plus AR(l) cycle, had the best fit (R 2 =.20, &2 =.0103).

Over different subsample periods, things change a little (results are shown in

Table 4, the first ten columns from left). Starting from the 1900-1985 down to the

1900-1967 sample, the estimated parameters for model (b) change substantially. In

the smallest sample, the estimated variance of the cycle is about half the size it had in

the original (largest) sample, while the variance of the trend is ten times bigger.

Model (b) is clearly not robust. Over the 1900-1985 sample (just one less

observation than the original one), the RD increases to .11 and the PEV decreases to

.0111. Breakdowns for model (b) seem to have occurred not only in 1986, but also

after 1973 (over the 1900-1973 sample, the PEV was .0104).

Model (c) shows greater stability over the different sub-periods. The

estimated parameters change very little (although the variance of the cycle is larger in

the 1900-1967 sample than in the original). However, the overall fit of the model
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worsens considerably. Over the 1900-1985 sample, the R2 falls to .05 and 62p rises to

.0119. Under this criterion, the 1986 year seems to be the only real breakdown for this

model, as the fit does not change very much over the other sub-samples.

Model (d) is by far the most stable. The estimated parameters change very

little, and the overall fit remains more than acceptable over the various sub-periods.

This means that having estimated the model up to 1985, or 1983, or even 1982 would

have not made very much difference. The fit is actually worse for the 1900-1980

sample (RD2 =.08, &2 =.011S), but it is amazingly better for the 1900-1967 sample

(R7D =.22, a =.0092).

In conclusion, the trend plus cycle model with deterministic trend, constant

slope, and AR(1) cycle, seems the more reliable among the structural models. It has

stable parameters over various sub-samples and better fit over the 1900-1985, 1900-

1983, 1900-1982, and 1900-1967 periods than both model (b) and (c). Over two

samples, the 1900-1980 and the 1900-1973 ones, the stochastic trend model seems to

fare better in terms of fit (but only slightly) although it appears to be rather unstable in

the estimated parameters.

To obtain a better feel for the overall performance of the three structural models

(b), (c), and (d) (which somewhat represent three different views of the world), we

have tried to verify their forecasting accuracy from the various sub-samples over to

1986, the final observation year in the original sample period. Two forecasts

measures are presented in Table 4. The first ones are based on the conditional

predictions given by the one-step-ahead forecasts, whereas the second ones are

based on the unconditional predictions, given by the forecasts over long horizons
1/

based on the original sample. The unconditional forecasts are the forecasts made for

the period from T1+1 to T+t using the observations (and the estimated parameters) up

1/ The results for the long horizons may be the more relevant; the
one-year-ahead forecasts may not be vetry meaningful because of
sharp year-to-year variations.
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to time T only. The condidonal forecasts are made by updating the sample at each

step.

Over all sub-sample periods (excluding 1900-1980, and 1900-1973), model (d)

shows the best (lowest) final MSE based on the conditional one-step-ahead

prediction errors. The post-sample conditional prediction error sum of squares (SS)

are lower for model (c), which, also, does not fail the predictive - F test for any of the

samples. Model (b) and (d) both fail the latter test for the 1900-1985 sample only.

Table 4 shows also results for the CUSUM tests. CUSUMs of standardized

generalized recursive residuals are used for detecting structural changes over time

(Harvey and Durbin (1986)). However, since the CUSUM is more a diagnostic rather

than a formal test we have just indicated if the CUSUM values, for the various

models, were within the significance lines. As we can see, all models seem to have

passed this test.

Conditional state coefficients at 1986 are also shown in Table 4 (again, the

ones for model (c) are not inf. rmative). The ones from model (b) change quite a bit,

although they tend to decrease, while the ones from model (d) are quite stable. Since

these are the would-be estimates of the level and the slope (the cycle is irrelevant) at

1986 obtained from the various sub-periods, they show that in either models the

estimated trend at the fixed year is negative as well as the estimated slope. In

particular, having estimated model (d) over the 1900-1982 period would have given

almost the same responses as over the 1900-1986 period: the estimated level is in

fact about exp (-.14) = .87, with a slope of -.06% per year.

Over longer horizons, model (d) appears to be the most sadsfactory as it was

for the one-step-ahead forecasting. The final MSE at 1986 is always lower, except

for the 1900-1980 period, for which model (b) final MSE is the smaller. Unconditional

post-sample prediction error sum of squares vary greatly across models and sub-

sample periods. An interesting comparison can be made between the unconditional
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predicted state coefficient at 1986 from the various sub-samples and the ones

estimated from the original 1900-1986 sample.

For model (t', the estimated trend level at 1986, given the whole sample, was

exp (-.1378) = .87 (Table 2) with a slope of -1.0% per year. The unconditional

predicted levels (slopes) at 1986 were: .92 (-0.6%) for 1900-1985; .96 (-.4%) for

1900-1983; .92 (-.5%) for 1900-1982; 1.06 (-.3%) for 1900-1980; 1.01 (-.3%) for

1900-1973; .86 (-.6%) for 1900-1967. Interestingly, although the level varies greatly,

the predicted slope is always negativel

For model (d), the estimated level at 1986, given the whole sample, was exp

(-.1427) = .87, with a slope of -.6% a year. The unconditional predicted leveia

(slopes) at 1986 were: .90 (-.5%) for 1900-1985; .91 (-.5%) for 1900-1983; .90 (-

.5%) for 1900-1982; 1.00 (-.2%) for 1900-1980; .91 (-.5%) for 1900-1973; .83 (-.7%)

for 1900-1967). The trend is almost always predicted as declining, with a negative

slope stable around -.6%!

In conclusion, these results suggest that structural models, by allowing a richer

representation of complex observed time series than ARIMA models, are able to

capture unobserved characteristics of the series that would otherwise have been lost.

The trend plus AR(1) cycle, which we find more satisfactory than other structural

models, although actually fairly simple, seems to have a very good performance over

different sub-samples, both in terms of fit and of forecasting accuracy. The evidence of

a secular deterioration in the permanent component of commodity prices (which turns

out to be deterministic and linear) is confirmed over all samples, whereas the ability of

the model to predict large spikes like the 1973 one appears rather poor (although it is

still better than a random walk with drift).

One last issue that should be addressed with this respect is the one of the

"structural breaks" as dubbed by Cuddington and Urzua. As mentioned above, they

allow for such structural breaks by adding a dummy variable to an ARIMA model. In
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this way, the residuals are obviously less irregular (and so the SSE is lower) and the

estimated time coefficient, whenever is present, appears to be insignificant. The

treatment of structural breaks in such a matter with dummy variables is, however,

rather specious.

Nevertheless, we wanted to check whether the addition of a dummy variable to

our structural model, in the spirit of intervention models of Box and Tiao (1975), would

ever change the results we have obtained above. We used two dummy variables, as

suggested by Cuddington and Urzda (1989): the first, called DUMMY, defined as 1

up 1920, and 0 thereafter, the second, called DUM21, defined as 1 for 1921 only, and 0

otherwise. The estimation results for the trend plus AR(l) cycle show little change in

the estimated parameters, and a better fit (R2 =.28, 2= .0094). With the addition of

DM,TMY the state parameters at the end of period change to exp (-.1367) = .87 for

the level (the same as before) and -.99% for the slope (it gets steeper than before).

The smoothed components are shown in Fig. 6. Amazingly, the trend shows an

(obviously artificial) increase in the first part, but then it turns negative anyway!

Thus, the addition of that dummy variable really seems to have no implication for the

secular movements in the trend and the cycle components.

The addition of DUM21 to the trend plus AR(1) cycle has just a small effect

(the damping factor changes to .79), although the fits improve (R2 =.34, &2 = .0086).

The estimated smoothed components as well as the state coefficients do not change

at all. As before, we get a level of .87 decreasing at -.6% a year. Finally, the

inclusion of both dummies gives basically the same picture as before: a slight change

in A (now .79), and a better fit (R2 =.34, &2 =.0086). Interestingly, the effect of

DUMMY is now irrelevant. The smoothed components as well as the state

coefficients are unchanged. In conclusion, the addition of the dummies appears to add
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indeed little new information, contributing only to a better fit, and it seems to us more

difficult to justify their presence than to give them up.

As a curiosity, one might ask how would have Prebisch's original opinion been

formulated, if he had this model? We have estimated the trend plus AR(1) cycle

model up to 1938, to see how different the results would have been. The estimated

parameters were the following:
&2 =.0; &t = .139X104; e =138x10'; 62= .0; P=.75; R2 = .03; 6P =.0158.

The state coefficients at 1938 were .0141 for the level and -.0158 for the slope. Thus,

a level of the trend of .99 with a siope of -1.6% a year are indeed much steeper than

the actual estimated ones to 19861 In fact, the unconditional prediction for the state

coefficients at 1986 were of exp (-.7733) = .46 for the level, with a slope of -1.6%.

This means that if we had estimated this model up to 1938 we would have gotten a

prediction of faling commodity prices to 50 years later much worse than what they

have actually been. But this, nevertheless, shows that Prebisch and Singer were

certainly not completely wrong in trying to draw the attention of the world to the

deteriorating net barter terms of trade of developing countries. If this is not true now

to the same extent, it does not imply that it does not hold, as we have seen above,

and that deteriorating tendencies have persisted throughout the last 50 years also.
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Appendix 1.

pI() = E[(y, - Y.-1)(Yt-I - Yt-2)]/E[(yI -yt- )2]

where Y = 62 + ^ + (l-0,L)wt +2@ +e
A2 A *(L)

Call 0(L)o, = (1- 0,L)w, + O,t02 @t

Then:

E[(Yt - Yt-A)(Yt-l - Yt- 2)] =

= E[(AyJ)(Aytl)] =

= E A + ' + *(L) + e-et,J x

x + In-I + (L)co.. + et - E-

LA' A *(L) )
A+(L)

+ '1 t't_l +A 0(L) 1t 1(ot_ + 1tt-1- tet-2

"(L) A@(L) A ^(9(L)) 2A + O;j - ((L)
v(L) Att-2 o(L) l _t- _ _+_(Op t t-,

bA(L) t£---- + Att2++ (te-i- *(L) et- 2 e,4-,+
O(L (L) 

+etIt_l + *(L) et(-l + et_e1 - ett-2

-et1 - t- t- -O(L) et-iot-I - tl+ et-et-2]

= ]+ + E [(¢(L)) ]

2

[(¢O(L) mt-] +E[etet-,]-]F[etet_2]

-E[£,2_-] + E[ Jt-let-2+
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Since ,, tt. (o,, and e, are white noises

cov [eZe,] = E[e,eJ - E[e,jt[et-3 ]

= E[eEtet ] = O
Therefore

E[(ye Yt-i) (Yt-i Yt-2)] =c-E i2(L) 1t -E[e2_ 1 ]

{¢ (L)) J
Also

E [(Yt - Yi )2] 2 + + [¢(L)]4 + 2

Therefore

P' - 2 (L2) - o+2 <
, + (+e+(L)) <y"+2ff 3
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Appendix 2.

p (c)= 2po(T) -po( -1)- po(+ 1)
2(1- p0(1))

Proof

2po(c)-p o(c- 1)-po(t+ 1) =

1 -.{2E [y,y,^]-E [Y,. 1 J-E [yty,]J}
VAR(yj)

1 -{E [2ytys-... - ytyt-tg-l - ytyt-,T+iI]
- VAR(yj)

1 {E [YtYt-, - yty - Yt-Yt. + Yt-lYt-.r-
- VAR(yt)

+YtYt. - YtYt-,+l + Yt-iY&.v - Yt-lY.-,]}

VA(yt) {E [(Y. - -Yt--)]+

+E [YtYt - ytyYt-vi + Ys-iYt-v -y t-lyt-J}

E [(Yty,4 .-, -K 1)]
VAR[yt]

p=,(1) E[(tyt... ) Y.-, =P E [y,? - 2E [YtYt...] + E [y-X11

= 2r E [yt2 - 2E [yty, ]=P() (->
Ey? ~ =,(c.2IEly?]-l

= p1() 2(1- po (1))
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TABLE 1. OBSERVED CORREL#OGRAM OF THE SERIES (LPV) AND OF IP FIRTEW DIFFERENCES (DILPY) AND THEORETICAL

AUTOCORRELATION FUNCTION FOR THE FIRST DIFFERENCES OF Yt WITH DETNERMINISTC INEAR TREND AND AR(16)

DISTlURBANCES (EQ. 13).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LWV .805* .6W0 .571* 506* S35* .405' .413* .40 .7 .403' .341* .264* .251' .201 .105 .045
DILPV -.015 -227' -.051 -040 -.064 -.066 .002 -.038 .015 .203' .060 -.075 .040 .038 -.155 -2w 
Ayt -.060 -2800 .007 .006 -.162 -.087 .080 -.062 -.041 .259* .076 -199 .081 .175 -.216* -.212

Note: yt = 11+f3t+V ,wth 14V - AR(16). The theretical autocrelationfunction po() for yt wacmputed usng eq. (14c), given the estimated efficiente *
from eq. (13). The autocorrelation function for Ay, was computed using the formula given in (15). The standard eror is 1.96 x T-1I2 . .210. A tar (') indicates a

significant value.
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TABLE 2A

STUCTURALTI SER E MODELS SAMPLE PERIOD. 801986(OS) S E V

ffTLW TESx 104
MODEL @2 P 2KIA XLaz1o 4 4 H -

aLVEL) (SLOPE) (CYCLE) (IRBG.) (FREQ) PERIOD PEV Box-Ljung

(a) 15.0 0 - 0.003 - - 140.13 .2 . 21.31(17) .814
(b) 2.763 0 99.153 0 .90 .30 20. 139.13 .Is .0 11(14) AM
(c) 0.007 0 99.122 0 A8 1s8 4.0 142.32 .120 .15 9.70^15) AM0
(d) 0 0 11200 0 .75 .0 - 142.87 .10S 20 1652(17) M62
(e) - - 112.00 0.112 .75 0.36 175.8 142.36 .104 .20 11.19(15) .8640
(n 25.016 - 61.821 0.079 .68 .A2 10.1 143.4 .117 A 6.2=14) Am21
(g) 128.00 - - 0.534 - - - 140.20 .123 .00 2L78(17) .142

0

Box4dwng Q4taxtic with (18-r+1) dqers of redom (in parenthesis).
_ dl ty st atic with (28, 28) dogmaof fredam.

Value in Xhe q rackeu we RUME Sr the state comificenta at the and f period.



TABLE 2 B

STRUCTURAL TIE SERIES MODELS SAMPLE PERIOD. 1001986 (OBS)
SEIUE LPV

STATE COEFFICENT
FJ2ED FIED

LEVEL SLOPE CONSTANT SLOPE

(a) -. 884 -.0113
[.00001 1.0168]

(b) -.1378 -.0062
[.0916] [.00271

(c) -. 884 -. 0099
[.0220] [.0124]

(d) -.1427 -.0060 - -

[.08511 [.0017]
(e) - - .3708 -. 003

[.06511 [.0017]
* (n 9980 - - ~~~~~~~~~~~~~~~~~~~~~-.0065

[.47471 [.0065I
(g) 2868 - -.0078

[1.061] [.0131



TABLE SA
ARDIA MODEIL3 WITH A LNEAR TREND 8AMPLE PERIODT 1900-1986 (OBS) - SERIS: LPV

ji 01 02 d 2 R2 px 10 1 DW ¢(P).
ARMA

L (1,0) .11 -.002 .72 - 0 - - .73 .114 1.76 22.38(26)
(2.91) (-2.87) (8.9)

2. (2,0) .13 -.002 .82 -.15 0 - - .74 .114 1.3 20.07(25)
(3.18) (-3.11) (7.26) (-1.29)

& (1,1) .16 -.002 .59 - 0 .25 - .74 .112 197 19.225)
(2.85) (-2.80) (4.78) (1.72)

4. (1,2) .12 -.002 .69 - 0 14 -.11 .74 .114 1.96 17.87(24)
(1.60) (-1.67) (3.66) (.66) (-.59)

6. (2,1) .18 -.002 .34 .19 0 .50 - .74 .115 1.97 18.36(24)
(2.49) (-2.42) (.69) (.48) (1.05)

6 (2,2) .13 -.002 .64 -02 0 .18 -.10 .76 .116 1.96 17.87(23)
(.57) (-.58) (.46) (-.03) (.13) (-.27)

7. (0,1) .37 -.006 - - 0 .67 - .69 .131 10 45.03(26)
(9.12) (-7.03) (7.97)

& 8. (0,2) 8 -.006 - 0 .81 30 .72 IN 1.86 2S25)
(7.59) (-.90) (7.52) (2.83)

ARMA
9. (1,1,0) .006 -.0003 -.018 - 1 - - .00 .121 .198 28.67(26)

(23) (-.60) (-.16)

(1,1,1)->NON INVERTIBLE

10. (2,1,0) .005 -.0003 -.028 -.24 1 - - .06 .12 2.00 23.12(25)
(.17) (-.59) (-.25) (-2.17)

11. (1,1,2) .001 0.0 .72 - 1 -.92 -.21 .22 .107 207 20.66(24)
(.25) (-.40) (5.87) (4.16) (-1.33)

(2,1,12)>NON IERTIBLE

12. (2,1,2) .002 0.0 .42 .26 1 -.61 -.55 .23 .108 2.09 20.0423)
(.34) (-.43) (.72) (.50) (-1.08) (-.89)

13. (0,1,1) .006 0.0 - 1 -.03 - 0.0 .133 1.95 28.80(26)
(.23) (-.61) (-.31)

14. (0,1,2) 0.0 0.0 - 1 -.13 -.36 .09 .l12 1.86 23.14(25)
(-.04) (-.51) (-1.26) (-3.33)



TAMLE SB
AIRDU MODEA8 WrTH NO LDNEAR TREND SAMPLE PERIOIh 2900-1986 (OB) - MSEM- WV

d 2' &211 D
F +1 +~~~~~2 el 012 R 2px lo-l DW ¢P

L (1,0) .009 .7 - 0 - - .71 .123 1.85 23.03(26)
(.64) (14.21)

2. (2,0) .01 .92 -.06 0 - - .71. .126 1.92 22.09(26)
(.72) (8.10) (-.51)

a (1,1) .01 .86 - 0 .11 - .71 .125 1.98 21.42(25)
(.79) (10.78) (.86)

4. (1,2) .0 A4 - 0 -.07 -. 0 .72 .121 1.89 20.66(24)
(.01) (17.37) (-.56) (-2.42)

(2,1).>NON DNVERTBLE2

5. (2,2) .0 1.72 -.71 0 -.86 -.24 .76 .115 2.01 18.60(23)
(-.48) (10.16) (-4.72) (-4.59) (-1.50)

6. i,1) .13 - - 0 .75 - .52 m1 1.15 131.88(26)
(4.80) (10.18)

7. (0,2) .13 - - 0 .96 .43 .62 .162 1.63 66.91(25)
(4.04) (9.44) (4.35)

& (1,1,0) -.O08 -.02 - 1 - - .00 .132 1.7 28.54(26)
(-.63) (-.14)

9. (2,1,0) -.009 -.02 -.24 1 - - .06 .128 2.00 23.14(25)
(-.75) (-.23) (-2.17)

(1,1,1)->NON INVERTIBLE

10. (1,1,2) .0 .68 - 1 -.82 -.22 .14 .116 1.98 19.00(24)
(-.$1) (5.55) (-5.39) (-1.8)

(2,1,1)->NON INVERTIBLE

1L (2,1,2) .0 53 .18 1 -60 -AS .22 .109 2.09 20.46(23)
(.28) (.86) (.38) (-1.12) (-.67)

12 (0,1,1) -.007 - - 1 -.03 - .00 .130 1.9 28.90(26)
(-.64) (-.28)

13 (0,1,2) -.006 - - 1 -.13 A6 .08 .121 186 23.44(25)
(-1.02) (-1.21) (-4A4)

1



TABLE 4
CONDMONAL AND UNCONDIMONAL FORECASTS FOR SNRUCTEMAL MODELS

x l0 x 10-
MODEL 02 CF <2 p 2X /X 62 WD Ss

(b)
1900o1985 5.738 .0 90.696 .0 .80 .31 20.0 .111 .U1 L0335
1900.1983 9.870 .012 80.699 .0 .66 X5 1.9 .115 .09 9760
1900.1982 19.370 .0 64.423 .0 .69 .60 10.4 .113 .11 .596
1900-1980 20.150 .0 60m0 .0 .70 .62 10.1 .111 .12 .9175
1900.1973 22.322 .0 64.852 .0 .72 .60 10.6 .104 .10 .7908
1900.1967 23232 .0 55.640 .0 .72 .60 10.6 .106 .10 .7400

(C)
1900.1986 .0 .0 96.786 .0 .48 1.63 3.9 .119 .05 L0372
190019.83 .0 .0 99.046 .0 .46 1.62 39 .121 .04 1.0265
19001982 JD .0 100.000 .0 .45 1.60 3.9 .121 .04 L0192
1900.1980 .0 .0 102.000 .0 .43 1.60 39 .121 .03 9889
1900.1973 .0 .0 101.000 .0 .36 1.57 4.0 .114 .02 .8523
1900.1967 .0 .0 105.000 .0 .93 1.59 39 .117 .01 .8034

(d)
1900.1985 .0 .0 108.000 .0 .76 - - .099 .21 1.0089
1900.1983 .0 .0 109.000 .0 .74 - - .100 .21 9930
1900-1982 .0 .0 109.000 .0 .76 - - .100 21 9856
1900.i980 .0 .011 107.000 .0 .74 - - .116 .08 9540
1900.1973 .0 .001 102.000 .0 .78 - - .105 .09 .8236
1900.1967 .0 .0 103.000 .0 .77 - - .092 .22 .7687



TABLE 4 ntinued-1
CONDIMTONAL AND UNCONDiMTONAL FORECASTS FOR STUCTURAL MODELS

CONDIMTONAL FORECASTS AT 1986 CONDIMTONAL FORECASTS
FINAL ERROR CHOW CUSUM STATE COEFCENTS AT 1986

MODEL M EE SS (T.) dv Sic"

(b)
190(-liv8 .0117 .0458 3.92(1,84) OK -. 1451 -. 0065
1900-1983 .0116 .0776 2.233,82) OK -. 1709 -.0081
1900-1982 .0115 .0794 1.72(4,81) OK -.2108 -. 0076
1900-1980 .0113 .1216 1.79(6,79) OK -.2154 -. 0077
1900-1973 .0106 .2614 1.81(13,72) OK -2262 -. 0078
1900-1967 .0108 024 1.47(19,66) OK -2281 -. 0080

(c)
1900-1985 .0121 .0387 3.20(1,84) OK -.3884 -. 0009
1900-1983 .0123 .0496 1.36(3,82) OX -W884 -. 0099
1900-1982 .012 .0572 1.16(4,81) OK -.384 -. 0099
1900-1980 .0J3 .0895 1.21(6,79) OK -. 384 -. 0099
1900-1973 .0116 2355 1.5613,72) OK -.384 -.0099
1900-1967 .0D19 2883 1.28(19,66) OK -3884 -. 0099

(CD
1900-1985 .0113 .0491 4.36(1,84) OK -. 1405 -. 0060
1900-1983 .0113 .0651 1.91(3,82) OK -. 1406 -. 0060
1900-1982 .0114 .0726 1.59(4,81) OK -. 1420 -. 0060
1900-1980 .0116 .1119 1.61(6,79) OK -. 1394 -. 0068
1900-1973 .0107 Q370 1.71(13,72) OK -. 1497 -. 0062
1900-1967 .0108 2907 1.42(19,66) OK -. 1457 -. 0061

Rsject at 5%.
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FIG IA AGGREGATE PRICE INOEK - LPV
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FIG 2A RU10CORRELRIION FUNCT-ION Of LPV
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FIG 2Ci RUIOCORMELATION FUIV'IPN OF DILPV
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FIG 30 - "ODEL STOCHASTIC TREND PLUS CYCLE
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FIG 38 - nO0EL STOCHRSTIC TREND PLUS CYCLE
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FIG HR - HODEL: STOCHASTIC TREND PLUS ARRI) CYCLE
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FIG 98 - MODEL STOCHfSTIC TREND PLUS AR(I) CYCLE
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FIG SR - MODEL: DETERMINISTIC TREND PLUS CYCLE
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FIG 5B - MODEL. DETERMINISTIC TREND PLUS CYCLE
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FIG 6f - MODEL. STOCHRSTIC TREND PLUS AR(l) CYCLE
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FIG 66 - MODEL: STOCHRSTIC TRENO PLUS FiR(1) CYCLE
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FIG. 7 - nOoEL: STOCHASTIC TREND PLUS RR(1) CYCLE
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