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Abstract 
 
Concerns about the sustainability of conventional agriculture have prompted widespread 
introduction of integrated pest management (IPM), an ecologically-based approach to 
control of harmful insects and weeds.  IPM is intended to reduce ecological and health 
damage from chemical pesticides by using natural parasites and predators to control pest 
populations.  Since chemical pesticides are expensive for poor farmers, IPM offers the 
prospect of lower production costs and higher profitability.  However, adoption of IPM 
may reduce profitability if it also lowers overall productivity, or induces more intensive 
use of other production factors.  On the other hand, IPM may actually promote more 
productive farming by encouraging more skillful use of available resources.  Data 
scarcity has hindered a full accounting of IPM’s impact on profitability, health and local 
ecosystems.   
 
Using new survey data, this paper attempts such an accounting for rice farmers in 
Bangladesh.  We compare outcomes for farming with IPM and conventional techniques, 
using input-use accounting, conventional production functions and frontier production 
estimation.  All of our results suggest that the productivity of IPM rice farming is not 
significantly different from the productivity of conventional farming.  Since IPM reduces 
pesticide costs with no countervailing loss in production, it appears to be more profitable 
than conventional rice farming.  Our interview results also suggest substantial health and 
ecological benefits.  However, externality problems make it difficult for farmers to adopt 
IPM individually. Without collective adoption, neighbors’ continued reliance on 
chemicals to kill pests will also kill helpful parasites and predators, as well as exposing 
IPM farmers and local ecosystems to chemical spillovers from adjoining fields.  
Successful IPM adoption may therefore depend on institutional support for collective 
action.   
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1.  Introduction 
 

Approximately 84% of Bangladesh’s people are directly or indirectly dependent on 

agriculture for their livelihood, and agriculture contributes about 24% of gross domestic 

product (Bangladesh Bureau of Statistics, 2001). Rice is the major staple crop, 

accounting for 76% of the cultivated area, 78% of the irrigated area, 52% of agricultural 

GDP, and 71% of caloric intake (Bangladesh Bureau of Statistics, 2001).  Plant, animal 

and insect pests pose a constant threat to rice production, inflicting losses conservatively 

estimated at 10-15% annually (FAO, 2001).  Farmers have used toxic chemicals 

extensively for pest control, because of their reputation for speed and effectiveness. 

However, rising use of chemical pesticides has also posed serious health risks, as well as 

threatening widespread ecological damage.  These problems will undoubtedly increase if 

Bangladeshi farmers respond to rapidly-rising food demand by intensifying their use of 

chemicals for pest control.   

In response to rising concern about the sustainability of conventional agriculture, 

the government has collaborated with international assistance agencies to promote 

Integrated Pest Management (IPM).  IPM has no standard definition, but comprises 

approaches that range from carefully-targeted used of chemical pesticides to biological 

techniques that use natural parasites and predators to control pests (Sorby et al., 2003). 

Since chemical pesticides are expensive for poor farmers, IPM also offers the prospect of 

lower production costs and higher profitability.  Of course, adoption of IPM may reduce 

overall profitability if it also lowers productivity, or induces more intensive use of other 

production factors.  However, application of IPM techniques may also raise overall 

productivity, by encouraging more effective use of other inputs.  Data scarcity has 

hindered a full accounting of IPM’s impact on profitability, health and local ecosystems.   

Using new survey data, this paper attempts such an accounting for farmers in 

Bangladesh.  We compare outcomes for farming with IPM and conventional techniques, 

using simple input-use accounting and estimation of conventional and frontier production 

functions, along with farmers’ assessments of their own health status and local ecological 

conditions. 

The remainder of the paper is organized as follows.  Section 2 describes recent 

trends in pesticide use, the associated problems, and the current status of IPM programs 
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in Bangladesh.  In Section 3, we introduce our survey and provide a summary description 

of the farmers who are currently using IPM techniques.  Section 4 examines the 

determinants of IPM adoption, while Section 5 presents our productivity comparisons for 

IPM and conventional rice farming.  In Sections 6 and 7, we summarize our survey 

results on farmers’ health status and local ecological conditions.  Section 8 concludes the 

paper and discusses some implications of our results.   

2.  Agriculture and Environment in Bangladesh 

2.1  Pesticide Use 

Like many developing countries, Bangladesh has promoted the use of pesticides to 

expand agricultural land and increase output per acre.  Promotional activities have 

included extension services and significant subsidies (Rasul and Thapa, 2003; Hossain 

1988).  Figure 1 shows that pesticide use has more than doubled since 1992, rising from 

7,350 metric tons to 16,200 metric tons in 2001.  An FAO analysis of pesticide 

composition in Bangladesh has revealed high shares of toxic chemicals that 

epidemiological studies have found to cause cancer, genetic damage, fetal damage, and  

Figure 1:  Trends in Pesticide Use, 1992-2001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Source: Department of Agricultural Extension, Plant Protection Wing, Bangladesh 
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severe allergic responses in exposed populations (Zahm, Ward and Blair, 1997).1 

Many pesticides used in Bangladesh are banned or restricted under international 

agreements (NOVIB, 1993; SUNS, 1998; SOS-arsenic.net, 2004).  In addition, several 

studies have shown that inadequate product labeling and farmers’ lack of information 

have led to widespread overuse or misuse of dangerous pesticides.  Substantial anecdotal 

evidence suggests that pesticide poisonings and ecological damage have become common 

in Bangladesh (Ramaswamy, 1992) 

2.2  IPM in Bangladesh 

Bangladesh’s IPM activities began with rice in 1981, and the FAO played a strong 

catalytic role with government officials and the donor community.  The program 

provided capacity-building for the Department of Agricultural Extension (DAE), 

introduced Farmer Field Schools, and trained representatives of local NGO’s.  

Subsequently, the government and NGO’s initiated several IPM projects for rice and 

vegetables with donor funds.2  At present, the Plant Protection Wing of the DAE is 

responsible for the implementation of IPM activities (FAO, 2001). 

3.  Survey Data 

The research reported in this paper is based on a large survey of Bangladeshi 

farmers, carried out by the World Bank in the summer of 2003.  We used structured 

questionnaires to collect information on conventional and IPM farming techniques, 

pesticide use and practices, applicator precautions and damage-averting behavior, health 

effects and environmental impacts.3  To provide greater depth, we also interviewed 139 

randomly-selected rice farmers who currently use IPM. 

                                                 
1  See Appendix I for details.  The FAO study has found particularly high shares for carbamates and 

organophosphates, which pose the health hazards noted above. 
2  To date, major IPM programs in Bangladesh have included the DAE-UNDP/FAO IPM Project 

(BGD/95/003); DAE-DANIDA Strengthening Plant Protection Services (SPPS) Project; Command 
Area Development Project (CAD); CARE-New Options for Pest Management; CARE-Integrated Rice 
and Fish Project (INTERFISH); AID-Comilla’s Integrated Pest Management Project; USAID-funded 
IPM Collaborative Research Support Program; and FAO’s Regional Cotton Project 

3 The survey was designed and supervised by the World Bank team, and conducted by the Development 
Policy Group in Bangladesh.  To minimize reporting bias, the survey was conducted under the agreement 
that the team would not reveal the identity of the farms surveyed or the respondents who participated. 
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We surveyed the IPM farmers in districts with significant IPM participation: 

Rajshahi and Rangpur in the Rajshahi division (Northwest) , Comilla in Chittagong 

division (East),  Jessore in Khulna division (West), and Kishoreganj in Dhaka division 

(North -- see Figure 2).  We also surveyed 689 farmers who use chemical pest controls. 

Table 1 displays the regional distribution of farmers in our sample.   

Table 1: Regional Distribution of Survey Respondents 

 

 

 
 

 

 

 

 

 

 
Among the surveyed IPM farmers, reported techniques include manual removal of 

pests (70% of the sample), use of natural parasites and predators (58%), light traps 

(14%), crop rotation (10%) and smoke (5%).  All of the surveyed IPM farmers received 

formal training, with more than 90% identifying Agriculture Ministry officials as the 

providers.  The farmers attributed their adoption of IPM to Ministry officials’ 

recommendations (41%); cost-saving from reduced pesticide use (33%); environmental 

benefits (12%); and improved health (6%).  About 52% reported increased output, and 

reported pesticide use fell by 67%.  

4.  Adoption of IPM 

IPM programs have existed in our survey areas for twenty years, so it is reasonable 

to assume that most farmers have at least some information about them.  Farmers’ 

adoption of IPM may depend on a variety of factors, including personal characteristics 

                                                                                                                                                 
 

District 
Conventional

Farmers 
IPM 

Farmers
Bogra 27 0
Chapainawabganj 3 0
Chittagong 56 0
Comilla 61 31
Jessore 111 54
Kishoreganj 35 20
Munshiganj 25 0
Narsingdi 82 0
Rajshahi 137 8
Rangpur 68 26
Mymensingh 84 0
Total 689 139
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Figure 2:  IPM Survey Districts in Bangladesh. 
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such as education and experience, farm characteristics such as production scale, and 

selective judgments by Agriculture Ministry official charged with promoting such 

programs.  Some personal and farm characteristics that influence IPM adoption could 

also affect productivity, so it may be important to introduce controls for these variables in 

a comparison of IPM and conventional farming. 

Using linear probability and probit models, we test for the effects of age,  

education, farming experience, ownership status, prior training in pesticide use, 

production scale and health status on IPM use.4  Our prior expectation is that education, 

farm ownership, prior training and poor health are positively related to IPM adoption, 

while age and farming experience may be negatively related.  More educated farmers 

may be more receptive to new techniques; owners and unhealthy farmers may perceive 

greater long-run gains from adoption; prior training in pesticide handling may encourage 

IPM adoption, by sensitizing farmers to the hazards of pesticide use; older farmers and 

those with long experience in conventional farming may resist new approaches.  We are 

agnostic about production scale.  

Our estimation results (Table 2) confirm some of our prior expectations but 

contradict others.  Education, ownership, prior training, experience and poor health all 

have the expected signs, and the first three variables are highly significant by the 

conventional criteria.5  However, age has an unexpected, positive effect on adoption 

probability.  Production scale is insignificant, suggesting (ceteris paribus) that farmers do 

not perceive greater scale economies in IPM than in conventional rice production.  We 

conclude that personal and farm characteristics are significant determinants of IPM 

adoption, and we control for these characteristics in our production function estimation 

because they may affect farming efficiency as well. 

                                                 
4  We recognize the risk of simultaneity bias for health status, so we have estimated the probability models 

with and without this variable.  Farmers with lower health status may be more likely to adopt IPM, 
since it reduces exposure to dangerous pesticides.  However, farmers using IPM may already have 
realized significant health improvement.  In an IPM adoption equation that does not account for 
simultaneity, the measured health status effect could therefore be negative, zero or positive.  We 
cannot account for simultaneity here, because all available instruments such as age and education are 
also variables in the IPM adoption equation.  In any case, results for other variables are not affected 
by the inclusion or exclusion of health status.   

5  Rejection of the null hypothesis (“no effect”) with 95% confidence or greater. 
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Table 2: Determinants of IPM Adoption in Rice Production 
 Linear  
 Probability Probit 
 
Age 0.008 0.029 
 (3.41)** (3.34)** 

Education 0.089 0.296 
 (5.37)** (5.11)** 

Ownership 0.129 0.570 
 (2.42)* (2.55)* 

Training 0.375 1.057 
 (4.27)** (3.69)** 

Experience -0.003 -0.012 
 (1.27) (1.36) 

Farm Scale 0.001 0.003 
 (0.11) (0.13) 

Poor Health -0.063 -0.205 
 (1.70) (1.53) 

Constant -0.232 -2.504 
 (2.62)** (7.19)** 
 
Observations 551 551 
R-squared 0.13  
 
Absolute value of t statistics in parentheses   
* significant at 5%; ** significant at 1%  

5.  Comparative Input Use, Productivity and Profits 

We use two quantitative techniques for assessing IPM and conventional techniques 

in rice production:  Comparative estimates of input-output relationships, and production 

function estimation.  In both cases, we control for farmers’ characteristics (age, 

education, farming experience, ownership status, prior training, production scale, health 

status) that may affect both productivity and the propensity to adopt IPM.   

5.1  Input-Output Results 

For each farm in the sample, we calculate input-output (IO) coefficients for land, 

family labor, hired labor, capital, irrigation, seed, fertilizer and pesticide.  We test for 

significant differences between mean coefficients for conventional and IPM farming by 

regressing the IO coefficients on a dummy variable for IPM use.  Since all distributions 

of IO coefficients are highly skewed, we guard against outlier effects by estimating log 



 9

regressions as well as linear regressions.6  The results, reported in Table 3, are similar for 

both specifications.  Family and hired labor inputs per unit of output are generally lower 

for IPM production, suggesting that time savings from reduced pesticide applications 

more than compensate for reallocation of some labor to IPM-related activities.  Seed 

inputs are also significantly lower per unit of output.  As expected, pesticide inputs per 

unit of output are significantly lower for IPM production in both the linear and log 

models.  However, IO coefficients for land, capital, irrigation and fertilizer are not 

significantly different in the two modes of production.   

Table 3:  Impact of IPM on Input-Output Ratios for Rice Production 
 
               Linear Estimates 
 
      (1)   (2)   (3)    (4)    (5)    (7)     (8)     (9) 
 Land Family Hired Capital     Irrigation  Seed Fertilizer Pesticide 
  Labor Labor 
 
IPM 0.000 -0.006 -0.005 -0.054 0.143 -0.049 0.000 -0.001 
 (0.25) (3.01)** (1.85) (1.21) (1.68)  (2.28)* (0.09) (6.02)** 
 
Constant 0.001 0.018 0.022 0.662 1.077 0.303 0.088 0.001 
 (45.65)** (23.81)** (18.76)** (35.76)** (30.81)**  (34.61)** (40.88)** (21.89)** 
 
Obs 829 829 829 829 829 829 829 829 
R2 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.04 
 
 
                    Log Estimates 
 
IPM 0.049 -0.237 -0.213 -0.056 -0.056 -0.130 0.009 -0.662 
 (1.33) (2.48)* (3.01)** (0.98) (0.87) (2.16)* (0.16) (3.75)** 
 
Constant -7.669 -4.474 -4.058 -0.611 -0.014 -1.418 -2.571 -7.243 
 (512.47)** (115.18)** (139.82)** (25.92)** (0.50) (57.40)** (112.49)** (132.87)** 
 
Obs 829 807 798 828 753 829 812 659 
R2 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.02 
 
Absolute value of t statistics in parentheses     
significant at 5%; ** significant at 1%  

Our results suggest that IPM may be more profitable than conventional farming, 

since no IO coefficient is significantly higher for IPM and several are significantly lower.  

For pesticides, the savings are clear:  Conventional farmers use an average of 2.33 kg of 

                                                 
6  We have also estimated these regressions for a sample limited to the five regions where we collected data 

on IPM farmers, and for specifications that include the IPM determinants in Table 2.  The results are 
indistinguishable from the full-sample estimates in Table 3. 
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pesticides per acre, while IPM farmers use .77 kg/acre.  Pesticide purchase shares of 

variable costs for non-IPM and IPM farmers are 8.1% and 2.9%, respectively.   

5.2  Cobb-Douglas Results 

We estimate a standard Cobb-Douglas production function with factor and material 

inputs:  land, family labor, hired labor, capital, irrigation, seed and fertilizer.  We include 

pesticide inputs and a dummy variable for IPM use in alternative specifications, since 

IPM explicitly minimizes pesticide use.  In addition, we allow for Hicks-neutral 

efficiency differences across farms that are attributable to age, education, ownership, 

pesticide application training, farming experience, poor health, and production scale.   

The production function is as follows: 

ln yi = βo +∑
=

6

1n

βn xi +∑
=

6

1j

αi ln zi +  ui   (4) 

where 
yi =   rice output (in kg) 
xi =   land (acres) 

   labor (man-days) 
   capital (in Taka) 
   irrigation cost (Taka) 
    fertilizer (kg) 
   IPM (dummy variable: 1 if IPM; 0 otherwise) 
  or pesticide (kg)  

zi =  age (years) 
  education (categorical: 0-4 (none, primary, middle, secondary, tertiary)) 
   ownership (1 if owner of farm; 0 otherwise) 
  training (1 if prior training in pesticide applications; 0 otherwise) 

farming experience (years) 
   poor health (1 if significant self-reported health problems; 0 otherwise) 
  farm scale (log of total farm size in acres)  

Table 4 presents estimates for equations that include IPM and pesticide use, with 

and without regional dummies and efficiency variables.  All inputs except labor and 

pesticides are significant in all or most of the models.  Our results suggest that the survey 

farmers are operating under surplus labor (zero marginal productivity) conditions for both  
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Table 4:  Cobb-Douglas Production Function Results 
 
 (1) (2) (3) (4) (5) (6) 
 

Land 0.646 0.643 0.596 0.597 0.602 0.590 
 (19.52)** (21.11)** (17.06)** (19.05)** (14.91)** (16.26)** 
Family Labor -0.025 -0.019 -0.014 -0.005 -0.013 -0.003 
 (1.46) (1.23) (0.85) (0.32) (0.77) (0.17) 
Hired Labor 0.022 0.024 0.025 0.026 0.026 0.028 
 (1.18) (1.39) (1.29) (1.56) (1.35) (1.64) 
Capital 0.083 0.087 0.064 0.070 0.067 0.070 
 (3.80)** (4.26)** (2.88)** (3.43)** (2.99)** (3.35)** 
Irrigation 0.115 0.094 0.130 0.106 0.131 0.107 
 (5.56)** (4.97)** (6.16)** (5.56)** (6.10)** (5.45)** 
Seed 0.040 0.048 0.036 0.043 0.038 0.044 
 (1.87) (2.40)* (1.68) (2.14)* (1.77) (2.16)* 
Fertilizer 0.088 0.074 0.100 0.098 0.095 0.092 
 (3.66)** (3.29)** (3.99)** (4.25)** (3.77)** (3.94)** 
Pesticide -0.008  0.008  0.011  
 (0.80)  (0.75)  (1.03)  
IPM  -0.024  -0.028  -0.028 
  (0.79)  (0.90)  (0.84) 

Regions 

Bogra   -0.246 -0.224 -0.236 -0.230 
   (3.12)** (3.20)** (2.84)** (3.11)** 
Chapainawabganj   -0.059 -0.052 -0.059 -0.074 
   (0.28) (0.25) (0.28) (0.35) 
Chittagong   0.111 0.110 0.116 0.125 
   (1.10) (1.09) (1.13) (1.22) 
Comilla   -0.191 -0.166 -0.186 -0.156 
   (3.54)** (3.42)** (3.39)** (3.14)** 
Jessore   -0.199 -0.201 -0.200 -0.201 
   (4.09)** (4.73)** (4.00)** (4.61)** 
Kishoreganj   -0.131 -0.136 -0.135 -0.134 
   (2.17)* (2.57)* (2.20)* (2.48)* 
Munshiganj   0.171 0.154 0.181 0.148 
   (1.70) (1.65) (1.76) (1.55) 
Narsingdi   -0.191 -0.149 -0.200 -0.151 
   (3.50)** (3.04)** (3.57)** (2.98)** 
Mymensingh   -0.148 -0.156 -0.161 -0.164 
   (2.81)** (3.20)** (3.02)** (3.28)** 
Rajshahi   -0.266 -0.287 -0.268 -0.291 
   (5.44)** (6.32)** (5.39)** (6.27)** 

Efficiency Factors 

Age     -0.000 -0.000 
     (0.14) (0.25) 
Education     -0.022 -0.011 
     (1.84) (1.03) 
Ownership     0.049 0.048 
     (1.29) (1.31) 
Training     0.029 0.009 
     (0.48) (0.15) 
Experience     -0.002 -0.001 
     (1.04) (0.49) 
Health     -0.020 -0.025 
     (0.75) (1.03) 
Farm Scale     -0.013 0.011 
     (0.39) (0.36) 
Constant 5.517 5.664 5.620 5.700 5.626 5.717 
 (25.04)** (28.38)** (25.76)** (29.19)** (24.60)** (27.63)** 
Observations 569 697 569 697 569 693 
R2 0.89 0.88 0.90 0.89 0.90 0.89 
 
Absolute value of t statistics in parentheses 
* significant at 5%; ** significant at 1%       
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family and hired labor.  We also find no evidence of positive productivity for pesticide 

use, possibly because direct benefits of pesticides are counteracted by their toxic impact 

on beneficial soil organisms and insects that prey on pests.  We obtain functionally-

equivalent results for the IPM dummy:  Farmers who reduce pesticide use by adopting 

IPM are neither more nor less productive than conventional farmers, ceteris paribus.   

This result is not affected by the inclusion of regional dummies and efficiency-related 

variables.  Many of the former are highly significant, suggesting important roles for local 

soil and weather conditions, while we find no significance for any of the variables that 

were hypothesized to affect efficiency as well as IPM adoption. 

5.3  Stochastic Production Frontier Estimation  

For a more sophisticated assessment of conventional and IPM methods, we use the 

stochastic production frontier methodology developed by Battese and Coelli (1993, 

1995). The general stochastic production function, with inefficiency effects, is defined as: 

yi = f (xi; β) exp(vi - ui)   i = 1,...,n     (1) 

where yi denotes the output quantity of the ith farm, xi is a (1 x J) vector of input 

quantities and β is a (J x 1) vector of unknown parameters to be estimated.  The vi are 

two-sided random variables associated with measurement errors in output and are 

assumed to be independently and identically distributed N(0,σv
2) and independent of the 

ui.  In the absence of the stochastic term ui, the model in (1) reduces to a purely 

deterministic (mean) production function.  The ui are defined as non-negative random 

variables which account for technical inefficiency effects in production and are 

independently distributed as truncations at zero of the N(µi,σu
2) distribution, where: 

µi = δo + ∑
=

K

k 1
δk zik + ωi       (2) 

and zi is a (1 × K) vector of farm characteristics that affect efficiency and δ is an (K × 1) 

vector of parameters to be estimated.  The ωi’s are random variables generally defined by 

the truncation of the normal distribution with zero mean and variance σ2, with the point 

of truncation as ωi ≥ - δ zi. 

Maximum likelihood methods are used to simultaneously estimate the stochastic 

frontier and technical inefficiency effects models.  For the likelihood function. the 
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variance terms are parameterized as σ2=σv
2+σu

2 and γ=σu
2/(σv

2+σu
2), with 0 ≤ γ ≤ 1 

(Battese and Coelli, 1995).  Technical inefficiency for the i-th farm is estimated as the 

expectation of ui, conditional on the observed value of (vi - ui): 

 TEi = E [exp(-ui) | vi - ui] = E [exp(-δo - ∑
=

K

k 1
δk zik - ωi) | vi - ui]  (3) 

5.4  Alternative Production Functions 
 
For the production function in equation (1), we begin with the translog 

specification: 

ln yi = βo + ∑
=

8

1n
βn ln xi + ∑∑

= =

8

1

8

12
1

n k
βnk ln xin ln xik + vi - ui   (4) 

where 
yi =  represents the quantity of rice output (in kg) 
xi =  land (acres) 

  family labor (man-days) 
 hired labor (man-days) 
  capital (in Taka) 
  irrigation cost (Taka) 
 seed cost (Taka) 
   fertilizer (kg) 
 pesticide (kg) 
  IPM (dummy variable: 1 if IPM; 0 otherwise)  

 
We specify the technical inefficiency model as: 
 

µi = δo + ∑
=

K

k 1
δk zik + ωi       (5) 

where 
zi =  age (years) 
  education (categorical: 0-4 (none, primary, middle, secondary, tertiary)) 
   farm size (total acres) 
  farming experience (years) 
   ownership (1 if owner of farm; 0 otherwise) 
  training (1 if trained in applying and safe handling of pesticides; 0 otherwise) 
   health status (1 if significant health problems; 0 otherwise)   

 
Appendix II provides more precise variable definitions and descriptive statistics. 
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5.5  Estimation results 

We obtained maximum likelihood estimates for the parameters using the Frontier 

4.1 program (Coelli, 1996), and ran several likelihood ratio (LR) tests on the functional 

form, the stochastic specification and inefficiency effects (Table 5).7   We report full 

results in Table 6.  In row 1 of Table 5, we test the null hypothesis on the joint translog 

restrictions implied by the Cobb-Douglas specification.  We find that the restrictions 

cannot be rejected at a very high confidence level, so we adopt the Cobb-Douglas form 

because its constant-elasticity results are more easily interpreted. 

Table 5. Tests of Hypotheses 

 
Null hypothesis Restrictions Log-Likelihood     

  (Ho) (H1) λ # restr. Critical 
value Outcome 

Functional form        
  Cobb-Douglas βnk = 0 ∀ k, ∀ n -94.274 -54.790 78.970 36 47.212 Reject Ho at 10% 
Mean function (OLS)        
  Cobb-Douglas γ = δo = δ1 = … = δ9 = 0 -113.525 -94.274 38.501 12 25.549 Reject Ho at 1% 
Accounting for inefficiency effects        
  Cobb-Douglas δ1 = … = δ9 = 0 -113.525 -94.274 38.502 11 24.725 Reject Ho at 1% 

Row 2 tests the estimated stochastic frontier against the mean function estimated by 

ordinary least squares:  Under Ho the error term u is assumed to be non-stochastic and 

equal to zero.  Failure to reject Ho  implies that deviations from the frontier are purely 

random, and that variables chosen to model inefficiency effects can enter directly into the 

production function for estimation by ordinary least squares.  Our LR test rejects Ho with 

high confidence, implying that deviations from the frontier are systematic in Bangladeshi 

farming.8 

                                                 
7 The likelihood ratio test is λ = -2[ln LF (Ho) – ln LF (H1)], where LF denotes the likelihood function, Ho 

the null hypothesis and H1 the alternative hypothesis.  λ follows a chi-squared distribution with the 
number of degrees of freedom equal to the number of restrictions.  Estimation results report the 
parameters σ2 = σu

2 + σv
2 and γ = σu

2/( σu
2 + σv

2), where σ2 corresponds to the variance of the overall 
model, and γ is the share of inefficiency variance to overall model variance.  Since γ is the ratio of two 
variances, and is therefore always positive, the test statistic follows a mixed chi-square distribution, with 
the critical values to be found in Kodde and Palme (1996). 

8  This result can be confirmed via the estimated value of γ (0.17 in Table 6, where γ = 1 implies no random 
noise) and the calculated variance-ratio parameter γ* (0.07).  This implies that only 7% of the difference 
between observed and frontier output is due to differences in farmer efficiency.  Statistical significance 
for γ implies that distributional variation in u can be systematically explained by the regressors in the 
inefficiency model.  Although γ is not significant, the likelihood ratio test above suggested a mild effect.  
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Row 3 tests whether the variables in our inefficiency effects model (equation 5) 

have joint significance in explaining farmer inefficiency.  Rejection of the null at the 1% 

level indicates that farmer inefficiency is significantly associated with differences in 

farmers age, education, farm size, experience, ownership, training, health and regional 

conditions.   

Table 6 reports estimates for the translog and Cobb-Douglas models, with and 

without controls for IPM use.  Since we cannot reject the translog constraints implied by 

the Cobb-Douglas specification, we focus on results for the latter because they are easily 

interpreted as elasticities.  Our results suggest that land is easily the most significant 

factor in Bangladeshi rice production.  In the Cobb-Douglas estimate with a single 

dummy control for IPM, a 1% increase in land under production translates into a 0.57% 

increase in rice output.  The two labor variables, family and hired, are insignificant, with 

a small negative elasticity in the case of family labor.  The very small, insignificant 

elasticities for labor may imply that rice production is currently in a condition of surplus 

(zero-marginal-productivity) labor.  Capital is also significant, although the estimate 

implies that a 1% increase in capital is only associated with a 0.08% increase in rice 

output.  Irrigation appears to play a significant role, as do seed inputs, although to a lesser 

degree.  Fertilizers also make a significant contribution to rice production, with an 

elasticity of 0.11.  However, pesticides do not have any significant effect, suggesting that 

potential incremental gains are neutralized by toxic soil saturation or elimination of 

beneficial soil organisms and insect predators.  The sum of input elasticities (Σ βn = 0.92) 

suggests modestly-decreasing returns to scale, a finding similar to other results in the 

frontier production estimation literature (Coelli, Rahman and Thirtle, 2002; Wadud and 

White, 2000). 

                                                                                                                                                 
To measure the contribution of inefficiency variance to overall frontier variance, we use γ∗ = γ [γ + (1 - 
γ)π/(π - 2)] (Coelli, Rao and Battese, 1998).  For the Cobb-Douglas model, this is equal to 7%. 
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Table 6. Maximum-likelihood estimates of the stochastic production frontier model 

  Translog Cobb-Douglas Cobb-Douglas + IPM 
Variable Parameters Coefficients t-ratio Coefficients   t-ratio Coefficients t-ratio 

Constant βo 13.992  9.030 ***  5.592 24.266 ***   5.617 13.742 *** 
Land βL   3.257  6.329 ***  0.570 14.935 ***   0.615 8.308 *** 
Family labor βFL  -0.447 -1.490 -0.016  -0.889  -0.015 -0.628 
Hired labor βHL  -0.253 -0.693  0.026   1.244   0.048 1.751 * 
Capital βC  -1.410 -4.000 ***  0.076   3.184 ***   0.056 1.864 * 

Irrigation βI   0.191  0.576  0.115   5.244 ***   0.124 4.306 *** 
Seed βS  -0.201 -0.405  0.042   1.918 *   0.037 1.466 
Fertilizer βF  -0.552 -1.154  0.111   4.173 ***   0.090 2.422 ** 

Pesticide βP  -0.142 -0.790  0.001   0.096   0.002 0.070 
Land x Land βLL   0.477  4.329 ***     
Fam lab x Fam lab βFLFL  -0.011 -0.400     
Hire lab x Hire lab βHLHL   0.016  0.591     
Capital x Capital βCC   0.090  2.052 **     
Irrigation x Irrigation βII   0.037  0.923     
Seed x Seed βSS  -0.016 -0.296     
Fertilizer x Fertilizer βFF   0.125  2.188 **     
Pesticide x Pesticide βPP   0.016  1.161     
Land x Fam lab βLFL  -0.099 -2.119 **     
Land x Hire lab βLHL  -0.144 -2.672 ***     
Land x Capital βLC  -0.166 -3.034 ***     
Land x Irrigation βLI   0.039  0.851     
Land x Seed βLS  -0.100 -1.566     
Land x Fertilizer βLF  -0.074 -0.994     
Land x Pesticide βLP  -0.018 -0.689     
Fam lab x Hire lab βFLHL  -0.028 -1.135     
Fam lab x Capital βFLC   0.058  1.816 *     
Fam lab x Irrigation βFLI  -0.006 -0.221     
Fam lab x Seed βFLS  -0.015 -0.484     
Fam lab x Fertilizer βFLF   0.056  1.611     
Fam lab x Pesticide βFLP   0.007  0.536     
Hire lab x Capital βHLC   0.054  1.515     
Hire lab x Irrigation βHLI  -0.035 -1.158     
Hire lab x Seed βHLS   0.008  0.234     
Hire lab x Fertilizer βHLF   0.033  0.811     
Hire lab x Pesticide βHLP   0.018  1.325     
Capital x Irrigation βCI   0.045  1.207     
Capital x Seed βCS   0.025  0.693     
Capital x Fertilizer βCF  -0.005 -0.130     
Capital x Pesticide βCP  -0.016 -0.824     
Irrigation x Seed βIS  -0.018 -0.412     
Irrigation x Fertilizer βIF  -0.082 -2.046 **     
Irrigation x Pesticide βIP    0.029  1.711 *     
Seed x Fertilizer βSF   0.066  1.540     
Seed x Pesticide βSP  -0.006 -0.336     
Fertilizer x Pesticide βFP  -0.003 -0.149     
IPM βIPM  -0.050 -1.071 -0.039  -0.824   0.893 0.892 
Land x IPM βL x IPM       0.150 1.118 
Family labor x IPM βFL x IPM      -0.003 -0.043 
Hired labor x IPM βHL x IPM      -0.102 -1.846 * 
Capital x IPM βC x IPM       0.032 0.411 
Irrigation x IPM βI x IPM      -0.052 -0.610 
Seed x IPM βS x IPM       0.005 0.050 
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Fertilizer x IPM βF x IPM      -0.078 -0.913 
Pesticide x IPM βP x IPM       0.016 0.514 
        
Inefficiency effects        
Constant δo  -0.780 -2.295 ** -0.175  -1.076  -0.545 -1.644 
Age δA   0.002  0.456  0.001   0.202   0.001 0.225 
Education δE   0.012  0.411  0.022   1.062   0.007 0.302 
Owner δO   0.012  0.142  0.041   0.607   0.034 0.279 
Training δT  -0.044 -0.307 -0.047  -0.432  -0.105 -0.415 
Experience δExper   0.000  0.048  0.001   0.253   0.000 -0.306 
Health δHealth   0.010  0.183  0.043   1.080   0.018 0.577 
Farm scale δFarm scale   0.006  0.322 -0.028  -1.712 *   0.006 0.346 
Bogra δBogra   0.934  2.087 **  0.387   2.854 ***   0.624 4.428 *** 
Chapinawabganj δChapi  -0.247 -0.244 -0.741  -0.700  -0.157 -0.220 
Chittagong δChitta  -0.080 -0.161 -0.102  -0.459  -0.149 -0.464 
Comilla δComilla   0.812  1.713 *  0.304   2.835 ***   0.553 4.424 *** 
Jessore δJessore   0.831  1.693 *  0.330   3.137 ***   0.549 4.877 *** 
Kishoreganj δKishor   0.658  0.998  0.228   1.828 *   0.446 2.298 ** 
Munshiganj δMunsh  -0.312 -0.538 -0.224  -1.174  -0.165 -0.842 
Narshingdi δNarsh   0.798  1.604  0.342   3.084 ***   0.537 4.484 *** 
Mymensingh δMymen   0.794  1.600  0.332   3.019 ***   0.479 4.110 *** 
Rajshahi δRajshahi   0.948  2.415 **  0.452   4.600 ***   0.651 6.396 *** 
        
Variance parameters        
Sigma-squared σ2 = σu

2+σv
2   0.078  4.396 ***  0.086   9.130 ***   0.078 13.354 *** 

Gamma γ = σu
2/( σu

2+σv
2)   0.190  0.721  0.171   1.144   0.066 0.972 

Log-likelihood  -54.790  -94.274  -74.755  
Number of observations    569  569  569  

 
Note: *, **, *** - significant at the 10%, 5%, and 1% level, respectively. 
 

In no case do we find significance for IPM, whether it enters as a single control 

(dummy variable) or interacted with each input (with the single exception of hired labor).  

We also find no significance for other hypothesized inefficiency factors.  The overall 

significance of the regional dummies suggests that local environmental and geographic 

factors may have important effects on farmer inefficiency.9 

Table 7 presents statistics for farm-level technical efficiency scores estimated by the 

model.  Mean technical efficiency across farms is 83%, with variation from a minimum 

of 63% to over 98%.  The distribution of scores is fairly central, with 65% of the farmers 

around 75-90% efficient and a fairly uniform distribution (20%) above and below this 

range of technical efficiency.  Other studies of Bangladesh rice farming have yielded 

similar average efficiency scores (Coelli, Rahman and Thirtle, 2002; Rahman, 2003; 

Wadud and White, 2000).  These results imply that, on average, farmers can increase rice 

                                                 
9 For example, soil quality attributes would be one area for further investigation. 
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output, and thus increase profits, by approximately 17% (100-83%) by improving 

technical, allocative and scale efficiency in production. 

 
Table 7. Distribution and summary statistics of 
farm-level technical efficiency 
Efficiency score No. 

of farms
% 

of farms Cumulative 

0-25 0 0.0 0.0 
25-50 0 0.0 0.0 
50-75 83 14.6 14.6 
75-90 371 65.2 79.8 
90-95 58 10.2 90.0 
95-100 57 10.0 100.0 
Total 569 100.0  

    
Summary statistics    

Mean 83.0   
Min 62.9   
Max 98.6   
Standard deviation 7.5   
Coefficient of variation 9.1   

 

6.  Health Effects of IPM Adoption 
 

Our survey results suggest that farmers’ exposure to toxic pesticides is quite serious 

in Bangladesh,10 while our productivity analysis suggests that any direct benefits from 

pesticide use have been offset by adverse impacts on soil organisms, natural pest 

predators, and farmers’ health and productivity (Rola and Pingali, 1993).  Exposure can 

produce numerous acute effects, depending on a pesticide’s toxicity and the dose 

absorbed by the body.  For pesticides with high acute toxicity, exposure can produce 

intoxication symptoms within minutes or hours, including headaches, flu-like symptoms, 

skin rashes, blurred vision, and other neurological disorders (World Resources, 1998-99).  

Prolonged exposure can lead to more serious cardiopulmonary, neurological and 

hematological symptoms, as well as skin disease (Davies, Freed, and Whittemore, 1982; 

Spear, 1991). 

                                                 
10 A distinctive feature of pesticide-related health hazards is that the magnitude of the health effect 

associated with pesticide use can often be reduced by averting behavior - wearing protective clothing, 
such as gloves or a jacket.  Such measures can often reduce exposure by up to 80 or 90 percent 
(Cropper, 1994).  However, during the study, applicators of pesticides communities were rarely found 
to be wearing proper protective clothing. 
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A detailed health examination of farmers in our survey11 was beyond the scope of 

this study.  Instead, our analysis relies on self-reported health effects.  Among 

conventional farmers, 37% report frequent health problems such as eye irritation, 

headaches, dizziness, vomiting, shortness of breath, skin effects, and convulsions.12  

Among IPM farmers, 29% report similar health problems. Of these, 54% report that the 

health of the laborers working in their fields improved after they switched to IPM.   

Although IPM farmers have a lower reported incidence of health effects, we find 

that the difference between the two groups is not significant at the 95% confidence level.  

The difference may be greater for farmers who have used IPM for an extended period, 

but our survey has not recorded IPM adoption dates.  For more recent adopters, our result 

may be biased by a simultaneous relationship between IPM use and health:  Adoption of 

IPM may well improve health, even in the short run, but farmers who attribute their poor 

health to pesticide use may be more likely to adopt IPM.  At present, we do not have 

sufficient evidence to attribute strong health improvements to IPM adoption in our 

sample. 

 

7.  Environmental Effects 

Recent evidence suggests that pesticide use in Bangladesh has damaged organisms 

not targeted by applications13, while pesticide runoff has polluted many waterways.14  

Much of the damage can be attributed to the timing, frequency and dose-intensity of 

applications, as well as use of inappropriate products and lack of information about 

                                                 
11  This would include a comprehensive physical examination, blood cholinesterase determination and skin 

patch tests. 
12 Are self-reported health effects a credible measure?  Suggestive evidence is provided by medical tests of 

the farming population in other Asian countries.  Several clinical studies conducted on rice and 
vegetable farmers in Indonesia, Philippines, and Vietnam revealed that 58% - 99% of the farmers 
exposed to pesticides had at least one health effect (Xuyen et al., 1998; Kishi et al, 1995; Antle and 
Pingali, 1994; Rola and Pingali, 1993).  This evidence suggests that the degree of upward bias, if any, 
in the self-assessment of health effects may not be large. 

13 For example, a number of newspapers in Bangladesh (Manab Zamin, September 6, 1999; Bhorer Kagaz, 
September 1, 1999; Inqilab, September 2, 1999) reported the poisoning and death of thousands of 
birds in Ustad by Cypermethrin- treated eggplant fields in the Dakatia village of Jessore, a district in 
the Western border region of Bangladesh (UBINIG, 1999). 

14 A government study conducted in 1995 found that 11% of tested water samples contained pesticide 
residues higher than WHO guidelines (Government of Bangladesh, 1995). 
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toxicity. When asked about environmental effects, nearly 70% of the IPM farmers in our 

survey report improvements in soil, water and air quality after adoption of IPM (Figure 

3), as well as increased numbers birds, fish and soil organisms such as earthworms.  

Figure 3. Observed change in soil, water and air quality after IPM adoption 

 

 

 

 

 

 

 

8.  Summary and Conclusions 

In this paper, we have used new survey data on rice production to assess the net 

economic, health and environmental benefits of switching to Integrated Pest Management 

in Bangladesh.  We have assessed the net economic benefits of IPM adoption in three 

productivity comparisons, using input ratios, standard production functions and 

stochastically-estimated production frontiers.  In all three cases, we have found no 

significant difference in productivity for IPM and non-IPM rice farming.  Our results 

hold when we control for hypothesized farm-efficiency factors that also affect the 

probability of IPM adoption.  Our evidence suggests that IPM adoption increases profits 

for rice farmers, since pesticide costs are reduced with no countervailing reduction in 

output.  The reported incidence of sickness is lower for IPM farmers, although the 

difference is not statistically significant in our sample.  Most IPM farmers also report that 

environmental conditions improved after adoption of the new technique.   

To summarize, our evidence suggests that further promotion of Integrated Pest 

Management for Bangladeshi rice farmers will yield economic, health and environmental 

benefits for rural communities.  As we have noted, local adoption of IPM is  a collective 

decision because farmers’ pesticide applications affect their neighbors’ fields as well.  
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Effective promotion strategies should therefore emphasize collective gains from 

adoption, as well as training of individual farmers in the relevant skills.   
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Appendix I. 

 
Active Ingredients Used in the Agricultural Sector, Bangladesh. 

Consumption (million tons) Year 
Insecticides 1990 1991 1992 1994 1993 1995 1996 1997 1998
Carbamate Insecticides 170 182 202 - 210 250 270 290 300
Chlorinated Hydrocarbons 30 24 32 - 28 35 15 1 -
Organo-Phosphates 720 751 821 - 855 810 950 980 1,020
Pyrethroids 9 9 14 - 13 14 15 5 15
Other Insecticides 26 26 33 - 18 45 50 50 30
Total Insecticides 955 992 1102 - 1124 1154 1300 1326 1365
Herbicides         
Bipiridils - - - - - 12 20 20 19
Phenoxy Hormone Products 9 10 10 - 6 32 30 30 28
Other Herbicides 26 25 23 - 27 22 13 13 15
Total Herbicides 35 35 33 - 33 66 63 63 62
Fungicides         
Benzimidazoles - - 1 - 1 7 5 5 7
Diazines, Morpholines - - 1 - 1 5 4 4 2
Dithiocarbamates 130 125 131 - 120 132 155 170 320
Other Fungicides 4 5 3 - 6 6 5 5 23
Inorganics 142 130 175 - 200 320 375 410 350
Triazoles, Diazoles 276 260 1 - 1 5 6 4 6
Fungicide &Bacterial &Seed Treatment 276 260 312 - 329 475 550 598 708
Rodenticides         
Anticoagulants - - 1 - 1 2 2 1 2
Other Rodenticides - - 5 - - 5 4 5 4
Total Rodenticides - - 6 - 1 7 6 6 6
Source: FAO 
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Appendix II.  Variable description and statistics 
 
Production variables: 
Rice – measured in kilograms; combines the four seasonal varieties of rice, Aush, Boro, Irri and Aman; 
Land – measured in acres; 
Labor – measured in days; number of family and hired labor man-days; 
Capital – measured in Taka; current worth of all farm machinery and equipment, depreciated at 10%, plus 

equipment rental costs.  Equipment rental costs are reported for each crop; equipment values are imputed 
in proportion to crop shares in farm production. 

Irrigation and seed costs (xIS) – measured in Taka; stated costs per crop; 
Fertilizer and pesticides – measured in kg. 
 
Eefficiency variables: 
 
Age – measured in years; 
Education – categorical variable coded as follows: 
 0 = can’t read or write/can read, but can write 
 1 = Primary (≤ 5 years of schooling) 
 2 = Junior high school (6-10 years of schooling) 
 3 = Secondary or Higher Secondary (11-12 years of schooling) 
 4 = Above High Secondary (more than 12 years of schooling) 
Experience – Years of farming experience 
Training – Dummy variable (1 if trained in use of pesticide applicators; 0 otherwise) 
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Overall summary statistics of the sample. 

 Conventional IPM 
Variable Mean Min. Max. C.V. Mean Min. Max. C.V. 
Rice production (kg) 3,469.23 200 44,000 140 4,349.29 400 27,000 110 
Land (acres) 2.40 0.3 27 122 2.73 0.3 17 101 
Labor (days) 229.45 11.7 1,487 140 171.81 14.1 1,224 140 
Capital (Taka) 3,025.13 150 27,300 121 3,415.64 200 39,350 130 
Irrigation (Taka) 4,038.16 0 41,000 113 5,066.76 0 85,000 160 
Seed (Taka) 2,468.88 35 29,800 146 2,004.06 90 27,800 152 
Irrigation + seed (Taka) 6,507.03 350 53,840 111 7,070.82 545 86,500 136 
Pesticide (Taka) 2,856.88 0 65,189 206 1,055.27 0 18,010 262 
Fertilizer (Taka) 4,811.25 0 34,930 103 4,487.51 120 27,020 105 
Pesticide + fertilizer (Taka) 7,668.13 332 83,949 117 5,542.78 120 40,715 123 
Revenue (Taka) 64,369.43 4500 1,372,000 158 49,913.09 5,160 656,000 134 
Total costs (Taka) 26,791.03 0 175,448 96 23,039.72 1,692 130,319 97 
Profit (Taka) 37,578.40 -37562 1,280,800 239 26,873.37 -85,320 603,235 215 
Age (years) 36.36 18 70 32 38.76 17 75 34 
Education (categorical: 0-4) 1.25 0 4 94 1.89 0 4 58 
Farm size (categorical: 1-7) 3.04 1 7 50 3.54 1 7 41 
Ownership (owner=1) 0.83 0 1 46 0.95 0 1 23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


