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INTRODUCTION

The interactions between the scientific infrastructure (universities, research

institutes) and the technological production (firms, R&D departments) are a key feature of

developed countries. The contribution of these interactions to the process of economic

development must be investigated. Unfortunately, so far, the case of less-developed

countries has not been well studied in this regard.

The literature about technological change has highlighted the role of mutual

feedbacks between these two dimensions (Nelson, 1993; Rosenberg, 1982; Freeman &

Soete, 1997; Klevorick et alli, 1995). The literature about endogenous growth emphasises

the role of knowledge for modern economic growth (Romer, 1990; Jones, 1995; Aghion &

Howitt, 1998).

Using statistics of patents (USPTO) and scientific papers (ISI) for 120 countries (for

1974, 1992, 1990 and 1998), this paper investigates the relationship between the scientific

infrastructure and the technological production. This investigation may be connected with

discussions about the relationship between science, technology and development.

The literature (Rosenberg, 1982;  Nelson, 1993; for developed countries) and

anecdotal evidences (Rapini, 2000; Banze, 2000; for developing and less-developed

countries) suggest the existence of different levels of interaction between science and

technology, alongside different levels of economic development.

The data for 120 countries enable the analysis to go beyond the case of developed

countries. This greater sample permits a broader approach, uncovering initial evidences

about important differences in the interactions between science and technology throughout

the development process.

The hypothesis of this paper is the existence of thresholds of scientific production

that must be overcome to trigger new channels of interactions between the scientific and

technological infrastructure. As the development process evolves, new interactions are

initiated. The interactions between science and technology become stronger and more

pervasive, reaching at last the mutual feedbacks and the virtuous circles typical of

developed economies.

One important motivation of this paper is that, so far, the economic literature has

taken for granted the relationship between these two dimensions. The endogenous growth
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literature has not used statistics of scientific papers in their empirical studies (Barro & Sala-

I-Martin, 1995), and has not modelled the scientific sector as distinct of the profit-making

innovative firms sector (Romer, 1990). The neo-schumpeterian literature has accumulated

theoretical elaboration and anecdotal evidences, but has not gathered statistic data for

countries outside the OECD area (Fagerberg, 1988, 1994; Freeman, 1994). Therefore, both

the use of an under-utilised source of data (scientific papers) and the extension of the

number of countries to be investigated (beyond the OECD area) are interesting.

This paper is divided into five sections. The first section surveys the literature. The

second section presents initial evidences about the role of science before and during the

catching up process. The third section suggests a simple model of connections and

interactions between scientific infrastructure, technological capabilities and economic

growth. The fourth section presents the data, their initial description, and initial evidences

of the existence of thresholds of scientific production. The fifth section concludes the

paper.

I- A BRIEF SURVEY OF THE LITERATURE

The study of determinants of economic growth is both fascinating and complex.

Abramovitz (1989) presents a broad view, suggesting a division between the “proximate

sources of growth” (pp. 13-28) and the “deeper causes”, which involves “technological

effort as investment” (pp. 28-41) and “national and historical determinants” (pp. 41-55).

Abramovitz’s essays on growth summarise the multifarious and variegated sources of

economic growth. The literature about economic growth, that boomed during the 1990s,

shows the role and relevance of sources like innovation, income distribution, education,

health and nutrition, institutions, investment, trade, etc. This literature also shows how

complex are the definitions about the direction(s) of causality and how difficult it is to

evaluate the interactions between these diverse sources.

The objective of this paper is focused in a very peculiar and specific dimension of

this broad and complex picture: the relationship between the scientific and technological

dimension and economic growth.

For this paper, two approaches are useful: 1) the literature about the economics of

technological change; 2) the debate about the endogenous growth.
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Nelson & Rosenberg (1993, pp. 5-9) point the intertwining of science and

technology as a key characteristic of national systems of innovation. They summarise the

complex interactions between these two dimensions highlighting that science is both “a

leader and follower” of technological progress (p. 6).

Evidence of this double role can be drawn from the literature.

First, Rosenberg (1982, pp. 141-159) discusses “how exogenous is science”,

indicating how technology leads and precedes science. Rosenberg  presents the role of

technology as: 1) a source of questions and problems for the scientific endeavour;  2) an

“enormous repository of empirical knowledge to be scrutinised and evaluated by the

scientists” (p. 144); 3)  technological progress contributes to the formulation of the

“subsequent agenda for science” (p. 147); 4) a source of instruments, research equipments

etc. Rosenberg concludes that “powerful economic impulses are shaping, directing and

constraining the scientific enterprise” (p. 159).

Second, in the opposite direction of the flow, Klevorick et alli (1995) present

empirical evidence about the role of universities and science as an important source of

“technological opportunities” for industrial innovation. This study shows how different

industrial sectors rank the relative importance of universities and science to their innovative

capabilities. Klevorick et alli rank the relevance of scientific disciplines to different

industrial sectors, justifying why firms monitor and follow developments in the

universities. Specially in high-tech industries, there are strong knowledge flows running

from the scientific infrastructure to the industrial sectors.

Third, Pavitt (1991) investigates “what makes basic research economically useful”.

Basic research is economically useful not only because it constitutes an “increasingly

important direct input into technology”. According to Pavitt, “there are ... other two other

influences that are equally, if not more, important: research training and skills and

unplanned applications” (p. 114).

Fourth, Rosenberg (1990) discusses “why do firms do basic research”, and suggests

that basic research is an “entry ticket for a network of information”. This point is related to

Cohen & Levinthal (1989) discussion about the two sides of R&D, stressing the importance

of this investment as a way to develop “absorptive capability”.



4

Finally, Narin et alli (1997) find empirical evidence for the “increasing linkage”

between science (financed by the public sector) and the US industry.

For the objectives of this paper, these studies indicate the relevance of the two

dimensions of the innovative activities, stress the division of labour between them and

support the understanding of the strong and mutual feedbacks between science and

technology in developed countries. Therefore, this literature suggests that for the modern

economic growth these interactions must be working.

Romer (1990) formulates a model where growth is caused by human capital

allocated in the research sector of profit-seeking private firms. Knowledge flows are key in

this model. However, there is no distinction between the scientific infrastructure and

technological sector, and therefore, the role of interactions can not be discussed. Pavitt

(1998) interprets Romer’s model as one that suggests that the causation runs from the

scientific dimension (knowledge producing) to the technologic dimension. Pavitt (1998)

inverts the direction of causation.

Aghion & Howitt (1998) present two important points that are related to interactions

between the two different dimensions. First, the contribution of education to the growth of

labour productivity does not take place, “unless education is being explicitly linked to the

rate of innovations and the speed of catch up” (p. 339). Second, they discuss the “low

growth traps caused by the complementarity between R&D and education” (pp. 340-342).

II- INITIAL EVIDENCES ABOUT THE ROLE OF SCIENCE BEFORE AND

     DURING THE CATCHING UP PROCESS

So far, this topic has not been deeply investigated. It is important to be cautious and

keep in mind the need for theoretical mediations to discuss the specific features of less-

developed countries. It is not possible to make straightforward applications of the findings

for developed countries to the less developed countries.

Regarding the non-developed countries, there are important differences in the role

of science (Albuquerque, 2001). The main difference rests on the contribution of science to

the catching up process. It acts as a "focusing device" in this process. Science at periphery

is important to function as an “antenna” for the creation of links with international sources

of technology. In a catching up and in a "non-mature" NSI, scientific infrastructure
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provides "knowledge to focus search" (Nelson, 1982). Instead of being a direct source of

technological opportunity, as in "mature" NSIs, at the periphery science helps to identify

the opportunities generated abroad. In other words, the main role of science in the periphery

is to plug the NSI in the international scientific and technological flows.

There is a dual role of science in the catching up process. First, science might be a

“focusing device”, helping to define policies for technological development, to identify the

main international sources of knowledge, and to link the country with the international

scientific and technological flows. Second, the scientific infrastructure is a major support

for industrial development, providing the knowledge necessary for the entry in key

industries for the process of development. However, to reach a level high enough to trigger

a catching up process, investments and institutional building are a key prerequisite

(Amsden, 1989; Kim, 1993; Wade, 1990; Hou & Gu, 1993).

Rapini (2000) contributes to understand some features of the interactions during the

catching up process and to delimit the case of catching up countries (Korea and Taiwan)

and the case of developing economies that have not yet reached the catching up phase

(Brazil). Using patents and scientific papers statistics (between 1974 and 1998) Rapini

(2000) investigates the relationship between scientific and technological production. She

finds that, on the one hand, in Korea and Taiwan the scientific production Granger-causes

technological production and that the technological production also Granger-causes

scientific production. But, on the other hand, for Brazil Rapini finds that only the scientific

production Granger-causes technological production.

Rapini (2000) delimitates the case of catching up countries and the case of other

developing countries: for the catching up countries, the mutual feedbacks between these

two dimensions are already in operation; for other developing countries, these mutual

feedbacks are not working.

Banze (2000) presents data for even less-developed countries, in his study about

African countries.1 Banze points to three different stages of scientific and technology

                                                
1 It is justifiable to study less-developed countries with data from scientific papers because
the existence of a scientific infrastructure hints: 1) the level of development of the
educational resources of the country, 2) the quality of their universities, 3) their connections
with the international flows of scientific knowledge, and 4) the commitment of these
universities with research activities. This assumption implies that the number of published
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development, using patent and scientific papers statistics. First, South Africa could be

included in the same category of Brazil (between 1976 and 2000, an annual average of

2,436 papers and 46 USPTO patents). Second, countries like Egypt and Nigeria

(respectively with averages of 1,440 and 782 papers, and both with 0.083 USPTO patents).

Third, countries like Mozambique (with an initial scientific production -11 papers - and no

USPTO patents).

Taking scientific production as a reference, the data from Rapini and Banze seem to

suggest that three broad stages of interactions between science and technology could be

delimitated (before and during catching up):

1) the country has an initial but very limited scientific infrastructure, enough to

produce few scientific papers but insufficient to feed the productive sector to

produce patentable innovations (Mozambique, Congo, Ethiopia) ;

2) the scientific infrastructure is stronger, enough to produce scientific papers and

few USPTO patents, but the scientific output is not large enough to trigger

mutual feedbacks between science and technology (Egypt, Nigeria, South

Africa, Brazil);

3) the catching up case, where the scientific infrastructure has grown up to trigger

the reverse causation running from the technological realm to the scientific

dimension (Korea, Taiwan).

These three broad stages of scientific and technological development hint an

evolutionary path. During this path, new stages are reached as certain thresholds are

overcome.

These points could be integrated to suggest that the low level of investment in the

scientific infrastructure could be one determinant (not the only, but important) of the low-

growth trap that blocks less-developed countries (Fagerberg, 1994; Aghion & Howitt, 1998,

p. 340-342).

                                                                                                                                                    
papers may be taken as an indicator of the general situation of the educational conditions of
the country and of their usefulness to the economic development.
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III- A SIMPLE MODEL ABOUT STAGES OF DEVELOPMENT AND

      INTERACTIONS BETWEEN SCIENCE AND TECHNOLOGY

This paper focuses a very specific subject: the interactions between science and

technology throughout the development process. To perform the statistical analysis (in the

next section), this section put forward a very simple model. This model describes the

relationship and the interactions among science, technology and economic growth. It

simplifies the complex and multifarious connections, interactions and causal chains that

constitute the province of economic growth. However, this simple model helps to focus the

discussion in the main theme of this paper: the nature and dynamics of the interactions

between science and technology.

The theoretical background and the intuitions of this very simple model are

discussed in sections I and II. From them, three stylised facts could be drawn:

1) developed countries have strong scientific and technological capabilities, and

there are interactions and mutual feedbacks between the two dimensions

(section I);

2) the role of science during the catching up process is crucial and it is two-folded:

source of absorptive capability and provider of public knowledge for the

productive sector (section II);

3) less-developed countries are caught in a “low-growth trap” given, inter alia, the

low levels of scientific production (section II).

To suggest this very simple model, six steps are necessary. The support to each of

these steps are presented in the literature and the data surveyed in sections I and II.

1) the first step is the recognition of two different dimensions of innovation-related

activities – the scientific infrastructure and the technological production;

2) the second step is the identification of a division of labour between them;

3) the third step is the identification of interactions between the scientific and

technological dimensions, as well as the dynamics of these interactions;

4) the fourth step is the suggestion that these interactions change during the

development process, reaching at last a level of strong and mutual reinforcing

relationships found in developed economies;
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5) the fifth step is the conjecture that this evolutionary path is pushed by the

scientific infrastructure (at least, the improvement and the growth of the

scientific infrastructure is a necessary but not sufficient condition for triggering

technological development), and that there are thresholds of scientific

production that must be overcome to reach new stages (and new levels of

interaction between science and technology);

6) finally, these interactions in the science and technology field might be integrated

in the causal chains of economic growth.

These steps lead to a very simple model displayed in Figure I. This Figure I shows

three different “regimes”, ranging from the least developed countries (“regime” I) to the

developed countries (“regime” III).2

******************

INSERT FIGURE I

******************

The very simple model uses four sets of variables: scientific production;

technological production; economic growth; and “others” (representing a broad range of

factors and variables left out of this simplified model - availability of natural resources,

health conditions, demographic factors, income distribution etc).

The very simple model suggest that as the “regimes” change, the number and the

channels of interactions between scientific infrastructure, technological production and

economic growth concomitantly also change. As the country evolves, more connections are

“turned on” and more interactions operate (the arrows in Figure I). The “regime” III is the

case where all connections and interactions are working (they have been “turned on” during

previous phases).

As long as the development takes place, the role of “others” in the causation of

economic growth decreases. In other words, as a country upgrades its economic position, its

economic growth is more and more “caused” by its scientific and technological resources.

The mutual feedbacks between them contribute to explain why the modern economic

                                                
2 The term “regime” is not a good one, but it is useful to delimit the different forms of
operation of the relationship and interactions among the four variables used in the model in
its present (and very initial) level of elaboration.
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growth is fuelled by strong scientific and technological capabilities (Fagerberg, 1994; Dosi,

Freeman & Fabiani, 1994).

This very simple model is suggested to enable the data analysis of section IV,

focusing the interactions between science and technology.

IV- DATA DESCRIPTION: SCIENTIFIC PAPERS, PATENTS AND

       GNP PER CAPITA

Data about GNP per capita (US$ dollars, PPP, according to the World Bank, for

1998), patents (for 1998, 1990, 1982 and 1974, according to the USPTO, 2001) and

scientific papers (for 1998, 1990, 1982 and 1974, according to the Institute for Scientific

Information, 2001)3  were collected for 120 countries.4

Two initial remarks. First, this broad sample is important: on the one hand, studies

about technological indicators are mainly concentrated in data about developed and OECD

countries (for example, Fagerberg, 1988;  Stern et alli, 2000); on the other hand, more

broad samples as those provided by the Penn World Table do not use indicators of science

and technology (Barro et all, 1995). Second, the range and usefulness of these indicators

should be highlighted: there are 115 countries out of 120 that have published at least one

scientific paper in 1998; and 89 countries out of 120 applied at least one patent at the

                                                
3 The pros and cons of patents and scientific papers as proxies of technological and
scientific papers are extensively discussed in the literature (Griliches, 1990; for patents;
Velho, 1987, for papers). Throughout this paper these observations should be kept in mind.
4 The countries are: Albania, Algeria, Argentina, Armenia, Australia, Azerbaijan, Belarus,
Belgium, Bolivia, Bosnia and Herzegovina,  Brazil, Bulgaria, Cameroon, Canada, Chile,
China, Colombia, Congo (Dem. Rep.), Congo (Rep.); Croatia, Cuba, Czech Republic,
Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Ethiopia, Finland,
France, Germany, Ghana, Guinea, Haiti, Honduras, Hong Kong (China), Hungary, India,
Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya,
Korea (Rep.), Korea (Dem. Rep.), Kuwait, Kyrgvzstan, Latvia, Lebanon, Lesotho, Libya,
Lithuania, Macedonia, Madagascar, Malaysia, Malawi, Mali, Mauritania, Mauritius,
Mexico, Mongolia, Morocco, Myanmar, Namibia, Nepal, Netherlands, New Zealand,
Niger, Nigeria, Norway, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Poland,
Portugal, Romania, Russia, Saudi Arabia, Senegal, Sierra Leone, Singapore, Slovakia,
Slovenia, South Africa, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Taiwan, Tanzania,
Thailand, Trinidad and Tobago, Tunisia, Turkey, UK, USA, Uganda, Ukraine, United
Arabic Emirates, Uruguay, Uzbekistan, Venezuela, Vietnam, Yemen, Yugoslavia, Zambia,
and Zimbabwe.
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USPTO in 1998. Only one country (Trinidad Tobago) out of 120 has zero patent and zero

paper in 1998.

IV.1- CORRELATION BETWEEN SCIENTIFIC AND TECNOLOGICAL

PRODUCTION AND GNP PER CAPITA

Figure II shows a three-dimensional plot, where the log10 of the GNP per capita is

plotted against the log10 of the number of articles per million of inhabitants (A*, henceforth)

and the log10 of the number of patents per million of inhabitants (P*, henceforth). The data

are for the year 1998. Only countries with data available and scores different from zero are

represented.

******************

INSERT FIGURE II

******************

In Figure IIa shows clearly the correlation between the three variables.  The higher

is the scientific and technological production, the higher is the GNP.

Figures IIb and IIc show the projections of the points, respectively, in the GNP x

Articles plane and in the Articles x Patents plane. In Figure IIc there is a concentration of

points in the upper part of the plot, representing the developed countries. The same aspect

could be observed in Figure IIa.

At this stage of the discussion, it is not the main interest to look for a function which

might fit those points. In a three-dimensional plot it should be very hard to find it.

However, at the present, it is clear the correlation between the variables.

Table I organises the data (patents per million inhabitants, scientific papers per

million inhabitants and a ratio between these two data) according to countries income

levels.

******************

INSERT TABLE I

******************

Table I shows the correlation displayed by Figure II, as the scientific and

technological production are directly related to the income level. The scientific and

technological production are higher for the richer countries (for GNP per capita greater than
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US$ 19,000, A* = 937.99; P* = 154.42) than for poorer countries (for GNP per capita less

than US$ 3,000, A* = 14,79, P* = 0.10).

Table I presents an initial hint about the existence of thresholds of scientific

production. The third column presents the ration between A* and P*. This ratio may be

understood as an indicator of efficiency in the transformation of scientific production into

technological outputs. The more efficient a country is, the smaller is the ratio (the country

produces more patents for a given stock of scientific papers).

Taking as reference the discussion of section III, this means that at the “regime” III

(Figure I), there are more connections “turned on” and more interactions working.

Therefore, the greater efficiency is achieved. On the other hand, Table I shows that as the

income level falls, the efficiency of the transformation of scientific production into

technological output also falls (the ratio A*/P* increases). In other words, there are less

connections, less interactions: the case of “regime” II (Figure I) might be working. It seems

to be necessary to have a great scientific production to reach a point of efficiency in the

transformation of science in technology.

In addition, one remark is necessary. Countries with zero patents or zero scientific

papers have been excluded from Figure II (115 countries out of 120 have published at least

one scientific paper in 1998; and 89 countries out of 120 applied at least one patent at the

USPTO in 1998). There are 26 countries with scientific publications but without USPTO

patent, which constitute the “regime” I as displayed in Figure I. These 26 countries have

not reached even the first threshold, the threshold necessary to trigger the beginnings of a

technological production.

IV.2- PRELIMINARY EVIDENCES ABOUT THRESHOLDS OF SCIENTIFIC

                    PRODUCTION

 Figure IIc suggests the existence of two behaviours in the relation between A* and

P*. The remainder of this section discusses and presents preliminary statistical evidences

about the existence of thresholds between different stages of development, and about the

changes in those thresholds as time goes by.
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IV.2.a- THE THRESHOLD IN 1998 DATA

The cross-over and the threshold level can be better observed in Figure III.

******************

INSERT FIGURE III

******************

Figure III displays the data for the year 1998 in a two-dimensional plot in log-log

scale. In this plot, it is possible to define two regions. Roughly speaking, they are separated

by the point (A* ≈ 100 and P* ≈ 1). The technologically immature countries are at

left/lower of this point and the mature countries at right/upper.

Those points can be fitted by two power functions P* ∝ (A*)β, what has been done

by dividing the set of points in two subsets, which are shown with different symbols (filled

squares and open circles) in Figure IV.

******************

INSERT FIGURE IV

******************

The fit of the first subset gives a exponent β  = 0,76, with correlation coefficient R =

0,65. On the other hand, the second subset gives β  = 2,39 with R = 0,79 (Table II,

subsection IV.2.b).

The crossover between the two lines occurs at A* ≈ 150. The threshold from the

technologically non mature to the mature countries is around this point (transition from

“regime” II to “regime” III, according to Figure I, section III) .

IV.2.b- THE MOVING THRESHOLD: COMPARING 1974, 1982, 1990

          AND 1998

This behaviour is not observed only in the year 1998. The same behaviour can be

observed at different times, as shown in the sequence of Figures Va, Vb and Vc. In this

sequence the number of patents per million of inhabitants is plotted against the number of

articles per million of inhabitants for three different years: 1974, 1982 and 1990,

respectively.
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******************

INSERT FIGURE V

******************

In Figure V, again the plot is divided in two regions, and fitted with two power

functions. As observed in figure IV, the points below the threshold are much more disperse,

what leads to a lower correlation coefficient.

Again only countries with scores higher than zero are included. It is interesting to

highlight that the number of countries increases from Figure Va to Vc (and to Figure IV,

which refers to 1998 data).

More important is that the exponent for both regions increases consistently, from

1974 to 1998, as observed in Table II.

******************

INSERT TABLE II

******************

This behaviour implies that the thresholds change in time, as shown in Table III.

One interesting aspect of this table is that the value of this threshold seems to double from

one period to another.

******************

INSERT TABLE III

******************

This moving threshold could be interpreted as a signal of the increasing importance

of the scientific infrastructure for the catching up process.

V- CONCLUSION: EVIDENCES ABOUT THE THRESHOLD AND FURTHER

     RESEARCH

This paper is a first step of an investigation about the role of scientific infrastructure

for the development process, the interactions between this infrastructure and the

technological production, and the dynamics of these interactions throughout different stages

of development.

The hypothesis of this paper is not refuted by the data and analyses presented.

Three final remarks are necessary.
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First, there are three preliminary and more general contributions of this paper:

1) the use of statistics of scientific papers to investigate countries in different levels

of economic development (from least-developed to the leading countries);

2) statistics of scientific publications are an useful tool for the evaluation of less-

developed countries, as it presumes the existence of other investments in

education, participation in international flows of knowledge;

3)  the use of statistics of science and technology to evaluate a sample of countries

that goes beyond the OECD area.

Second, the main findings of this paper are:

1) the interplay between science and technology is an important feature of the

development process, as the levels of scientific and technological production are

correlated to income levels;

2) the existence of a threshold level in the scientific production (for 1998, in the

neighbourhood of 150 scientific paper per million inhabitants), beyond which

the efficiency in the use of scientific output by the technological sector

increases;

3) the inter-temporal dynamics of this threshold, as it changes in time (comparing

data for 1974, 1982, 1990 and 1998), and its value seems to double from one

period to another.

And third, the results of this paper authorise and suggest further research. Three key

lines of investigation are:

1) the investigation of connections and causal links that run from the scientific and

technological dimension to the economic growth (and vice-versa);

2) the improvement of the simple model presented in this paper, taking initial steps

to formalise it;

3) the main implications for public policy (specially in less-developed countries) of

the existence of this moving threshold level.
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TABLE I
Averages and standard deviation of articles per million inhabitants (A*);

patents per million inhabitants (P*); and the ratio between articles
per million inhabitants and patents per million inhabitants (A*/P*),

according to the their income level (GNP per capita) in 1998.

A* P* A* / P*
GROUP OF

COUNTRIES
(GNP per capita)

Average
Standard
deviation Average

Standard
deviation Average

Standard
deviation

Number of
countries

in the
group

> US$ 19,000 937.99 377.69 154.42 121.54 11.30 14.45 19

US$ 10,000
US$ 19,000 476.59 432.32 64.68 107.37 43.09 45.27 13

US$ 5,000
US$ 10,000 115.68 133.58 1.45 1.76 152.03 199.30(a) 25

US$ 3,000
US$ 5,000 40.87 50.10 0.43 0.58 177.64 242.90(b) 17

< US$ 3,000 14.79 25.06 0.10 0.18 137.08 131.01(c) 40

GNP not
available 14.81 28.89 0.04 0.10 0 - (d) 6

Source: World Bank, 2000; USPTO, 2001; ISI, 2001 (authors’ elaboration).
NOTES: (a) 3 countries (with P* = 0) excluded,

 (b) 2 countries (with P* = 0) excluded,
 (c) 21 countries (with P* = 0) excluded,
 (d) 5 countries (with P* = 0) excluded.
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TABLE II
Exponents for the power functions which have been used to fit the two subsets of the plots

articles per million of inhabitants versus patents per million of inhabitants
(Figures IV and V). β left represents the exponent of the left part of the plot (filled squares)

and β right the exponent for the right portion (open circles).

Year β left βright

1974 0,13 1,27

1982 0,56 1,63

1990 0,70 1,80

1998 0,76 2,39

Source: ISI, 2001; USPTO, 2001; WORD BANK, 2000 (authors’ elaboration).

TABLE III
Crossover points between the two functions used to fit the two subsets of the plots of
articles per million of inhabitants (A*) versus patents per million of inhabitants (P*)

(Figures IV and V).

Year Threshold

(A*)

1974 7

1982 28

1990 60

1998 150
Source: ISI, 2001; USPTO, 2001; WORLD BANK 2000

(authors’ elaboration).
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FIGURE I
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FIGURE II
Plot of log10(GNP) versus log10(articles per million of inhabitants)

versus log10(patents per million of inhabitants).
(a) gives a perspective of the 3D plot, while (b) and (c) shows projections in two planes.

The data were obtained for the year 1998.

 

          

Source: ISI, 2001; USPTO, 2001; WORLD BANK, 2000 (authors’ elaboration).
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FIGURE III
Log-log plot of articles per million of inhabitants versus patents per million of inhabitants

for the year 1998. The points can be divided in two subsets, representing different stages of
technological maturity.

Source: ISI, 2001; USPTO, 2001; WORLD BANK, 2000 (authors’ elaboration).
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FIGURE IV
Log-log plot of articles per million of inhabitants versus patents per million of inhabitants

for the year 1998. Here the two subsets are identified by different symbols. Two power
functions have been used to fit the two subsets.

Source: ISI, 2001; USPTO, 2001; WORLD BANK, 2000 (authors’ elaboration).
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FIGURE V
Log-log plot of articles per million of inhabitants versus patents per million of inhabitants

for the years 1974 (a), 1982 (b) and 1990 (c).

  

 

 
Source: ISI, 2001; USPTO, 2001; WORLD BANK (authors’ elaboration).
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