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Abstract

We build a workable game of common-property resource extraction under rational Bayesian

learning about the renewal prospects of a resource. We uncover the impact of exogenously

shifting the prior beliefs of each player on the response functions of others. What we �nd

about the role of environmental conservation campaigns is paradoxical. To the extent that

such campaigns instill overly high pessimism about the potential of natural resources to re-

produce, they create anti-conservation incentives: anyone having exploitation rights becomes

inclined to consume more of the resource earlier, before others overexploit, and before the

resource�s stock is reduced to lower levels.
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1. Introduction

Markets invest vast amounts in renewable natural resources. Yet, it is di¢ cult to argue that

investors have rational expectations about the stochastic law of renewal of resources. In

particular, a vivid debate among experts shows that important magnitudes regarding the

fundamentals of natural-resource reproduction are obscure to both experts and the public.1

So, among other goals, environmental awareness campaigns aim at providing information

to the public about shifts in nature�s fundamentals. �Skeptical environmentalists�such as

Lomborg (2001), have expressed that awareness campaigns report unrealistically pessimistic

magnitudes of environmental change. Our goal in this paper is not to examine the valid-

ity of any existing environmental campaigns. Instead, our goal is to study the impact of

exogenously instilling overly high pessimism about resource renewal prospects to those who

exploit common-property natural resources: it is not clear whether instilling such pessimism

creates incentives for conservation.

We build a game of common-property resource exploitation. Players are unaware of

nature�s true parameters driving the ability of the resource to reproduce. So, players have

initial beliefs about these parameters behind nature�s fundamentals, and collect data in each

period in order to update these beliefs, using Bayes�rule.2 Outside this routine-type of

learning, environmental awareness campaigns aim at shifting the priors of players. Whether

1 The book by Lomborg (2001) scrutinizes this obscurity of public perceptions regarding shifts in nature�s
fundamentals due to a recent and drastic environmental regime switch such as �global warming�. Debates
about acid rain (see, for example, Lomborg (2001, pp. 178-181)), or about a large-scale biodiversity deteri-
oration (Lomborg (2001, pp. 249-257)) are related to shifts in fundamentals regarding the natural ability of
resources to reproduce. While environmental changes are not disputed among experts as facts, the magni-
tude of such changes is a vivid topic of disagreement among experts. For example, the article by Rörsch et
al. (2005) documents the opposition against Lomborg�s (2001) book by a part of the scienti�c community.
What we keep from this debate among experts for the purposes of this study is that investor uncertainty
about environmental fundamentals is a plausible working hypothesis for analyzing investments in natural
resources.
2 For example, collecting and processing data on each winter�s temperature informs scientists and investors
in natural-resource markets about the validity of their prior beliefs.
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awareness campaigns are based on formal study or speculation is exogenous to our model.

We do not model campaigns, but we build a framework where the role of priors of each

player on strategies and response functions of all other players is clear.

Avoiding an ad-hoc analysis of learning and having a clear interplay between beliefs and

the model�s fundamentals is a key prerequisite in our analysis. To this end, we employ

the concept of rational Bayesian learning. Rational-learning investors envisage the arrival

of new information and anticipate learning in the future. The distinct feature of rational

learning is that the mapping of priors to posteriors implied by Bayes�rule is incorporated

in the recursive problem of each player together with other recursions governing laws of

motion of the problem�s state variables. In other words, when learning is rational prior

beliefs become part of the problem�s state variables.3 Moreover, we focus on Markov-

perfect Nash-equilibrium strategies. Our focus on this equilibrium concept enables us to use

dynamic-programming techniques in order to tackle the problem.4

We combine two workable models in order to obtain robust analytical solutions. The

�rst is the Levhari and Mirman (1980) example about strategic exploitation of renewable

resources. The second is the framework by Koulovatianos, Mirman, and Santugini (2009)

which combines dynamic programming with rational learning and provides analytical solu-

tions. A key aspect of our analysis is that the stochastic structure of our model is general,

i.e., our results do not depend on any speci�c assumptions about the densities of any random

3 Our setup of Bayesian learners who anticipate learning in the future is similar to the case of rational
learning examined by Guidolin and Timmermann (2007), Cogley and Sargent (2008), and Koulovatianos,
Mirman, and Santugini (2009).
4 Kalai and Lehrer (1993) show a key result related to our rational-learning formulation. When Bayesian
updating is envisaged by each player, then Bayesian updating of collected information will lead in the long
run to accurate prediction of the future play of the game and rational expectations as a limit of behavior
with probability one, as time goes to in�nity. This consideration on the side of players, that learning will be
completed in the long run, and its impact on strategies, is a key distinctive feature of rational learning from
other forms of learning. (The way to make players envisage Bayesian updating in our setting that focuses
on Markov-perfect Nash strategies, is to incorporate Bayes�rule in the Bellman equation of each player.) In
their survey paper, Blume and Easley (1993) explain this distinction as well.
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variables in our model.

We obtain a unique and robust equilibrium in pure Markov-perfect strategies. We show

that if the priors of at least one player about the renewal prospects of the resource are

exogenously shifted to being more pessimistic than before, the response strategies of each

player change. Making at least one player more pessimistic than before implies higher

aggregate resource exploitation rates. This means that players choose to consume more of

the resource earlier, before others have the chance to overexploit, and before the resource�s

stock is reduced to lower levels.

We also compare rational learning strategies with rational-expectations strategies under

the assumption of common priors. We �nd that pessimism can even increase the intensity of

the commons problem, i.e., the tendency to overexploit as the number of players increases.

In particular, the commons problem is intensi�ed in the case where the number of players is

�small�. Above all, our analysis demonstrates that, as long as those who exploit the resource

are self-interested, there is one direction where incentives go in response to a campaign that

shifts priors about resource renewal to higher pessimism: anti-conservation.

Our �nding that pessimism leads to overexploitation incentives means environmental-

awareness campaigns may not achieve their stated goals of resource conservation. Instead,

shifting the priors of investors, countries, and companies with exploitation rights to more

pessimism about the natural ability of resources to be renewed may even cause incentives

for noncompliance with exploitation-rate quotas.

In Section 2 we present the model and its solution. In Section 3 we characterize the

solution, providing results about how exploitation strategies respond to shifts in belief priors,

and we discuss the paradox. In Section 4 we make concluding remarks.
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2. Model

Time is discrete and the horizon is in�nite (t 2 f0; 1; :::g). There is a renewable resource,

the stock of which is denoted by k. At time t = 0, the stock is k0 > 0.

2.1 Nature�s Law of Motion without Exploitation

When nobody exploits the resource, the law of motion of the resource�s stock is,

kt+1 = k
�t
t , t = 0; 1; ::: (1)

where parameter �t 2 (0; 1) is a serially uncorrelated random variable with time-invariant

density function � (�j��) and support H � (0; 1), and �� is a vector of parameters which is

constant over time and known by nature.

2.2 Players, Payo¤ Functions, and Resource Exploitation

Let a �xed set of N � 1 players, each having equal rights to exploit the stock k, as the

resource is perfectly rivalrous and nonexcludable. Each player i 2 f1; :::; Ng consumes ci;t

units of the stock k in period t 2 f0; 1; :::g, before nature reveals its realization �t within

period t.5 So, after exploitation the law of motion becomes,

kt+1 =

 
kt �

NX
i=1

ci;t

!�t
, t = 0; 1; ::: . (2)

All players are in�nitely-lived and have the same objective function, maximizing expected

life-time utility from consumption. For player i 2 f1; :::; Ng lifetime utility given by,

E0

" 1X
t=0

�t ln (ci;t)

#
,

5 We use a player�s index i 2 f1; :::; Ng as subscript for variables and as superscripts for functions, and we
drop it whenever it is redundant.
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where � 2 (0; 1) is the discount factor. All players know the density function � (�j�), but do

not know the true parameter vector ��. In period 0 each player i 2 f1; :::; Ng has a prior

distribution function of beliefs about vector � given by �i0. All players are Bayesian learners,

so given �i0, for any sequence of realizations of the shock �, f�tg
1
t=0, the sequence

�
�it
	1
t=0

is

generated by,

�it+1 (�j�t) =
� (�tj�) �it (�t)R

�
� (�jx) �it (x)dx

, t 2 f0; 1; :::g and i 2 f1; :::; Ng .

2.3 Assumptions about Players�Information

For notational simplicity let �t �
S
i2f1;:::;Ng �

i
t. A key assumption we make is that, in

period t = 0, all players know �0. This assumption, that each player knows the priors of

all other players, is both reasonable for our application, and it helps in clarifying the role

of beliefs on strategic behavior in our analysis. For example, if each player is a country

that wishes to manage its �shing industry, it is reasonable to assume that each country

is accurately informed about collective beliefs in other countries. Such information can be

collected through reading the press or public opinion poll �ndings about environmental issues

in foreign countries.

Another key assumption is that players fully observe �t in all periods t 2 f0; 1; :::g.

Assuming that additional noise is implicit in an observed signal does not add insights to

understanding the e¤ect of beliefs on players�strategies in our application.

2.4 Equilibrium Concept with Rational Learning

De�nition 1 gives the core equilibrium concept we use throughout the paper.

De�nition 1A Rational-Learning Markov-Perfect Nash Equilibrium (RLMPNE)

is a set of strategies of the form fci = Ci (k; �)gNi=1 such that for all i 2 f1; :::; Ng,
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ci = C
i (k; �) solves

V i (k; �) = max
ci�0

(
ln (ci)+

+�

Z
H
V i

 "
k � ci �

X
j 6=i

Cj (k; �)

#�
; �̂

!�Z
�

� (�j�) �i (�)d�
�
d�

)
(3)

subject to,

�̂
i
(�j�) = � (�j�) �i (�)R

�
� (�jx) �i (x)dx

, i = 1; :::; N ,

where � is the support of �, and � is common knowledge to all players i 2

f1; :::; Ng.

Notice that V i is the value function of player i, and it is distinguished from any other

player�s value function since players di¤er in that initial beliefs, �i0, generally di¤er across

players. Notice also that we have used a hat for denoting variables one period ahead.

2.5 Rational-Learning Equilibrium

Proposition 1 states formally the solution to the model under rational learning, which is the

key result of this paper. For notational compactness we let function � be,

� (�) �
Z
H
�� (�j�)d� , (4)

which captures nature�s e¢ ciency in natural resource reproduction in each period.

Proposition 1 There is a unique pure-strategy RLMPNE solving the problem

described by De�nition 1, where fci = Ci (k; �)gNi=1 is such that all players exhibit

constant exploitation rates at all times, i.e. Ci (k; �) is of the form Ci (k; �) =

ci (�) � k with

ci (�) =

�R
�

��(�)
1���(�)�

i (�)d�
��1

1 +
NP
j=1

�R
�

��(�)
1���(�)�

j (�)d�
��1 , i = 1; :::N , (5)
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while the aggregate resource exploitation rate by all players is,

NX
j=1

cj (�) =

NP
j=1

�R
�

��(�)
1���(�)�

j (�)d�
��1

1 +
NP
j=1

�R
�

��(�)
1���(�)�

j (�)d�
��1 . (6)

Proof See the Appendix. �

An attractive feature of the solution described in Proposition 1 is that there is only one

pure-strategy RLMPNE. In addition, the closed form of equations (5) and (6) makes the

impact of beliefs of other players on player i explicit. We exploit this tractability in a later

section where we examine the shifting in players�priors through environmental conservation

campaigns. Before moving to characterizing the equilibrium we brie�y derive the rational-

expectations equilibrium.

2.6 Benchmark Rational-Expectations Equilibrium

Learning is passive, and as t ! 1, all players learn the true parameter with certainty.

So, as t ! 1, the game described in De�nition 1 converges to rational expectations. A

Rational-Expectations Markov-Perfect Nash Equilibrium (REMPNE) is a set of strategies

of the form
�
ci = C

RE;i (k)
	N
i=1

such that for all i 2 f1; :::; Ng, ci = CRE;i (k) solves the

problem given in De�nition 1 after substituting the generic rational expectations distribution

for � (denote by �RE), given by, �RE (�) = 1, if � = ��, and �RE (�) = 0, if � 6= ��, with

�i = �
RE for all i 2 f1; :::; Ng. The derivation of strategies

�
ci = C

RE;i (k)
	N
i=1
is immediate

from equations (5) and (6), after substituting the generic rational expectations distribution

�RE for all players. Given this immediate proof, Corollary 1 only states the unique Markov-

perfect equilibrium under rational expectations.
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Corollary 1 There is a unique pure-strategy REMPNE solving the problem de-

scribed by De�nition 1 with �i = �
RE for all i 2 f1; :::; Ng, where

�
ci = C

RE;i (k)
	N
i=1

is such that all players exhibit constant exploitation rates at all times, i.e. CRE;i (k)

is of the form CRE;i (k) = cRE;i � k with

cRE;i =
(�� (��))�1 � 1

1 + N �
�
(�� (��))�1 � 1

� , i = 1; :::N , (7)

while the aggregate resource exploitation rate by all players is,

NX
j=1

cRE;j =
N �

�
(�� (��))�1 � 1

�
1 + N �

�
(�� (��))�1 � 1

� . (8)

One of the features of REMPNE is that under rational expectations all players have

common priors. In addition, these priors under rational expectations re�ect con�dence that

the correct parameter of nature is known by all players.

3. Belief Bias, Resource Exploitation Rates, and Conservation
Campaigns

In this section we explore the impact of shifting priors towards more optimism/pessimism

on exploitation rates of players. First, we look at the case where some players�priors are

shifted within our RLMPNE concept. Then we examine how RLMPNE with common priors

compares with rational expectations. In particular, we show how optimism/pessimism a¤ects

the intensity of the tragedy of the commons.

3.1 Increasing Optimism/Pessimism

Our goal is to apply our analysis to problems where priors at time 0 can be exogenously

altered. An example of exogenously altering � can be found in the case of environmental

campaigns where novel expert information about laws of renewal of natural resources aims
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at shifting the priors of players. In particular, we are interested in understanding how bias

of shifted priors towards optimism vs. pessimism alters exploitation strategies. To this end,

in this section we focus on prior distributions that are comparable in terms of the direction

of belief bias they entail. In particular, assume that �, �, and �� are related through a strict

�rst-order stochastic dominance (FOSD) relationship, where

� �FOSD � �FOSD �� .

Moreover, assume, for simplicity, that � is not a parameter vector, but a single parameter.

By the de�nition of strict FOSD,6

� �FOSD � �FOSD �� ,
Z
�

h (�) � (�)d� <
Z
�

h (�) � (�)d� <
Z
�

h (�) �� (�)d� ,

for all strictly increasing functions h on �. So, if we assume that priors are initially �, and

let �0 > 0, then � represents a pessimistic shift in priors and �� represents an optimistic shift

in priors, since Z
�

� (�) � (�)d� <
Z
�

� (�) � (�)d� <
Z
�

� (�) �� (�)d� .

Proposition 2 reveals the impact of shifts in any player�s priors on the strategies of other

players and on the aggregate exploitation rate.

Proposition 2 Let �0 > 0, and �i �FOSD �i �FOSD ��
i for some i 2 f1; :::; Ng.

Then,

(i) ci (�) > ci (�) > ci
�
��
�

(ii) cj (�) < cj (�) < cj
�
��
�

for all j 2 f1; :::Ng with j 6= i

(iii)
NX
j=1

cj (�) >

NX
j=1

cj (�) >

NX
j=1

cj
�
��
�

6 For the de�nition of strict FOSD, see, for example, Jackson and Rogers (2007, p. 6).
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where

� �
N[
j=1
j 6=i

�j [ �i and �� �
N[
j=1
j 6=i

�j [ ��i .

Proof Since �0 > 0,
R
�
� (�) = [1� �� (�)] � (�)d� <

R
�
� (�) = [1� �� (�)] � (�)d� <R

�
� (�) = [1� �� (�)] �� (�)d�. So, inequalities (i) and (ii) are derived immediately from equa-

tion (5), whereas inequality (iii) is an immediate consequence of (6). �

Inequality (i) of Proposition 2 states that if a player i becomes pessimistic (�i �FOSD �i),

then her exploitation rate rises. This is a similar result to the case of a single controller

who plays a game alone with nature (N = 1). When N = 1, the single player is not

encouraged to conserve the resource if she perceives that the resource�s renewal rate is less

productive: this creates an incentive to crop gains now instead of waiting for consuming later

(so, ci (�) > ci (�)).7 Inequality (i) of Proposition 2 states that this logic dominates even

in the presence of other players (N > 1). Yet, inequality (ii) of Proposition 2 states that

all other players j 6= i decrease their exploitation rate in response to the rising pessimism of

player i (�i �FOSD �i). This happens because players j 6= i see fewer resources left available

from player i, since player i consumes at a higher rate, both currently and in the future. But

overall, the aggregate exploitation rate drops when at least one player becomes pessimistic,

i.e., the anti-conservation incentive dominates on aggregate (inequality (iii) of Proposition

2). By virtue of inequality (ii) of Proposition 2, if, say, an environmental campaign manages

to shift the priors of some players towards more pessimism, the incentives will be to invest

less in conserving the resource and to exploit more of it on aggregate.

7 We elaborate on this point below, in our discussion of conservation incentives by self-interested utilitarian
exploiters.
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3.2 Belief Bias and the Intensity of the Commons Problem

Let�s assume common priors, i.e. that �i = � for all i 2 f1; :::; Ng. Then (6) is of the form

NX
j=1

cj (�) =
N

f (�) +N
, (9)

where the functional f (�) is given by,

f (�) =

Z
�

�� (�)

1� �� (�)� (�) d� .

Equation (9) implies that

@2

"
NP
j=1

cj (�)

#
@N@f (�)

= [f (�) +N ]�3 � [N � f (�)] . (10)

Equation (10) captures the intensity of the tragedy of the commons, as it determines whether

a shift in priors captured by � intensi�es or mitigates the tendency of the aggregate exploita-

tion rate to rise after adding more players. Based on (10), Proposition 3 analyzes how a

shift in common priors a¤ects the intensity of the tragedy of the commons.

Proposition 3 Let �0 > 0, let all players have common priors, and � �FOSD

� �FOSD ��. If

f (z) < (>) N , for all z 2
�
�; �; ��

	
, (11)

then pessimism mitigates (intensi�es) the intensity of the tragedy of the commons

while optimism intensi�es (mitigates) it.

Proof Immediate from (10) since f
�
�
�
< f (�) < f

�
��
�
. This statement holds for

exogenous shifts in priors. In addition, it holds for pessimism or optimism related to nature�s

true parameter ��. In particular, equation (8) coincides with equation (9) in the special case
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where f
�
�RE

�
is substituted in equation (9). Moreover, setting setting � = �RE above, which

is to assume � �FOSD �RE �FOSD ��, also implies f
�
�
�
< f

�
�RE

�
< f

�
��
�
. �

What we learn from Proposition 3 is that there is a possibility for pessimism to intensify

the tragedy of the commons: this happens when the number of players is small. Nevertheless,

Proposition 3 says that, if the number of players is large, the impact of more pessimism is

to mitigate the tendency for overexploitation as more players are added.

Our framework can also accommodate the study of second-order stochastic dominance of

belief priors, focusing on mean-preserving spreads. While such an analysis is both interesting

and easy to conduct, for the purpose of understanding the role of conservation campaigns, we

wish to focus on the belief bias aspect alone. Certainly, an aspect of environmental awareness

campaigns may be that campaigns can instill additional parameter uncertainty to players,

thus increasing perceived risk. This exercise is immediate, following results on second-order

stochastic dominance of belief priors shown in Koulovatianos, Mirman and Santugini (2009).

It would not o¤er su¢ cient additional insight to elaborate on mean preserving spreads for

the purposes of this paper.

3.3 Utilitarianism and the Paradox

Players in this game are self interested, but not myopic. Each player is in�nitely-lived.

Thinking of each player as a dynasty, each generation within dynasty i 2 f1; :::Ng cares

about the well being of its o¤springs. In this sense, there is no lack of altruism towards

future generations, apart from the fact that the discount factor, �, places more weight on the

current period compared to future periods. Yet, the noncooperative solution may reveal lack

of altruism towards the community of players, so, below, we compare the noncooperative with

the cooperative solution. Moreover, we discuss the fact that those who exploit the resource

13



are utilitarian: they derive utility only from harvesting the resource and do not derive

utility directly/structurally by the stock of the resource itself. We discuss the possibility

that breaking the assumption of utilitarianism may lead to a resolution of the paradox.

3.3.1 Cooperative vs. Noncooperative solution and Beliefs

In order to investigate the possible role of altruism towards the community of players, we

focus on the special case where N = 1, which can be seen as the cooperative solution. The

comparison between equilibrium choices with N = 1 and equilibrium strategies with N > 1

can help in understanding the role of pessimism for anti-conservation after removing any

strategic interaction among players.

In the special case where N = 1, equation (5) implies that

c (�) = c (�) =

�Z
�

1

1� �� (�)� (�) d�
��1

, (12)

which is the decision rule reported in Koulovatianos, Mirman, and Santugini (2009). More-

over, equation (12) immediately implies that

c
�
�RE

�
= 1� �� (��) . (13)

Recall that � (��) captures nature�s e¢ ciency in natural resource reproduction. Equation

(13) reveals that whenever nature is less e¢ cient in reproduction (� (��) is low), then a self-

interested utilitarian coalition has weaker conservation incentives, and chooses to consume

the resource at higher rates. In the absence of rational expectations, equation (12) says that

if the coalition does not have rational expectations and thinks that nature is less e¢ cient

in reproduction than it really is (say, � �FOSD �RE), then the coalition �nds it optimal to

have a higher exploitation rate than this of the coalition with rational expectations, as long

as �0 > 0 (c (�) > c
�
�RE

�
). In addition, if an environmental awareness campaign instills
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extra pessimism to the coalition (i.e., � �FOSD �), then anti-conservation incentives will be

strengthened further (c
�
�
�
> c (�)).

Propositions 2 and 3 reveal that a utilitarian noncooperative group of players with N > 1

will exploit even more on aggregate. This is the well-known commons problem, as nonco-

operative players try to exploit the resource before others do so and reduce the stock of the

resource in the future. Yet, what Propositions 2 and 3 add in this paper, is that pessimism

does not alter the anti-conservation incentives that we observe in the cooperative case when

lack of cooperation is considered. In fact, Proposition 3 reveals that in the case where N is

su¢ ciently small, anti-conservation incentives generated by exogenously instilled pessimism

to (all) players with common priors, are strengthened further by the fact that the harvesting

solution is not cooperative.

3.3.2 Direct (Structural) Care about the Resource

Players in the game we have examined care about conservation of the resource. Yet, their

conservation concerns are indirect, and are captured by the dependence of each player�s

indirect utility function on the resource stock, k. The direct utility of players is derived

solely by the amounts they harvest and consume, as their momentary utility function is of

the form u (ct).

It is, perhaps, the case that some environmentalists have some momentary utility function

of the form v (ct; kt) with @v=@kt > 0, t = 0; 1:::. This function v assumes a direct/structural

derivation of utility about the stock of the resource, and may imply a direct conservation

concern. Having @v=@kt > 0 for some players means that players enjoy a walk in a forest,

or a trip in a clean ocean, or that they care about conserving a part of the natural resource

that they do not plan to consume.

Perhaps the rationale behind some awareness campaigns is to shift the fundamentals
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of players by strengthening the derivative @v=@kt > 0 and, as a consequence, to poten-

tially create direct conservation incentives. Whether this rationale is valid, is an open ques-

tion, both theoretically and empirically. Theoretically, future work may examine whether

the relative strength of the derivative @v=@kt > 0 interacts with pessimism about nature�s

resource-renewal e¢ ciency in a way that such an interaction leads to conservation incentives.

Theoretically validating the role of such an interaction could be a resolution to the paradox

stressed by our model in this paper. Empirically, it may be possible to uncover whether

a structural derivative @v=@kt > 0 really exists among the public.8 Such an empirical

investigation may be conducted through well-designed opinion poll surveys.

4. Conclusions

The stated goal of environmental campaigns is the conservation of natural resources. The

goal of such campaigns is to shift the priors of investors, companies with exploitation rights,

countries, even consumers, by presenting novel evidence irrelevant to the everyday process

of learning by observation. Ideally, such campaigns would create incentives to investors for

shifting towards a strategy of lower exploitation rate that conserves the resource. We have

shown that, to the extent that such campaigns create pessimism, they lead to creating the

opposite incentives. Instead of incentives to conserve, players have an incentive to increase

their exploitation rates and to lower the stock of the renewable resource faster. They increase

their exploitation rates because they �nd it suboptimal to invest in resource conservation,

and they also do so in response to the strategies of other players who feel urged to crop gains

from the resource as early as possible. As our workable example has shown, pessimism can

even make the commons problem more intense, at least in cases where the number of players

is relatively small. Since incentives are important for guaranteeing that even conservation

8 Other environmental paradoxes seeking empirical validation are presented by Sinn (2008).
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policies as direct as quotas can be implemented successfully, our study recommends caution

to those who use environmental campaigns as a tool that may contribute to environmental

conservation: incentives may go towards the opposite direction.

We have discussed that the reason behind the paradox might be that we have employed

a fully utilitarian approach to environmental conservation. By utilitarianism we mean that

those who exploit the resource derive utility only from harvesting the resource and do not

derive utility directly/structurally by the stock of the resource itself. We think that our

working hypothesis of restricted utilitarian self interest may be plausible for the majority of

the public. Perhaps environmentalists who initiate conservation campaigns have the stock of

the resource itself in their structural utility function and hope to instill the same structural

concern to the public through overly pessimistic campaigns. Whether this is the key rationale

and objective of some environmentalist groups that lead particular conservation campaigns

and whether this rationale can overcome the anti-conservation paradox that our utilitarian

framework revealed in this study, is a key question for future research. Such research may

rely on carefully designed public opinion polls capable of measuring structural vs. indirect

�ows of utility from natural resource stocks to the public (i.e., whether the public cares

about seeing a su¢ ciently conserved forest and clean oceans vs. caring only about future

harvest gains implied by better conserved forests and oceans).

Regarding our framework of analysis, our study has assumed that each player knows the

prior beliefs of all other players. If, for example, players are countries, then the media may

have the beliefs of each country fully revealed, validating our assumption. Nevertheless, our

study has left unexplored games where players are uninformed about the beliefs of other

players, perhaps more suitable for di¤erent applications. This case of second-order learning

(with each player updating her beliefs about the beliefs of other players) is an extension for
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future research that our framework may accommodate.
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5. Appendix �Proofs

The proof of Proposition 1 relies on Lemmata 1 and 2, which are separate results. We state

and prove Lemma 1 below, while the proof of Lemma 2 appears in the literature, so we state

Lemma 2 and provide an appropriate citation for its proof.

Lemma 1 Let h : R ! R and a given prior distribution �0. Then for any

t 2 f1; 2; :::g and f�sg
t�1
s=0 generated through

��+1 (�j�) =
� (�j�) �� (�)R

�
� (�jx) �� (x)dx

, � = 0; 1; ::: , (14)

from any sequence f�sg
t�1
s=0 of independent draws of the shock �, the conditional

expectation E0
�
h
�
�t�1

�
j�0
�
where,

E0
�
h
�
�t�1

�
j�0
�
�
Z
H

Z
�

� � �
Z
H

Z
�

Z
H

Z
�

t�1Y
s=0

h (�s)�
�
�t�1j�t�1

�
�t�1 (�t�1)d�t�1d�t�1�

��
�
�t�2j�t�2

�
�t�2 (�t�2)d�t�2d�t�2�� � ��� (�0j�0) �0 (�0)d�0d�0 ,

is given by,

E0
�
h
�
�t�1

�
j�0
�
=

Z
�

�Z
H
h (�)� (�j�)d�

�t
�0 (�)d� . (15)

Proof of Lemma 1

We express �t�1 as a function of �t�2, according to the Bayesian update of beliefs given

by (14), and we substitute it into the LHS of (15),Z
H

Z
�

� � �
Z
H

Z
�

Z
H

Z
�

t�1Y
s=0

h (�s)�
�
�t�1j�t�1

� � ��t�2j�t�1� �t�2 (�t�1)R
�
�
�
�t�2jx

�
�t�2 (x)dx

�

�d�t�1d�t�1�
�
�t�2j�t�2

�
�t�2 (�t�2)d�t�2d�t�2 � � � � � � (�0j�0) �0 (�0)d�0d�0 =
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=

Z
H

Z
�

� � �
Z
H

Z
H

Z
�

t�1Y
s=0

h (�s)�
�
�t�1j�t�1

�
�
�
�t�2j�t�1

�
�t�2 (�t�1)d�t�1�

�d�t�1d�t�2�
�
�t�3j�t�3

�
�t�3 (�t�3)d�t�3d�t�3 � � � � � � (�0j�0) �0 (�0)d�0d�0 ,

i.e., �t�1 has been cancelled from the expression. Continuing in this way up to period 0, the

LHS of (15) becomesZ
H
� � �
Z
H

Z
H

Z
�

t�1Y
s=0

h (�s)� (�sj�t�1) �0 (�t�1)d�t�1d�t�1d�t�2 � � � � � d�0 ,

and as ��s are independent over time, this last expression is equal to the RHS of (15). �

Lemma 2 (matrix determinant lemma) Let A be an N �N nonsingular

matrix, and x, y be any N � 1 vectors. Then,

det
�
A+ x � yT

�
=
�
1 + yT � A�1 � x

�
� det (A) .

Proof of Lemma 2

See Harville (1997, p. 416, Theorem 18.1.1 and Corollaries 18.1.2 and 18.1.3). �

Proof of Proposition 1

Our solution approach follows Levhari and Mirman (1980). We start from deriving

RLMPNE in the �nite-horizon setting. Then we use the �nite-horizon RLMPNE results in

order to generalize them to the in�nite-horizon case. The approach of Levhari and Mirman

(1980) for proving the result helps in exhibiting the informational structure of the problem.
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The static problem (0-period-horizon problem)

The Nash-equilibrium solution is not unique in this case, but without loss of generality

we can set,

ci0 = �
(0)
i k , (16)

where �(0)i is some constant with �(0)i 2 [0; 1] for all i 2 f1; :::; Ng, with �Ni=1�
(0)
i = 1.

(We are solving this problem recursively, so we denote the n-th iteration by a superscript

�(n)�wherever this is applicable.) In order to keep each player�s problem well-de�ned in

next iteration, without loss of generality we focus on a solution where �(0)i 2 (0; 1) for all

i 2 f1; :::; Ng, with with �Ni=1�
(0)
i = 1. So, the value function of the agent in the static

problem is,

V i;(0) (k; �0) = ln (k) + ln
�
�
(0)
i

�
, (17)

which is the only case where the value function does not depend on �0.

The 1-period-horizon problem

The decision of the player i is determined by the Bellman equation,

V i;(1) (k; �0) = max
ci�0

(
ln (ci)+

+�

Z
H
V i;(0)

 "
k � ci �

X
j 6=i

Cj;(1) (k; �0)

#�
; �1

!�Z
�

� (�j�) �i0 (�)d�
�
d�

)
so, using (17),

V i;(1) (k; �0) = max
ci�0

(
ln (ci)+

+�

Z
H
� ln

"
k � ci �

X
j 6=i

Cj;(1) (k; �0)

# �Z
�

� (�j�) �i0 (�)d�
�
d� + � ln

�
�
(0)
i

�)
(18)
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with �rst-order condition,

1

ci
=
�
R
H �
�R
�
� (�j�) �i0 (�)d�

�
d�

k � ci �
P
j 6=i
Cj;(1) (k; �0)

,

which implies that, for all i 2 f1; :::; Ng, Ci;(1) (k; �0) is of the multiplicatively-separable

form,

Ci;(1) (k; �0) = c
i;(1) (�0) � k , (19)

where
�
ci;(1) (�0)

	N
i=1

is the unique solution to the linear system,2666666664

1 + �E0
�
�j�10

�
1 � � � 1

1 1 + �E0
�
�j�20

�
� � � 1

...
...

. . .
...

1 1 � � � 1 + �E0
�
�j�N0

�

3777777775

2666666664

c1;(1) (�0)

c2;(1) (�0)

...

cN;(1) (�0)

3777777775
=

2666666664

1

1

...

1

3777777775
, (20)

with

E0
�
�j�i0

�
�
Z
H
�

�Z
�

� (�j�) �i0 (�)d�
�
d� , i = 1; :::; N . (21)

The linear system given by (20) has a unique solution with ci;(1) (�0) 2 (0; 1), and�ici;(1) (�0) 2

(0; 1). Substituting
�
Ci;(1) (�0)

	N
i=1
of the form given by (19) into the Bellman equation given

by (18) leads to a value function of the form,

V i;(1) (k; �0) =

�
1 + �

Z
H
�

�Z
�

� (�j�) �i0 (�)d�
�
d�
�
ln (k) + �i;(1) (�0) , (22)

for all i 2 f1; :::; Ng, where �i;(1) (�0) is a constant that does not a¤ect optimization in future

steps. Unlike before, V i;(1) (k; �0) depends on �0, but we have an explicit form for the way

this function depends on �0. Most interestingly, in equation (22) the coe¢ cient of ln (k)

depends on �i0 only, and not on the beliefs of other individuals.
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The 2-period-horizon problem

The decision of player i is now determined by the Bellman equation,

V i;(2) (k; �0) = max
ci�0

(
ln (ci)+

+�

Z
H
V i;(1)

 "
k � ci �

X
j 6=i

Cj;(2) (k; �0)

#�
; �1

!�Z
�

� (�j�) �i0 (�)d�
�
d�

)
so, using (22),

V i;(2) (k; �0) = max
ci�0

(
ln (ci)+

+�

Z
H
�0

�
1 + �

Z
H
�1

�Z
�

� (�1j�1) �i1 (�1j�0)d�1
�
d�1

�
ln

"
k � ci �

X
j 6=i

Cj;(2) (k; �0)

#
�

�
�Z

�

� (�0j�) �i0 (�)d�
�
d�0 + ��

i;(1) (�1)

�
(23)

subject to,

�i1 (�j�) =
� (�j�) �i0 (�)R

�
� (�jx) �i0 (x)dx

, i = 1; :::; N . (24)

What is crucial to observe here is the notation about the timing of shocks. In the problem

expressed by (23), each player is deciding upon a strategy in period 0, expecting both a

shock �0 in period 0, after the decision has been made, and a shock �1 in period 1. Yet, it

is the shock �0 which will determine how the prior distribution �
i
0 will evolve to �

i
1, which is

an element that the analytic form of (23) allows us to see explicitly. So, in this case where

the horizon is expanded, we can see how prior beliefs determine what type of information is

expected to arrive and also how this information is expected to be exploited.

To simplify notation, we can re-write (23) as,

V i;(2) (k; �0) = max
ci�0

(
ln (ci)+
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+�
�
E0
�
�0j�i0

�
+ �E0

�
�1j�i0

��
ln

"
k � ci �

X
j 6=i

Cj;(2) (k; �0)

#
+ ��i;(1) (�1)

)
, (25)

with

E0
�
�0j�i0

�
�
Z
H
�0

�Z
�

� (�0j�) �i0 (�)d�
�
d�0 ,

as in equation (21) above, and,

E0
�
�1j�i0

�
�
Z
H
�0

Z
H
�1

�Z
�

� (�1j�1) �i1 (�1j�0)d�1
�
d�1

�Z
�

� (�0j�) �i0 (�)d�
�
d�0 ,

where �i1 (�1j�0) is given from (24). The �rst-order conditions of (25) are given by,

1

ci
= �

�
E0
�
�0j�i0

�
+ �E0

�
�1j�i0

�� 1

k � ci �
P
j 6=i
Cj;(2) (k; �0)

,

which implies that, Ci;(1) (k; �0) is of the multiplicatively-separable form,

Ci;(2) (k; �0) = c
i;(2) (�0) � k , (26)

for all i 2 f1; :::; Ng, where
�
ci;(2) (�0)

	N
i=1

is the unique solution to the linear system,2666666664

A(2)
�
�10
�

1 � � � 1

1 A(2)
�
�20
�
� � � 1

...
...

. . .
...

1 1 � � � A(2)
�
�N0
�

3777777775
�

2666666664

c1;(2) (�0)

c2;(2) (�0)

...

cN;(2) (�0)

3777777775
=

2666666664

1

1

...

1

3777777775
, (27)

where

A(2)
�
�i0
�
� 1 + �

�
E0
�
�0j�i0

�
+ �E0

�
�1j�i0

��
, i 2 f1; :::; Ng :

Again, (27) has a unique solution with ci;(2) (�0) 2 (0; 1), and �ici;(2) (�0) 2 (0; 1), while

substitution of
�
Ci;(2) (�0)

	N
i=1

as given by (26) into the Bellman equation given by (25)

gives a value function of the form,

V i;(2) (k; �0) = A
(2)
�
�i0
�
ln (k) + �i;(2) (�0) ,
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where �i;(2) (�0) is a constant that does not a¤ect optimization in any future step. At this

point we have seen enough of the problem�s structure to be able to deduce the formulas of

the n-period horizon problem.

The n-period-horizon problem

The strategy of player i is determined by the Bellman equation,

V i;(n) (k; �0) = max
ci�0

(
ln (ci)+

+�

Z
H
V i;(n�1)

 "
k � ci �

X
j 6=i

Cj;(n) (k; �0)

#�
; �1

!�Z
�

� (�j�) �i0 (�)d�
�
d�

)
with V i;(n) (k; �0) being of the form,

V i;(n) (k; �0) =

"
1 + �

n�1X
t=0

�tE0
�
�tj�i0

�#
ln (k) + �i;(n) (�0) , (28)

where �i;(n) (�0) is a constant, and

E0
�
�tj�i0

�
�
Z
H

Z
�

� � �
Z
H

Z
�

Z
H

Z
�

tY
s=0

�s� (�tj�t) �it (�t)d�td�t�

��
�
�t�1j�t�1

�
�it�1 (�t�1)d�t�1d�t�1 � � � � � � (�0j�0) �i0 (�0)d�0d�0 .

Moreover, players�strategies are of the form

Ci;(n) (�0) = c
i;(n) (�0) � k , i = 1; :::; N , (29)

where
�
ci;(n) (�0)

	N
i=1

is the unique solution to the linear system,2666666664

A(n)
�
�10
�

1 � � � 1

1 A(n)
�
�20
�
� � � 1

...
...

. . .
...

1 1 � � � A(n)
�
�N0
�

3777777775
�

2666666664

c1;(n) (�0)

c2;(n) (�0)

...

cN;(n) (�0)

3777777775
=

2666666664

1

1

...

1

3777777775
, (30)
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where

A(n)
�
�i0
�
� 1 + �

n�1X
t=0

�tE0
�
�tj�i0

�
, i 2 f1; :::; Ng .

To calculate E0
�
�tj�i0

�
we rely on Lemma 1. From equation (15) of Lemma 1, after

setting h (�) = �, the identity function, we obtain,

E0
�
�tj�i0

�
=

Z
�

�Z
H
�� (�j�)d�

�t+1
�i0 (�)d� ,

and from (4) it is,

E0
�
�tj�i0

�
=

Z
�

[� (�)]t+1 �i0 (�)d� . (31)

Substituting (31) into (28) we obtain,

V i;(n) (k; �0) =

"
1 + �

Z
�

n�1X
t=0

�t [� (�)]t+1 �i0 (�)d�

#
ln (k) + �i;(n) (�0) . (32)

The in�nite-horizon problem

After taking the limit when n!1, (32) gives,

V i;(n) (k; �0) = V
i (k; �0) =

"
1 + �

Z
�

1X
t=0

�t [� (�)]t+1 �i0 (�)d�

#
ln (k) + �(1) (�0) ,

or,

V i (k; �) =

Z
�

1

1� �� (�)�
i (�)d� ln (k) + �(1) (�) .

(Subscript �0�of �0 has appeared in order to remind that �0 denotes prior beliefs in period

0. In the in�nite-horizon setup this timing does not matter any more, so subscript �0�can

be dropped. So, we drop it throughout the rest of the proof.) Moreover, the solution is again

of the multiplicatively separable form

Ci;(1) (k; �) = Ci (k; �) = ci (�) � k ,
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and (30) is generalized to,

A �

2666666664

c1 (�)

c2 (�)

...

cN (�)

3777777775
=

2666666664

1

1

...

1

3777777775
, (33)

where

A �

2666666664

R
�

1
1���(�)�

1 (�)d� 1 � � � 1

1
R
�

1
1���(�)�

2 (�)d� � � � 1

...
...

. . .
...

1 1 � � �
R
�

1
1���(�)�

N (�)d�

3777777775
.

Notice that since H � (0; 1), � (�) 2 (0; 1), which guarantees that V i (k; �) is well-de�ned,

and that Z
�

1

1� �� (�)�
i (�) d� > 1 , i 2 f1; ::; Ng . (34)

Inequality (34) guarantees that A is nonsingular, implying that the solution to (33)2666666664

c1 (�)

c2 (�)

...

cN (�)

3777777775
= A�1 �

2666666664

1

1

...

1

3777777775
(35)

exists and it is unique.

The compact solution form given by (35) hides the role of other player�s beliefs on the

beliefs of each particular player. Yet, equation (35) can lead to a closed-form solution through

the aid of the matrix determinant lemma (Lemma 2). In particular, let any i 2 f1; ::; Ng,

and notice that (35) implies,

ci (�) = 0T1i �A
�1 � 1N , (36)
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where 1N is an N � 1 vector of ones, and 01i is an N � 1 vector of zeros, with the sole

exception that its i-th element is equal to 1. The matrix determinant lemma (Lemma 2)

implies that

det
�
A� 1N � 0T1i

�
=
�
1� 0T1i �A

�1 � 1N
�
� det (A) . (37)

Setting,

Ai � A� 1N � 0T1i ,

and combining (36) with (37), we obtain

ci (�0) = 1�
det (Ai)

det (A)
. (38)

Equation (38) implies that, in order to characterize ci (�0), we must �rst characterize

det (Ai) and det (A). We start from characterizing det (A). Let

~A � A� 1N � 1TN ,

which implies that ~A is a diagonal matrix. Denoting the i-th diagonal element of ~A by

diag
�
~A
�
i
, it is,

diag
�
~A
�
i
=

Z
�

�� (�)

1� �� (�)�
i
0 (�)d� . (39)

Applying again the matrix determinant lemma (Lemma 2),

det (A) = det
�
~A+ 1N � 1TN

�
=
�
1 + 1TN � ~A�1 � 1N

�
� det

�
~A
�
,

which implies

det (A) =

0@1 + NX
i=1

1

diag
�
~A
�
i

1A � NY
i=1

diag
�
~A
�
i
. (40)

In order to characterize det (Ai), we use the de�nitions of Ai and to ~A, noticing that

Ai � ~A = 1N �
�
1TN � 0T1i

�
, which implies,

Ai = ~A+ 1N � 1T0i , (41)
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where 10i is an N � 1 vector of ones, with the sole exception that its i-th element is equal

to 0. Combining (41) with the matrix determinant lemma (Lemma 2),

det (Ai) = det
�
~A+ 1N � 1T0i

�
=
�
1 + 1T0i � ~A

�1 � 1N
�
� det

�
~A
�
,

which gives,

det (Ai) =

0B@1 + NX
j=1
j 6=i

1

diag
�
~A
�
j

1CA � NY
i=1

diag
�
~A
�
i
. (42)

Uniqueness of ci (�0) for all i 2 f1; :::; Ng is guaranteed due to the nonsingularity of matrix

A in system (33). Equation (5) is derived after combining (38) with (42), (40), and (39).

Equation (6) follows directly from (5), proving the proposition. �
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