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Most standard solution concepts of extensive games are history-insensitive in the sense that no 

matter at which information set one is, it is assumed that each player believes that everybody else 

is rational. In reality, each history of moves reveals certain traits of the players to one another. 

It is argued in this paper that solution concepts ought to make use of this fact. An example of 

such a concept is developed and called a ‘reasonable solution’ set. It is shown that this can explain 

cooperation in certain finitely-repeated games like the Prisoner’s Dilemma. 
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1. Introduction 

Most solution concepts of extensive games, e.g., perfection (Selten, 1975) or 
rationalizability (Pearce, 1984) are ‘history-insensitive’, in the sense that no matter 
at which information set one is in the game, in what remains it is implicitly assumed 
that each player believes that everybody else is rational. That is, even if a player has 
revealed himself irrational, others continue to believe he is rational. In reality, a par- 
ticular history of moves may reveal to a player traits of the other players and thereby 
influence his play in the remainder of the game. The present paper is an attempt to 
introduce this idea formally. 

Another motivation for this paper is the inability of existing solution concepts to 
explain cooperation among players in some repeated games. The most prominent 
example is the finitely-repeated Prisoner’s Dilemma where common sense suggests 
that there may be cooperation in the early games but standard solutions, including 
rationalizability, predict noncooperation throughout. In an important contribution, 
Kreps et al. (1982) have explained cooperation in early games by assuming that one 
player believes that the other person may be a tit-for-tat player. This is however not 
enough because in reality even when two experts in game theory, who have no a 
priori doubts about each other’s expertise, play the Prisoner’s Dilemma we expect 
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to see some cooperation. How does one explain this? While no firm answer is given 
here, I will argue that an important step to explaining this is to look for a suitable 
history-sensitive solution concept. The specific one suggested in this paper is intend- 
ed to motivate such a search. 

Attention is confined here to games of perfect information. This has the virtue 
of simplicity; but, more importantly, in games of perfect information the set of 
possible outcomes according to different solution criteria tend to coincide. Thus 
though the formal model here is developed along the lines of Pearce, my critique 
is applicable to the perfect equilibrium concept as well. 

I motivate the reader by presenting a game which shares the basic problem of 
repeated Prisoner’s Dilemma but has the advantage of even greater simplicity. The 
game may be called passing-the-parcel: There are two players, One and Two, and 
One has a parcel with him. The first move is One’s. He can keep the parcel (fink) 
or pass it on to Two (coop). If he finks he gets three units of money and Two gets 
nothing and the game ends there. If he coops, each player gets two units of money 
and it is now player Two’s move. Player Two may keep it, in which case he gets 
three units and the other player nothing and the game ends there, or he may pass 
it on which gives each player two units. And so on. The hundreth move is the last 
one: suppose starting from the first one, coop has been played 99 times. Now the 
parcel is with player Two. If he plays fink, he gets three units and One gets zero 
and the game ends. If he plays coop, they both get two units and the game ends. 
The total amount that a player earns is the sum of his earnings after each move as 
specified above. 

What is the expected outcome of this game? Note first that if both players coop 
throughout, each player gets a total of 200. However, all standard solution concepts 
predict a unique outcome: Player One will fink in the first move and that will be 
the end with player One having earned three and player Two, zero! The argument 
is the familiar backward induction one (see, e.g., Kreps et al., 1982). The trouble 
with this solution is that it is experimentally invalidated and seems flawed on intro- 
spection. 

To explain the essential shortcoming of rationalizability or perfection in explain- 
ing the outcome of passing-the-parcel, it is enough to consider a 3-move variant of 
the lOO-move version just described. The game is illustrated on the next page. 
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Since this is a game of perfect information we need not distinguish between a node 
and an information set. The backward induction argument goes as follows: At node 
y, One will fink and get 7 instead of cooping and getting 6. Since Two knows that 
One is rational, he knows this. So at node x, Two will fink rather than coop. Since 
finking gives him 5 and cooping 4. Since One knows that Two is rational and that 
Two knows that One is rational, at node W, One will fink! 

Let us examine this last step carefully. If One finks, het gets 3. If instead he coops, 
the game moves on to node x. Now consider Two pondering his decision at node 
x. If he believes that One is rational, he should fink. But, at x, should he believe 
One is rational? It is not clear that he should. The fact that the game has reached 
x means One is not rational in a conventional sense. Two will be quite baffled and 
it will not be unreasonable if he supposes that One is an ‘unpredictable’ player and 
may play coop at y. So he, in turn, may move coop at x. And realizing this, One 
may find it worthwhile to move coop at the initial node W. The argument is much 
stronger in the early play of longer games. 

Playing coop at w would be irrational by the conventional standards of game 
theory. But it is an ‘irrational’ move made for strategic reasons. Also interesting to 
note is that Two’s move coop at node x is not irrational. Because in the light of One 
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having revealed his irrationality, playing coop at x can no longer be ruled out. Of 
course, at y, One will always play fink, since One’s earlier ‘irrational’ move was 
merely meant to confuse Two, and did not reflect actual irrationality. 

The direction we will explore has the shortcoming that generally no unique predic- 
tion is possible. But the response to this is similar to the one given by Pearce (1984): 
That in many extensive game situations a wide variety of outcomes are plausible. 
To rule these out by some rule of thumb does not enhance our predictive ability. 
Also, the spirit of the argument that I will use is very similar to that of Bernheim 
and Pearce. It gives us a broadened solution concept which is really the outcome 
of pursuing their own argument further. 

Having done this, we may once again undertake research to refine our solution. 
One may think of some routes of solution-refinement undertaken in the literature; 
e.g., Myerson (1978) or Pearce (1984) in his Section 5. This has not been done in 
this paper which merely suggests a way of building in history-sensitivity and thereby 
of understanding why cooperation may occur in the early games in repeated game 
theory or why individuals may make moves which appear irrational. 

2. Basic concepts 

An extensive game of perfect information is described briefly, following mainly 
the notation of Kreps and Wilson (1982) and Mclennan (1985). 

An extensive game, I-, consists of a finite set, T, of nodes, which is strictly partial- 
ly ordered by <. For all x, ye T, ‘x<y’ represents ‘x precedes y’ or ‘y succeeds x’. 
The pair (T, <) forms an arborescence.’ An initial node is one with no predecessor. 
r has a unique initial node and the symbol w is reserved for it. For any node x E T, 
its immediate predecessor (if it exists) is denoted by p1 (x). The n th predecessor of 
x is defined inductively as follows: p,,(x) =p,(pn_ , (x)). For all XE T, we define 
pO(x) =x. An immediate successor of x is defined analogously. For any XE T, I 
shall use S(x) to denote the set of immediate successors of x. The set of terminal 
nodes is denoted by Z= {t E T ( S(t) = @} and the set of nonterminal nodes, also 
known as decision nodes, is denoted by H= T \Z. 

Also specified in the game, r, is a finite set, A, of actions, and a mapping a, 

a: T\{w}-+A, 

where (T(X) is the fast action taken to reach x. For all XE H, cr(S(x)) is the set of 
actions available at x. This is denoted, in brief, as A(x). That is, A(x) = c@(x)). I 
assume {A(x) IXE H} is a partition of A. 

Next we have a set I= { 1, . . . . N} of pIayers, and {Hi}i,l is a partition of H. If 
x E Hi, then player i has to choose an action at x. Since r is a game of perfect in- 
formation there is no need to distinguish between nodes and information sets. 

* That is, for all XE T, the set of predecessors of x is completely ordered by <. 
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Finally, specified in r is a utility function for each player i: 

ui:Z+R, ViEI, 

where R is the set of real numbers. 
For all x E H, if we consider x and all the successors of x in T and take the restric- 

tion of all the above definitions to this subset of T, then this comprises a game which 
has x as its initial node. Such a game is called a subgame of r and is denoted by 
f,. For a more precise definition of subgames, see Kreps and Wilson (1982). 

A pure strategy of player i is a mapping 

si:Hi-+A 

such that for all XE Hi, si(x) E A(x). We denote the set of all pure strategies of 
player i by S’. For any finite set F, let A(F) be the set of all probability distribu- 
tions over F: 

A(F)= meRF c m(t)=l, m(t)rO, VtcF . 

I I teF 1 

The set of all mixed strategies of player i is given by d(S’). A mixed strategy 
M Ed which gives a probability of one to s E S’ is not distinguished here from s. 

For any subgame r,, I use SL to denote the set of all pure strategies of player i 
in I-,. 

Given sets T’ , . . . , TV, I shall denote its Cartesian product, T’ x a-- x T.‘, by 171’ 
or IIT’. Let s = (s ’ , . . . , s.‘) E 17s’ and XE T. We say that x is reached by s if the 
following is true: Either x= w or w is the n th predecessor of x and with i(t) denoting 
the player whose move it is at p,(x), we have s”“(p,(x))=cr(p,_,(x)), for all 

1E{l,..., n}. If sieSi and XE T, we say that si reaches x if there exist sj,Sj, for 
all j#i such that (st, . . . ,sN) reaches x. 

Let m=(mi,..., mN)E17A(Si) and XE T. We say that x is reached by m if there 
exists (s’ , . . . ,sN) such that m’(s’)>O, for all i El and (s’, . . . ,sN) reaches x. The 
probability of reaching x, given that m is being played, is denoted by p(x,m): 

c m ‘(s’)m’(s*) .e+ m”(sV) =p(x, m). 
s reaches x 

The expected utility function of i, CJ’ : liU(S’) -+ R, is derived in a usual manner 
from i’s utility function. That is, for all m E I7d (si), 

U’(m) = C u”(z)p(z, m). 
ZEZ 

Given a strategy N-tuple m E I7A(.S’) and a strategy ,8’ E d(S’), m/b’ is the strategy 
N-tuple derived by replacing the ith-element of m with /3’. Let s’EB’CS’. Then si 
is a best response to mEIIA(S’) among all elements of B’ (or, simply, in B’) if 

U’(m/s’)z U’(m/t’), Vtic B’. 

Given s E S’ and x E H, an x-replacement of s is any strategy t E S’ such that for 
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all yeH such that yfx and y is not a successor of x, s(y)=@). 
For a player i playing YES’ a conjecture is a mapping, 

c; : H’+Ll(S’) x ~~~xd(s’-‘)x{s)xd(s’+‘)x~~~xd(s~~), 

such that for all xeH’ that can be reached by s, c$> reaches x, and if xcy and 
c!(x) reaches y then c:(x) = cf;cV). 

By saying that i playing s has a conjecture, we mean that at each node which can 
be reached by s and where i has to choose an action, i has a belief about each j# i 
as to which pure strategy he may be playing with some probability. This is equi- 
valent to conjecturing thatj is playing a particular mixed strategy (Pearce, 1984, Ap- 
pendix A). It will be foolish of him if he believes people are playing strategies which 
cannot reach the node that has been reached. So we rule this out. Also, till a player’s 
belief about what the others are playing is actually revealed to be false, he does not 
change his belief. 

Now we define for each player his set of ‘rationalizable strategies’. Informally speak- 
ing, a player is rational if his chosen strategy can be thought of as a best response 
to some conjecture at each decision node of this player. It is assumed that players 
are rational, they know that they are rational, etc. In short, the rationality of players 
is ‘common knowledge’. Hence, each player will first delete his strategies which are 
not best responses to some strategy vector which the others might adopt. Having 
done this, and knowing that others have also done the same, each player will once 
again check whether further strategies can be deleted. Such iterative deletion con- 
tinues and what remains in the end comprises the set of rationalizable strategies. 
Now for the formal definition. 

Given X’cd(S’), for all ~EI, and SES’, define J’(s, {X’}) = {xEH’ I3m ELF, 
such that m/s reaches x}. Thus J’(s, {X’}) is the set of nodes in H’ which can be 
reached if i plays s and for all TE I\ (i}, he expects f to choose a strategy from Xr. 

Definition 1. For all non-negative integer t, and for all ie I, the set S’(t) is defined 
iteratively as follows: 

For all iE1, S’(0) =S’. 
SE S’(t) iff s E S’(t - 1) and 3 a conjecture ci such that for all 
XEJ$s,{S’(f-l)}), C;(X)ELl(S*(r-l))X -** x A(SN(t - 1)); and s is a best re- 
sponse to c:(x) among all x-replacements for s in S’(t- 1). 

The set of rationalizable strategies of player i in r is denoted by R’(r), and is 
defined as follows. 

R’(r)= t S’(t), icl. 
I=0 

The collection of all rationalizable strategy N-tuples l7R’(r) is labelled the rationa- 
lizable solution set of r. 
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3. Strategic irrationality 

A shortcoming of this solution concept is its history-insensitivity. Let r’ be a 
subgame of r. The rationalizable solution set of r, in no way depends on the infor- 
mation revealed in the fact of node x having been reached. That is, if there is 
another subgame r,, identical to r,, then its solution set must be identical to that 
of r,. Players learn nothing by observing how others have played thus far, while 
contemplating moves! But surely an essential feature of an extensive game is that 
players have the scope for learning about others during the course of the game. 
What I proceed to do is to introduce such learning in a small way. 

First note that in the model of Section 2, it is implicitly built in that each player 
believes everybody is rational and he maintains this belief no matter where he is in 
the game tree. 

Let us see what the solution set of rwould look like if a subset, Q, of the players 
is believed to be irrational. It is not being assumed that members of Q are irrational, 
but simply that for each i E a, all Jo 1\ {i} believe that i is irrational and it is 
common knowledge that all i~1\ {i] believe that i is irrational. If a player is irra- 
tional - we shall often refer to him as unpredictable - it means that he may choose 
any available strategy. A game Tin which Q is the set of players believed to be un- 
predictable will be denoted by (CQ). The rationalisable strategies of players for a 
game (KQ) may now be formally defined. 

Definition 2. For all non-negative integer, t, and for all ~EI, we define g se; 
S’(t) C S’ as follows: V’i E R and Vt, and S’(t) = S’. And Vie Q, s’(O) = S’ and S’(t) 

is defined recursively as follows: s E S’(t) iff s E S’(t - 1) and 3 a conjecture ci such 
that VXE J’(s, (S’(t - l))), 

cf(x)ELl(S1(t- 1))x ..- x A(SN(t - 1)); and s is a best response to c:(x) among all 
x-replacements for s in S’(t - 1). 

For all icl, define R’(C Q) = n,“,, S’(t). 

The set of rationalizable strategies of player i in (f, Q) is denoted by R ‘(K 12) and 
is defined as follows: 

ViEI\Q, R’(I-,S2)=l?i(KQ), and 

VEER, scRi(T,Q) iff seS’and 

3 a conjecture c:’ such that Vx~f(s, {R’(T,Q))), c~(x)Ed(R’(r,R)x .-a x 
d(RN(T,SZ)); and s is a best response to c:(x) among all x-replacements of s. 
The rationalizable solution set for (C Q) is ffR ‘(r, Q). 

It is important to understand why for i E 52, R’(r, Sz) f I? ‘(r, ~2). Since such an i 
is believed to be irrational, others believe he may play anything in R’(r, Q) which 
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is equal to S’. But since i is actual/y rational, he would not consider playing any 
strategy in S’ but only those which are best responses to what he believes others 
may play. R’(KQ) is the set of such moves. 

Note that once we have Definition 2, Definition 1 becomes a special case where 
for all i E I, R’(r) = R’(f, $I). 

The next step involves identifying unpredictable players. Since each node XE T, 
has a history of moves, at each such node we could think of a set of players who 
appear as unpredictable to others. We begin by formalizing this idea in an abstract 
form. Let 2’ be the power set of I. The function, Q, defined as 

will be called a predictability map. A predictability map identifies at each node the 
set of players who appear unpredictable or irrational to others. 

In this paper I shall be concerned with a specific predictability map, one suggested 
naturally by the works of Bernheim and Pearce. I shall assume that a player is 
believed to be rational till he is revealed to be not so, in the sense of Pearce (1984), 
that is, till he makes a move that is not rationalizable. Hence 0(w) = @. Now con- 
sider a node y, where Q(y) = @J, and i has to move. Suppose he chooses an action 
which is incompatible with any rationalizable strategy of his and which takes the 
game to node x. Then it is reasonable to suppose that, Q(x) = {i}. Hence in the sub- 
game r’, we would expect each playerj to adopt a strategy belonging to Ri(rx, {i)). 

Similarly if Q(x) is the set of players believed to be unpredictable at node x, then 
x onwards we expect a playerj to play from Ri(rx, Q(x)). Ifj makes a move incom- 
patible with any strategy in this set his name gets added to the set of players believed 
to be unpredictable. This informal idea is now made rigorous. 

Definition 3. A specific predictability map, 0, is defined as follows. Let XE T and 
p,,(x)=w. Let ~:{l,...,n} *I be such that Vj, 7(j) satisfies Pi(X) E H’(j). If x can 
be reached by some s~J7R’(r,@), then o(x) =@. If not, then let p,,(x) be the 
closest predecessor of x reached by some s~l7R’(T, 4). If x can be reached by 
some s~17R~(r~,,(,),{~(t,)}), then h(x)= {r(t,)}. If not, then let P,~(x) be the 
closest predecessor of x that can be reached by some SEI~R~(~~,,(.,), { r(f,)}). If x 
can be reached by some s~l7R~(l-“,,(.~,, {7(t,), 7(b)}), then Q(X) = {7(tl), 7(h)}. If 

not, we continue in the same way. Since rhis is a finite game, we must reach tk such 
that { r(t,), . . . , 7(tk)} = l?(x). 

In Pearce’s work, the predictability map used implicitly is one where C?(x)=@, 
for all x. Once this is amended, as per Definition 3, it becomes necessary to re- 
define rationalizable strategies. We do this by defining sophisticated rationalizable 
strategies of each player. 

Definition 4. For all JE 2’, define K(J) = {xEHI f&x) = J}. Let n(J) be the 
number of nodes in K(J) with no predecessors in K(J). Label these nodes 
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XI (J), * * * 9 --G?(J) (J). If K,(J) is a set containing Xj(J) and all its successors in K(J), 

then {Ki (J), . . . , &(J)(J)) is a partition of K(J). The set of sophisticated rationa- 

lizable strategies of player i in f is denoted by E’(T) and defined as follows: 

E’(T)= {sES~I VJ, Vj, if Kj(J)fIH’#@, then 

3t E R ‘(J-&,(J), J) such that VXEKj(J)fIH’, S(X)=t(X)). 

A person playing a strategy in E’(T) is just a more sophisticated version of 
Pearce’s player. What he does is this. He begins by assuming that everybody is ra- 
tional, chooses a rationalizable strategy and continues to play it, as long as his initial 
assumption of everybody being rational is not contradicted. As soon as he reaches 
a node where somebody has been revealed irrational, he revises his initial opinion 
and computes the set of his rationalizable strategies taking into account that R is 
no longer empty. He continues with a rationalizable strategy in this subgame till he 
once again reaches a node where some other player is revealed irrational. And so 
on.* 

This approach has the weakness that unless someone is revealed irrational, others 
believe he will continue to make rationalizable moves only. Irrationality is never 
anticipated. Nevertheless, this is an improvement over standard approaches where 
even after a player is revealed to be irrational, others believe he is rational. It is 
therefore claimed that for purposes of prediction we ought to, as a first step, eschew 
rationalizability in favor of sophisticated rationalizability. However, as the next 
theorem suggests, this will not make any difference in terms of outcomes. 

For any set GCKS’, define B(G) = {ZE Z 1 z can be reached by some SE G). B(G) 
consists of terminal nodes which can be reached by some strategy N-tuple in G. If 
G and G’are such that B(G) = B(G’), we say that G and G’are realization equivalent. 

Theorem 1. Given any game I-, (i) the rationalizable solution set of r and I7E’(f) 
are realization equivalent, and (ii) E’(f) is non-empty, Vie I. 

Proof. (i) Let z E O(LTR’(r)) and s = (s’ , . . . ,sN) E ffR’(Q be such that s reaches z. 
Hence O(z)=@ and Vx<z, O(x)=@. 

VieI, construct tieSi as follows: VJe2’ and VjE{l,...,n(J)} such that 
Kj,(J)nH’=@, choose any strategy from R’(r,(,,,J) and call it ruJ. Note that 
R’(Tx,CJ,, J) must be non-empty since R’(r x,(J), @) = R’(T&,) is a subset of it and 
the non-emptiness of Ri(Ix& is assured by proposition 4 in Pearce (1984). Now, 

’ When it is said that playerj has been revealed irrational, it means that he has been observed making 
a move which is not rationalizable. it is not necessary that others actually think that j is irrational. They 
may well be aware that j is up to some tricks. But if others reason as players do in the papers of Bernheim 
and Pearce, they will be puzzled by j’s behavior. And even if they realize that clever j is up to some tricks, 
they will not be able to figure out what the tricks are. It is simply being assumed that under such circum- 
stances they will treat j as an unpredictable player. 
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VxEKj(J)nH’, define r’(x) = r”](x). Since {Kj(J)nH’},, is a partition of H’, this 
completely defines t’(x), and by the mode of construction it follows that t’~E’(r). 
Since x<z implies XEK(@), if x<z and it is player r(x)‘s move at x, then t r(x)(~) = 
srCX)(x). Hence, (t ‘, . . . , r.‘) reaches z. Thus z E 8(&(T)). 

To prove the converse suppose L E B(AC!?(T)) and s = (s ‘, . . . ,s.‘) E Z’&(T) 
reaches z. We shall prove by induction that Vx< z, Q(x) = @. By definition d(w) = 
0. Suppose x is such that w <XC z and a(~, (x)) = @. Let pl (x) be i’s decision node. 
Then 3ti~Ri(T,,.,Q(w))=Ri(f) such that s’(p,(x))=t’(p,(x)). Hence o(x)=@. 

Let M’={xEH~Ix<:). If #E,!?(T), then 3ti~Ri(T,,~(w))=Ri(T) such that 
VXEM’, s’(x)=t’(x). For each icf, choose such a l’. Hence t=(t’, . . ..~“)EI~R~(T) 
and t reaches z. This completes the proof of (0. 

(ii) Proposition 4 of Pearce (1984) ensures the non-emptiness of the rationalizable 
solution set. Hence (i) implies (ii). 0 

In playing a sophisticated rationalizable strategy, a player takes into account 
whether someone has revealed himself as irrational. But since no one makes an ‘irra- 
tional’ move, nodes where Q+@ are never reached. This is the idea behind part (i) 
of Theorem 1. 

However, once we realize that players will play sophisticated rationalizable stra- 
tegies, we cannot really rule out strategic irrational moves. Players may have an ad- 
vantage in appearing irrational. The main solution concept suggested in this paper, 
allows for such strategic irrationality. We define this next. 

Definition 5. The set of reasonable strategies of player i in r, denoted by D’(T) is 
defined as follows: SED’(T) iff 3 a conjecture ci such that VXE J’(s, {E’(T)}), 
c:EilEi(T)x a** x dE’_‘(T)x{s}xdE’+‘(T)x... xdEN(r) and s is a best re- 
sponse to c:(x) among all x-replacements for s in S’. The reasonable solution set of 

f is n@(r). 

Theorem 2. The reasonable solution set of a game, I-, is non-empty. 

Proof. By Theorem 1, E’(T) # @, Vr E I. Let m ‘, . . . , mN be such that Vj# i, mj is 
a mixed strategy giving positive weights to all strategies in Ej(T). Since S’ is finite, 
3s E S’ such that s is a best response to m ‘, . . . , m N in S’. 

Now define a mapping 

c; : H’-vl(S’) x ~~~xd(s’-‘)x{s}xd(s’-‘)x~~~xd(s”) 

such that c:(x)=(mt ,..., mi-l,s,mi+’ ,..., mN), VXE Hi. It is easy to check that cf 
is a conjecture for player i playing s, and that VXEJ~(S, {E’(T)}), s is a best 
response to c:(x) among all x-replacements of s. Hence SED’(T). El 
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4. Examples 

257 

The most interesting f.:ature of a reasonable solution is that it allows for coopera- 
tion in games like passing-the-parcel discussed in Section 1. In that example, one 
reasonable solution is where where One plays coop at w and Two plays fink at x. 
The reason why One may play coop at w is that this being incompatible with his 
rationalizable strategy he will appear irrational at x, i.e., Q(x) = ( 1). That being so, 
Two may play fink or coop (the latter with the conjecture that One may, thanks to 
his unpredictability, play coop at u). Hence a possible conjecture of One is that, if 
x is reached, Two will play coop. And in that case One’s best response is to play 
coop at w. 

A slight variation of the same game could make the reasonable strategy set of each 
player unique. Consider the game f’. 

In r’, One has nothing to gain by appearing irrational, since at x, Two will neces- 
sarily play fink. Hence One’s only reasonable strategy is to fink at w. 

Consider the next game f2, which has been discussed by Pearce. If player Two 
is reached, clearly he plays 8,. Knowing this and knowing that he cannot influence 
Two’s play by appearing to be irrational, One will play a2. Hence, the reasonable 
solution is unique and it coincides with Pearce’s rationalizable solution. Since in 
T2, One playing CY, and Two playing p2 is a Nash equilibrium, this shows that not 
all Nash equilibria are reasonable. The above examples illustrate that in non- 
controversial cases the reasonable and rationalizable outcomes coincide. Difference 
of opinion arises in more controversial games and this paper argues that in such 
cases, the criterion of reasonableness is the more appealing. 
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r2 

1 

Given a game r, we say that this is an n-period game if n = maxzEz l(z), where 
l(z) is the number of nodes preceding z. From the above examples it should be clear 
that for all games of less than three periods, the rationalizable outcomes and reason- 
able outcomes coincide. This is because, in such games no player can influence 
others by appearing to be irrational. This means that in games like passing-the- 
parcel cooperation can be explained only if the games are played over sufficient 
periods, namely three or more. As a future research project one may try to include 
more structure in the reasonableness criterion so that we obtain results like - the 
longer the game, the more likely is cooperation in the early games. 

The kind of argument applicable to passing-the-parcel carries over, by analogy, 
to the finitely-repeated Prisoner’s Dilemma.3 It may be worthwhile for a player to 
adopt the cooperative strategy in the first game and thereby appear unpredictable 
to the opponent. This breaks down the backward induction argument. Once this 
happens, it is entirely possible for the two players to play coop for some time though 
they are bound to end up noncooperating. 

5. Conclusion 

Though in this paper attention was confined to games of perfect information, it 
is not difficult to see that similar arguments hold for games of imperfect informa- 
tion. Detailed analysis will have to await the formalization of reasonableness for 
imperfect-information games. But, in the meantime, some intuitive remarks may be 
instructive. 

The main difficulty with a formal definition of reasonableness for games of 
imperfect-information is that there may be no obvious way of defining a predictabi- 
lity map. That is, there is no obvious unique counterpart of Definition 3. First of 
all, note that Q will be defined for each information set instead of node. Now there 
may exist an information set which can be reached if either one of two players has 

3 And much of the same argument carries over to the Chain Store Paradox (Selten, 1978) as well. It 

is, however, interesting to note that in a game where the opponent changes with each repetition coopera- 

tion is unlikely. 
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been irrational. Which player should the decision-maker at this information set take 
to be unpredictable? This is the kind of conceptual issue that one would need to 
solve before developing a formal framework. 

There are however games where such conceptual problems do not arise and one 
can informally isolate reasonableness in imperfect-information games using the 
argument developed in this paper. Consider Kohlberg’s celebrated example, repro- 
duced here as r3. 

r3 

Since r3 is a two-period game no player has an advantage in appearing irrational. 
Hence, the same argument as in Pearce (p. 1044) applies here and the only reason- 
able strategy is a2 for player One and p, for player Two. Since One playing (Y, , and 
Two playing p2 is a perfect equilibrium and also a sequential equilibrium, this 
shows that not all perfect or sequential equilibria are reasonable. 

In the traditional analysis of an extensive game of perfect information if a player 
makes a move which is not rationalizable, other players ignore this information. 
This paper tries to take into account the fact that players are sensitive to such infor- 
mation and may make use of it. There are, however, alternative ways in which a 
player may interpret the irrationalizable move of another player. Consequently by 
adopting alternative assumptions we could modify the criterion of reasonable stra- 
tegies developed in this paper. Just to take an example suppose that we assume that 
if any playerj makes a move (at a node that is not terminal or preterminal) which 
is not rationalizable then others believe that j is rational but does not know that 
others (i.e., all i#j) are rational. This would give us a slightly modified criterion 
of reasonableness which would imply for games like the repeated Prisoner’s Dilem- 
ma a slightly earlier breakdown of cooperation. 

These are alternatives worth exploring but the essential point stressed here is that 
as an extensive game proceeds, players may modify their opinion about one an- 
other’s rationality. This, in turn, means that some player may try to influence the 
opinions of others regarding his rationality. To ignore this is to ignore an essential 
informational aspect of the extensive form.4 

4 Around the time that this paper was being written, Phil Reny was working on the same theme and 

reached similar conclusions (see Reny, 1986), as we discovered later on meeting. 
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