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Econometrica, Vol. 50, No. 1 (January, 1982) 

PERFECT EQUILIBRIUM IN A BARGAINING MODEL 

BY ARIEL RUBINSTEIN1 

Two players have to reach an agreement on the partition of a pie of size 1. Each has to 
make in turn, a proposal as to how it should be divided. After one player has made an 
offer, the other must decide either to accept it, or to reject it and continue the bargaining. 
Several properties which the players' preferences possess are assumed. The Perfect Equilib- 
rium Partitions (P.E.P.) are characterized in all the models satisfying these assumptions. 

Specially, it is proved that when every player bears a fixed bargaining cost for each 
period (cl and c2), then: (i) if cl < c2 the only P.E.P. gives all the pie to 1; (ii) if cl > c2 the 
only P.E.P. gives to I only c2. 

In the case where each player has a fixed discounting factor (83 and 82) the only P.E.P. 
iS (1 - 82)7(1 - 8182)- 

1. INTRODUCTION 

WHEN I REFER IN THIS PAPER to the Bargaining Problem I mean the following 
situation and question: 

Two individuals have before them several possible contractual agreements. Both have 
interests in reaching agreement but their interests are not entirely identical. What "will be" 
the agreed contract, assuming that both parties behave rationally? 

I begin with this clarification because I would like to prevent the common 
confusion of the above problem with two other problems that may be asked 
about the bargaining situation, namely: (i) the positive question - what is the 
agreement reached in practice; (ii) the normative question - what is the just 
agreement. 

Edgeworth [4] presented this problem one hundred years ago, considering it 
the most fundamental problem in Economics. Since then it seems to have been 
the source of considerable frustration for Economic theorists. Economists often 
talk in the following vein (beginning of Cross [3]): 

"Economists traditionally have had very little to say about pure bargaining situations in 
which the outcome is clearly dependent upon interactions among only a few individuals" 
(p. 67). 

The "very little" referred to above is that the agreed contract is individual- 
rational and is Pareto otpimal; i.e. it is no worse than disagreement, and there is 
no agreement which both would prefer. However, which of the (usually numer- 
ous) contracts satisfying these conditions will be agreed? Economists tend to 
answer vaguely by saying that this depends on the "bargaining ability" of the 
parties. 

'This research was supported by the U.K. Social Sciences Research Council in connection with 
the project: "Incentives, Consumer Uncertainty, and Public Policy", and by Rothschild Foundation. 
It was undertaken while I was a research fellow at Nuffield College, Oxford. I would like to thank J. 
Mirrlees and Y. Shiloni for their helpful comments. I owe special thanks to Ken Binmore for his 
encouragement and remarks. 
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98 ARIEL RUBINSTEIN 

Many attempts have been made in order to get to a clear cut answer to the 
bargaining problem. Two approaches may be distinguished in the published 
literature. The first is the strategic approach. The players' negotiating maneuvers 
are moves in a noncooperative game and the rationality assumption is expressed 
by investigation of the Nash equilibria. The second approach is the axiomatic 
method. 

"One states as axioms several properties that it would seem natural for the solution to 
have and then one discovers that the axioms actually determine the solution uniquely" [11, 
p. 129]. 

(For a survey of the axiomatic models of bargaining, see Roth [13].) The purpose 
of this approach is to bypass the difficulties inherent in the strategic approach. 
We make assumptions about the solution without specifying the bargaining 
process itself. Notice that in order to be relevant to our problem, these axioms 
may only either restrict the domain of the solution or be obtained from the 
assumption of rationality. Thus, for example, Nash's symmetry axiom can be 
considered as an assumption that all the differences between the players can be 
expressed in the set of utility pairs arising from the possible contracts and that 
there is no other relevant element that distinguishes between them. But, the key 
axiom in most axiomatizations - the "Independence of Irrelevant Alternatives" 
has not received a proper defense and in fact it is more suited to the normative 
question (see Luce and Raiffa [9] and Binmore [2]). 

It was Nash himself who felt the need to complement the axiomatic approach 
(see [10]) with a non-cooperative game. (For a wider discussion, see Binmore [2].) 
In his second paper on the solution that he proposed [11], Nash proved that the 
solution is the limit of a sequence of equilibria of bargaining games. These 
models, however, are highly stylized and artificial. Among the later works, I 
mention here three, wherein the bargaining is represented by a multi-stage game. 
Stahl [19,20] and Krelle [7] assume the existence of a known finite number of 
bargaining periods and their solutions are based on dynamic programming. Rice 
[12] uses the notion of a differential game. The bargaining period is identified 
with an interval, equilibrium strategies are the limits of "step-wise" strategies, 
and the lengths of those steps tend to zero. 

In this paper I will adopt the strategic approach. I will consider the following 
bargaining situation: two players have to reach an agreement on the partition of 
a pie of size 1. Each has to make in turn, a proposal as to how it should be 
divided. After one party has made such an offer, the other must decide either to 
accept it or to reject it and continue with the bargaining. The players' preference 
relations are defined on the set of ordered pairs of the type (x, t) (where 
0 ' x '-1 and t is a nonnegative integer). The pair (x, t) is interpreted as "1 
receives x and 2 receives 1 - x at time t." 

This paper is limited to the investigation of a family of models in which the 
preferences satisfy: 

(A- 1) 'pie' is desirable, 
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(A-2) 'time' is valuable, 

(A-3) continuity, 

(A-4) stationarity (the preference of (x, t) over (y, t + 1) is independent of t), 

(A-5) the larger the portion the more 'compensation' a player needs for a delay 
of one period to be immaterial to him. 

The two elements in which the parties may differ are the negotiating order 
(who has "first turn") and the preferences. 

Two sub-families of models to which I will refer, are: 
(i) Fixed bargaining cost: i's preference is derived from the function y - ci t, i.e. 

every player bears a fixed cost for each period. 
(ii) Fixed discounting factor: i's preference is derived from the functioin y * 6,', 

i.e. every player has a fixed discounting factor. 
So my first step has been to restrict the bargaining situation to be considered. 

Secondly, I will give a severe interpretation to the rationality requirement by 
investigating perfect equilibria (see Selten [17, 18]). A perfect equilibrium is one 
where not only the strategies chosen at the beginning of the game form an 
equilibrium, but also the strategies planned after all possible histories (in every 
subgame). 

Quite surprisingly2 this leads to the isolation of a single solution for most of the 
cases examined here. For example, in the fixed bargaining cost model, it turns 
out that if cl > c2, 1 receives c2 only. If cl < c2, 1 receives all the pie. If cl = C2, 
any partition of the pie from which 1 receives at least cl is a perfect equilibrium 
partition (P.E.P.). In other words, a weaker player gets almost 'nothing'; he can 
at most get the loss which his opponent incurs during one bargaining round. In 
the fixed discounting factor model there is one P.E.P., 1 obtaining (1- 82)(1 - 

8182). This solution is continuous, monotonic in the discounting factors, and gives 
relative advantage to the player who starts the bargaining. 

The work closest to that appearing here, is that of Ingolf Stahl3 [19,20]. He 
investigates a similar bargaining situation but which has a finite and known 
negotiating time horizon, and in which the pie can be only partitioned discretely. 
Stahl studies cases for which there exists a single P.E.P. which is independent of 
who has the first move. 

The discussed bargaining model may be modified in numerous ways, many 
being only technical modifications. However I would like to point out one type 
of modification which I believe to be extremely interesting. A critical assumption 
in the model is that each player has complete information about the preference 
of the other. Assume on the other hand that 1 and 2 both know that 1 has a fixed 
bargaining cost. They both know that 2 has also a fixed bargaining cost, but only 

2Especially considering that the perfect equilibrium concept has been "disappointing" when 
applied to the supergames, see Aumann and Shapley [1], Kurz [8], and Rubinstein [14,15,16]. 

3I would like to thank Professor R. Selten for referring me to Stahl's work, after reading the first 
version of this paper. 
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2 knows its actual value. In such a situation some new aspects appear. 1 will try 
to conclude from 2's behavior what the true bargaining cost is, and 2 may try to 
cheat 1 by leading him to believe that he, 2, is "stronger" than he actually is. In 
such a situation one can expect that the bargaining will continue for more than 
one period. I hope to deal with this situation in another paper. 

2. THE BARGAINING MODEL 

Two players, 1 and 2, are bargaining on the partition of a pie. The pie will be 
partitioned only after the players reach an agreement. Each player, in turn offers 
a partition and his opponent may agree to the offer "Y" or reject it "N". 
Acceptance of the offer ends the bargaining. After rejection, the rejecting player 
then has to make a counter offer and so on. There are no rules which bind the 
players to any previous offers they have made. 

Formally, let S = [0, 1]. A partition of the pie is identified with a number s in 
the unit interval by interpreting s as the proportion of the pie that 1 receives. Let 
si be the portion of the pie that player i receives in the partition s: that is s1 = s 
and s2 = 1 - S. 

Let F be the set of all sequences of functions f = {ft } t I where f1 E S, for t 
oddft: S'-t S, and for t evenft: St'>{Y,N}. (St is the set of all sequences 
of length t of elements in S.) F is the set of all strategies of the player who starts 
the bargaining. Similarly let G be the set of all strategies of the player who in the 
first move has to respond to the other player's offer; that is, G is the set of all 
sequences of func4lions g = { gt such that, for t odd gt: S'-- { Y, N } and for 
t even gt: St-'-> S. 

The following concepts are easily defined rigorously. Let u(f, g) be the 
sequence of offers in which 1 starts the bargaining and adopts f E F, and 2 
adopts g E G. Let T(f, g) be the length of a(f, g) (may be xo). Let D(f, g) be 
the last element of a(f, g) (if there is such an element). D(f, g) is called the 
partition induced by (f, g). The outcome function of the game is defined by 

(D(f, g), T(f, g)), T(f, g) < oo, 
P(f, g)= (0, x), T(f, g) = xc. 

Thus, the outcome (s, t) is interpreted as the reaching of agreement s in period t, 
and the symbol (0, oo) indicates a perpetual disagreement. 

For the analysis of the game we will have to consider the case in which the 
order of bargaining is revised and player 2 is the first to move. In this case a 
strategy for player 2 is an element of F and a strategy for player 1 is an element 
of G. Let us define a(g, f), T(g, f), D(g, f) and P(g, f) similarly to the above 
for the case where player 2 starts the bargaining and adopts f E F and player 1 
adopts g E G. 

The last component of the model is the preference of the players on the set of 
outcomes. I assume that player i has a preference relation (complete, reflexive, 
and transitive) z, on the set of S x N U {(0, xc)), where N is the set of natural 
numbers. 



PERFECT EQUILIBRIUM 101 

I assume that the preferences satisfy the following five assertions: 
For all r,s E S,t,t , t2 E N, and i E {1,2}: 

(A-1) if ri > si, then (r, t) >i(s, t); 
(A-2) if s1 > 0 and t2 > tI, then (s,t1) >i(s,t2) >i(0, x); 
(A-3) (r, t ) (s, t + 1) iff (r,t2) zi(s, t2 + 1); 
(A-4) if r,, -* r and (rn, t1) ? (s, t9, then (r, t1) z (s, t2); 

if r, - r and (rn, t )1(0, ox), then (r, t )1(0, ox); 
(A-5) if (s + E, 1)-i(s, 0), (s + Z, l)-,(3, 0), and si < si, then Ei ii. 

From (A-3) we can use the notation (r, T) (s, 0) and (r, T) $i(s, 0) for 
(r, T + t) (s, t) and (r, T + t) $i(s, t), respectively. 

Two families of models in which the preferences satisfy the above conditions 
are: 

I. Fixed bargaining costs. Each player i has a number ci such that (s, t1) > (s, t2) 
iff (si-c *Ci ti)> (i-Ci * t2). 

II. Fixed discounting factors. Each player i has a number 0 < 6. ? 1 such that 
(s, t 1) i i(s t 2)if d 'si 

We reserve Si = 0 for the lexicographic preference: (s, t1) ?i (s t2) if (tI < t2) or 
(tl = t2 and s i-i) 

REMARK: In a more general framework of the model, player i would be 
characterized by the sequence of preferences { '}, where ?t is i's preference on 
the outcomes assuming that the players have not reached an agreement in the 
first t - 1 periods. In fact, I assume that tj =* This assumption precludes 
discussion of some interesting bargaining situation such as: (1) player i has a 
sequence { cij} where cit is the cost to i of the bargaining in period t; (2) player i 
has a fixed bargaining cost and his utility is not linear. 

3. PERFECT EQUILIBRIUM 

The ordered pair (f, A) E F x G is called a Nash Equilibrium if there is no 
f E F such that P(f, g) > P(f, g) and there is no g E G such that P(f, g) 
>2P(f, ). 

The following simple proposition indicates that even after the restriction of the 
bargaining problem to our model, the Nash equilibrium is a "weak" concept. 

PROPOSITION: For all s E S, s is a partition induced by Nash equilibrium. 

PROOF: Let us define f E F and A 

E G as follows: 

for t odd, f't _ sI (S ... st) = 

for t even, g-sI ft (s ... s) ( < 

Clearly, (f, g) is a Nash equilibrium and P(f, I) = (s, 1). 
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The above equilibrium highlights the inadequacy of the concept of a Nash 
equilibrium in the current context. Assume 1 demands s + E(E > 0). At this point 
of the game, 2 intends to insist on the original planned contract and 1 intends to 
agree to this offer. But if e is sufficiently small so that (s, 1) <2(S + E,0), 2 will 
prefer to agree to player l's deviation. Thus, player 1 may carry out a manipula- 
tive maneuver and offer s + e in the certainty that 2 will agree to it. 

In order to overcome this difficulty (see also Harsanyi [5]) I will use the 
concept of the Perfect Equilibrium following the definition of Selten (see [17,18]). 
For this definition we need some additional notation. Let s5 . .. S T E S. Define 
f I S ... S5" and g I1. . sT as the strategies derived from f and g after the offers 
S ... 5T have been announced and already rejected. (That is, for T odd and t 
odd, 

(fSI ... S T)t(rl ... r'-) =fT+t(SI ... s5Trl ... rt-), 

(gis sT)t(rl ... rt) = gT+t (S ... s,Trl ... rt), 

and so on.) 
Notice that if T is even it is l's turn to propose a partition of the pie, and 2's 

first move is a response to l's offer. Thus f is5 ... ST E F and g Is5 ... ST E G. 
If T is odd, it is 2's turn to make an offer and therefore g Is' . . . 5T E F and 
f I S ... E G. And now to the central definition which, as mentioned, follows 
Selten's definition of subgame perfectness [17,18] (what may at first seem to be a 
slightly clumsy version of Selten's idea has been chosen to prevent the use of 
some additional notation which would be redundant in this paper): 

DEFINITION: (f g) is Perfect Equilibrium (P.E.) if for all s' . ST Tif T is odd: 
(P-1) there is no fe F such that P(fIs' .. . S5,f) >2P(fIs .. S 

glS ... ST) 

(P-2) if gT(sl . . .sT)= Y, there is no f E F such that P(f ls . . Ts f) 
> 2(S T, 0); 

(P-3) if gT(sl ..sT) =Np(fI s5 . .s * 5 * T)>2(sT?); 

and if T is even: 
(P-4) there is no f E F such that P(f, HIs'... S') >lP(fls 

g S| I ... S ) 

(P-5) iffT(sl...sT)=Y, there is no fEF such that P(fg SI ... sT) 

> i(s T ,O); 

(P-6) if fT(S1 . . .T) = N,P( fIs . I ST,gA . . S T) (S T 0). 

. . 
T 

(P-1) and (P-4) ensure that after a sequence of offers and rejections s ... 5 

the player who has to continue the bargaining has no better strategy other than 
to follow the planned strategy. (P-2) and (P-5) ensure that a player who has 
planned to accept the offer 5T has no better alternative than to accept it, and 
(P-3) and (P-6) ensure that if a player is expected to reject an offer, it is not better 
for him to accept the offer. 
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EXAMPLE: To clarify the notation, let us show that the pair (f, g) (with s = 0.5) 
described in the proof of the above proposition is not a perfect equilibrium for 
fixed bargaining cost preferences with cl = 0.1 and c2 = 0.2. Player 2 plans to 
reject a possible offer of 0.6 by player 1: that is, g1(0.6) = N. After such a 
rejection the players expect to agree on 0.5: that is, P(fl0.6, g10.6) = (0.5, 1). 
Player 2 prefers (0.6, 0) to (0.5, 1): thus, (f, g) violates condition (P-3). 

REMARK: Notice that a strategy has been defined in Section 2 as a sequence of 
functions which is interpreted as the player's plans after every history, including 
histories which are not consistent with his own plans. For example, f3(S', S2) is 
required to be defined even where f1 7: s I and f2(s', S2) = Y. The reader is 
directed to Selten [17, 18] and Harsanyi [5,6] for details on the significance of the 
requirement. 

4. LEMMAS 

In this section we have only to assume that the preferences satisfy (A-1) and 
(A-2). The following Lemmas establish connections between two sets: (A) the set 
of all P.E.P.'s in a game in which 1 starts the bargaining, that is, {s E SI there is 
a P.E. (f, g) x EX G such that s = D(f, g)}; and (B) the set of all P.E.P.'s in a 
game in which 2 starts the bargaining, that is, { s E SI there is a P.E. (g, f) 
E G x F such that s = D(g, f)}. 

REMARK: In a generalized model in which the t are not identical the same 
considerations would be used to establish connections between the sets 

A}t=13,5 ... and {Bt}=22 4,6, where At(Bt) is the set of all P.E.P.'s in a 
game which starts at time t, 1(2) making the first offer. 

LEMMA 1: Let a E A. For all b E S such that b > a, there is c E B such that 
(c, 1) ~-2b?) 

REMARK: Lemma 1 states that for a to be in A, it has to be "protected" from 
the possibility that 1 will demand and achieve some better contract. Player 1 will 
certainly do so if there is b E S satisfying b > a such that 2 would accept b if it 
were offered. Player 2 must therefore reject such an offer. In order that it be 
optimal for him to carry out this threat, player 2 has to expect to achieve a better 
partition in the future; that is, there must be a P.E.P. c E B in the subgame that 
takes place after 2's rejection such that (c, 1) is preferred by 2 to (b, 0). 

PROOF: Let (f, g) be a P.E. such that D(f, g) = a. Let b ES and b> a. From 
(P-1), gl(b) = N (otherwise if f' = b then P(f, g) = (b, 1) > I(a, 1) z(a, T(f, g)) 
= P(f, g) in contradiction to (P-1)). From (P-3) P(flb, glb)> 2(b,0) thus, 

(D(fIb, gIb)T(fIb, gIb)) 2(b,0) and by (A-2) (D(flb,glb),i)>2(b,0) and 
therefore D(f b, g I b) is the desirable c. 
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Similarly, it is easy to prove the following lemma. 

LEMMA 2: For all a E B and for all b E S such that b < a, there is c E A such 
that (c, 1)',(b,0). 

LEMMA 3: Let a E A. Then for all b such that (b, 1) >2(a, 0) there is c E A such 
that (c, 1) (b,0). 

REMARK: Lemma 3 states that if a is a P.E.P. then 1 should have a "good 
reason" to reject any offer from 2 which is preferred by 2 to accepting l's 
original offer. Assume that in a certain P.E., player 2 plans to agree to a in the 
first period (case B below). Consider b such that (b, 1) >2(a, 0). Then, player 2 
will reject a if he thinks that 1 would agree to b. Thus player 1 must threaten to 
reject any such offer b. In order that this threat be credible there must be a P.E. 
in the subgame beginning with l's offer which yields an agreement c such that 
(c, 1) 1(b,0). This c must be a member of A. 

PROOF: Let (f, g) be a P.E. such that D(f, A) = a. 

Case A: g'(f') = N. Letf' = s. Then D(fls, Igs) = a and a E B. From (A-1) 
and (A-2), if (b, 2) > 2(a, 1) then b < a and therefore from Lemma 2 there is 
c E A such that (c, 1) 1(b, 0). 

Case B: fl = a, A1(a) = Y. Let b satisfy (b, 1) >2(a, 0), f 2(a,b) = N, because 
otherwise, for any f E F satisfying fl = b, P(f Ia, f) = (b, 1) >2(a, 0), in contra- 
diction to (P-2). From (P-6), P(f a,b, A Ia, b) (b, 0). Thus (D(f I a,b, A Ia,b), 
1) 1(b,0) and D(f la,b, AIa,b) E A. 

In a similar way it is possible to prove the following lemma. 

LEMMA 4: For all a E B and for all b E S such that (b, 1) > I(a, 0) there is 
c E B such that (c, 1)-2(b, 0). 

5. THE THEOREM 

Let 

(v T 4 y is the smallest number such that (x, 1) <l(Y ?); 

A = (x, .v) S S x is the largest number such that (y, 1) 12(x, O) 

l = {x E SI there isy E S such that (x, y) E I 

A2 = {y E SI there is x E S such that (x, y) E A}. 

PROPOSITION 1: If (x, y) E A, then x E A and y E B. 
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PROOF: Consider the following (f, 8); for t odd 

f'-x, g( s . . . 5t ft=x~~~~~~~~~~~~~~~~~~~~~ 
kY, s =- x, 

and for t even 

(Y5 y ' s 

It is easy to check that (f, A) is a perfect equilibrium. 

PROPOSITION 2: A # + (and therefore A and B are not empty). 

PROOF: Let 

t 0 if for ally (y, O) > I(x, 1), 
d1(x) l y if there exists y, (y, O) - I(x, 1), 

and 

d2(Y) J 1 if for all (x, 0) >2(y, 1), 

d2(y) = x if there exists x, (x, 0)-2(y5 1). 

d,(x) is the smallesty such that (y, 0) >1(x, 1) and d2(y) is the largest x such that 
(x, O) t2(y, 1). Therefore 

A = { (x, y)Iy = d,(x) and x = d2(y)}. 

It is easy to check that d1 (and d2) is well defined, continuous, increasing, and 
strictly increasing where d,(x) > 0 (d2(y) < 1). 

Let D(x) = d2(d1(x)). Thus, A = {(x, y) I y = d1(x) and D(x) = x}. Notice 
that D(1) 1 and D(0) _ 0. From the continuity of D it follows that there exists 
xo such that D(xo) = xo. Thus, (xo, d1(xo)) E A. 

/dl(x)=y 

5/". 

0 d2(y)=x 1 

FIGURE 1 
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PROPOSITION 3: The graph of A is a closed line segment which lies parallel to the 
diagonal y = x. 

PROOF: From the continuity of d, and d2, the set A is closed. Notice that 
x - d1(x) is an increasing function. To see this, let xo satisfy (0, 0) ..I (xo, 1) (take 
XO = 1 if there is no x that satisfies (0, 0)'..-(x, 1)). For x c xd, d(x) = 0 and 
x - dl(x) = x. For xl > X2 > xo (d1(x1),0)..(x1, 1) and (d,(x2),0)>2(x2, 1). The 
function d, is an increasing function. Thus, (A-5) implies xl - d,(xl) _ x2- 
dl(x2). Similarly, d2(y) - y is a decreasing function. We have to show that x - y 
is constant for all (x, y) E A. Suppose that x2 < xl and that (x1, Y1) and (x2, Y2) 
are both in A. Then xl - dl(x,) _ x2 - d,(x2) and xl - Y 1- x2 - Y2. Also 
d2(y 1) -yI 'd2(y2) -Y2 and xl- Y IX2 - Y2* Thus xl -Y = x2 -Y2* 

PROPOSITION 4: If a c A, then a E- A,, and if b E B, then b E 2. 

PROOF: Suppose Al = [x1,x2] and A2 = [Yv1, Y21. Let s = supta E A}. Assume 
x2 < s. Then d2(d1(s)) < s. Let a C A satisfy r = d2(dl(s)) < a < s. Let b E S 
satisfy d2- '(a) > b > d1(s). Then a > d2(b) and (b, 1) >2(a, 0). From Lemma 3 
there exists c E A such that (c, 1) >(b, 0). Therefore there exists c E A satisfying 
dl(c) _ b. The facts that d1 is an increasing function and that d1(c) - b > dl(s) 
imply c > s in contradiction to the definition of s. 

Similarly, using Lemma 4 it is possible to show that YI = inf{ b C B }. Using 
Lemmas 1 and 2 we get xl = inf{a E A) andy2 = sup{b C B). 

To summarize: 

THEOREM: A = A1 4, B = A2 # 4. A and B are closed intervals and there 
exists eO0 such that B = A- E. 

di (x)Y 

O xI1X2 raS 1 

da(y) =x 

FIGURE 2 
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6. CONCLUSIONS 

The following are applications of the theorem to the fixed bargaining cost and 
the fixed discounting factor models. 

CONCLUSION 1: In the case where both the players have fixed bargaining costs, 
cl and c2 (case I in the introduction): 

(1) If cl > c2,c2 is the only P.E.P. 
(2) If cl = c2, every cl - x _ I is a P.E.P. 
(3) If cl <C2, 1 is the only P.E.P. 

PROOF: d1(x) = max {x - c, 0} and d2(y) = min {y + C2, 1}. Thus A is the set 
of all solutions to the set of equations y = maxx - cl, 0} and x = min {y + c2, 
11. The conclusion is implied by the three diagrams of Fig. 3 related to the cases 
(1) cl > c2, (2) cl = c2, and (3) cl < c2. 

1 r / | 1 r 1 

t t, 21 C2 [ < / eC11-C2 .j1 C 

-.1-C1-- 1C 

? c2 c1 1 0 1 ? c1 c2 1 

FIGURE 3 

REMARK: Given a particular P.E., is agreement reached immediately after the 
very first offer? A positive answer results when A n B= . If (f, g) is a P.E. and 
T(f, ,)g> 1, then D(f, A) is a member not only of A but also of B. Thus in 
almost all cases covered by Conclusions 1 and 2 (the possible exception being the 
case cl = c2 in Conclusion 1) the bargaining indeed ends in the first period. 

The following pair of strategies (f, A) is an example of a P.E. in the game 
where the players have fixed bargaining costs cl = C2c. The pair (f, g) has the 
property that the negotiation ends at the second period: Let e(x) be a non- 
negative function defined in the unit interval such that e(x) ' max O, x -c. 
Assume e(x) attains its maximum at xo where xo > 2c and E(xo) > 2c. Let (f, g) 
satisfy 

A 

f =X0, 

9 
(S I = y s_c 

and "after," the strategies are identical to the strategies described in Proposition 
1 for the partition (s'). The partition of this P.E. is c(xo) (Figure 4). 
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2CC 

0 C 2C Xo 1 
FIGURE 4 

In this example the first move by player 1 serves as a signal to player 2. Player 
2 interprets l's signal s5 as an agreement to continue with a pair of strategies that 
yields the partition E(s1). Not every s5 may serve as such a signal, since 2 will 
agree to every partition that gives 2 more than 1 - c. The partition c(s1) must 
give 2 at least 1 - s5 + c; therefore E(s1)_ s' - c. A final restriction on e is that 
x0 -2c. Otherwise 1 would prefer to offer a partition that 2 "could not refuse" 
(some offer between c and x0 - c). This also shows that the P.E. outcome may 
not be Pareto optimal; both players prefer to agree to 1 - E(x0) at the beginning 
of the bargaining. 

CONCLUSION 2: In the case where the players have fixed discounting factors - 
8, and S2 (Case II in the introduction)-if at least one of the Si is strictly less than 
1 and at least one of them is strictly positive, then the only P.E.P. is M = (1 - 82) 

7(1- 82) 

REMARK: Notice that when S2 = 0, player 2 has no threat because the pie has 
no worth for him after the first period. Player 1 can exploit this to get all the pie 
(M = 1). When S1 = 0, 1 can gain 1-82 only, that is, the proportion of the pie that 
2 may lose if he refuses 1's offer and gets 1 in the second period. When 
0 < SI = 8 2 1, 1 gets 1/1 + 8 > 1/2. As one would expect, l's gain from 
the fact that he starts the bargaining decreases as 8 tends to 1. 

1 / 

o 1-~F 1 

FIGURE 5 
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PROOF: d1(x) = x* (S and d2(y) = 1 - 82 + 82 *y. The conclusion follows 
from Figure 5 (the intersection of d, and d2 is where 1 - 82 + 62XS1 = X, that is 
where x = M). 

The Hebrew University, Jerusalem 
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