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We examine the limiting outcomes of a dynamic evolutionary process driven
by stochastic learning and rare mutations. We first show that locally stable out-
comes are subgame perfect and satisfy a forward induction property. To address
cases in which locally stable outcomes fail to exist, we turn to a dynamic analysis.
The limiting distribution of the dynamic process in a class of extensive form
games with perfect information always includes the subgame perfect equilibrium
outcome, but consists exclusively of that outcome only under stringent conditions.
The limiting distribution in a class of outside option games satisfies a forward
induction requirement. Journal of Economic Literature Classification Numbers
C70, C72. © 1993 Academic Press, Inc.

1. INTRODUCTION

This paper examines the limiting behavior of a dynamic evolutionary
process driven by stochastic learning and rare mutations. The analysis is
focused on extensive form games. We are especially interested in whether
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the process yields outcomes that exhibit backward induction properties
(such as subgame perfection) and forward induction properties [such as
those examined by van Damme (1989)].

We first examine what we call locally stable outcomes. Intuitively, our
definition of local stability requires that any strategy combination yielding
a locally stable outcome is surrounded by learning dynamics that at least
eventually lead back to that outcome. Our interest in these outcomes
not only has an evolutionary motivation, as do static evolutionary
stablity concepts, but emerges from our dynamic model. If our evolution-
ary process selects a unique outcome, this outcome must be locally
stable.

Locally stable outcomes exhibit both backward and forward induction
properties. In extensive form games in which each player moves at most
once along any path, every locally stable outcome is a subgame perfect
equilibrium outcome. Furthermore, every locally stable outcome must
satisfy a forward induction property. In two-player games from our class,
this property implies the Never-Weak-Best-Response property.

In many games, locally stable outcomes fail to exist.! In such games,
the limiting distribution of the dynamic process assigns strictly positive
probability to multiple outcomes that are contained in locally stable com-
ponents of absorbing sets of the learning process. A component is locally
stable if it is a minimal subset of absorbing sets with the proparty
that the learning dynamics at all nearby strategies lead back to that
component.

To address the question of whether the limiting distribution will satisfy
backward and forward induction properties in games where it does not
generate a locally stable outcome, we turn to an analysis of the dynamic
process. We consider two simple classes of games, allowing us to deal
with backward and forward induction one at a time.

We first examine backward induction in games of perfect information
in which each player moves at most once along any path. In these games,
there is a unique locally stable component, containing the subgame perfect
equilibrium outcome. Local stability of the subgame perfect equilibrium
outcome is thus both necessary and sufficient for the limiting distribution
to consist entirely of this outcome. However, the subgame perfect equilib-
rium outcome will be locally stable only under stringent conditions. If
these conditions are not met, the subgame perfect equilibrium still appears
in the limiting distribution (since it is contained in the unique locally stable
component), but is accompanied by other self-confirming equilibria that
yield different outcomes.

It is also possible for locally stable outcomes to exist without appearing in the limiting
distribution of the dynamic process, which must then be multivalued.
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We next examine forward induction in games where player 1 has a
choice between exercising an outside option or playing a normal form
game with player 2. We find that if there is any strict Nash equilibrium
of the subgame yielding a higher payoff to player 1 than the outside option,
then equilibria in which the latter is played cannot appear in the limiting
distribution.

Van Damme’s (1987b, 1989) notion of forward induction, applied to
generic games in this class, is that if there is one and only one Nash
equilibrium of the subgame that offers player [ a higher payoff than the
outside option (with other Nash equilibria of the subgame offering lower
payoffs), then equilibria in which player 1 chooses the outside option
will not appear. The uniqueness requirement appears in van Damme’s
definition because if there are multiple equilibria in the subgame that
dominate the outside option for player 1, then entering the subgame pro-
vides an ambiguous signal and van Damme’s forward induction argument
loses its force. In the evolutionary model, however, the evolutionary
process ‘‘assigns’’ a meaning to the event of entering the subgame, even
if this meaning is a priori ambiguous, allowing us to obtain a stronger
result.

Our results build upon a large literature that investigates the connection
between evolutionary models and equilibrium refinement properties. The
point of departure for this literature is van Damme’s (1987a) demonstra-
tion that an evolutionarily stable strategy (ESS) in a symmetric game
must be a proper equilibrium. Coupled with the result that proper
equilibria in normal form games correspond to sequential equilibria in
extensive form games (van Damme, 1984; Kohlberg and Mertens, 1986),
this associates a backward induction property with evolutionarily stable
strategies.

Unfortunately, evolutionarily stable strategies do not exist in many
games of interest in economics.? A collection of alternative concepts has
been created to address this difficulty. These concepts generally invoive
some provision for unreached information sets or alternative best replies
that are reminiscent of equilibrium refinements. For example, Selten’s
(1983, 1988) limit ESS concept incorporates a normal form perfection
requirement (cf. Samuelson, 1991b). A strong result is obtained by Swin-
kels (1992a), who shows that his equilibrium evolutionarily stable sets
contain Kohlberg-and-Mertens stable sets.

Rather than work with refinements of static equilibrium concepts, our

* The reasons for this nonexistence are closely related to the issues that drive the equilib-
rium refinement fiterature. For example, an equilibrium in an extensive form game that does
not reach every information set with positive probability will fail to be an ESS (Selten, 1983,
1988), and in an asymmetric normal form game, any equilibrium to which there are alternative
best replies will not be an ESS (Selten, 1980).
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approach is to examine an explicitly dynamic model of the evolutionary
process. Swinkels (1993) also examines refinement ideas in the context
of a dynamic model. He introduces a stability notion for sets of outcomes
that is analogous to our local stability and shows that for a broad class
of deterministic dynamics, sets satisfying this assumption must contain a
Kohlberg-and-Mertens stable and hyperstable set.

Our analysis is similar to that of Swinkels in several respects. First, we
both obtain set-valued outcomes. In each case, this set-valuedness is
driven by the inability of the evolutionary process to prevent the system
from drifting to alternative best replies. Second, in each case, ‘‘good”’
outcomes, such as subgame perfect or stable equilibria, are contained in
the limiting outcome. However, each model encounters difficultics in
restricting the limiting outcome to include only ‘‘good’” outcomes of this
type. In our case, if any Nash equilibrium strategy profile appears in the
limiting distribution, then so do any other strategy profiles created by drift
at unreached subgames. These can include strategies that are not Nash
equilibria and that can be surrounded by learning dynamics that lead
to quite different outcomes, causing the latter to also appear in the
limiting distribution. In Swinkels’ model, similar forces appear. Every
Nash equilibrium appearing in the outcome is accompanied by a host
of strategy profiles that give the same outcome, in some cases including
profiles surrounded by dynamics that preclude asymptotic stability.
Swinkels observes that his model holds some hope of yielding asymptoti-
cally stable sets that contain only subgame perfect outcomes if the
dynamics have rest points only at Nash equilibria (as opposed, for
example, to having rest point at all self-confirming equilibria, as in our
model). Such an assumption appears to be inappropriate in our context
because it requires players to react to changes in actions at informarion
sets that are not reached during play. In an effort to respect the
extensive forms of our games, we assume that players can observe
(and hence react to) only changes in actions that are revealed in the
course of play.

The most difficult aspect of a dynamic analysis is generally establishing
conditions under which the dynamic process will converge. This problem
is often avoided, with results taking the form of characterizing the limiting
behavior of the process if it does converge. Our work with locally stable
outcomes is in this vein. Crawford (1992), Milgrom and Roberts (1990,
1991), and Marimon and McGrattan (1992) examine conditions under
which certain dynamic systems converge.

Section 2 presents the basic framework for our analysis. Section 3
examines locally stable outcomes. Section 4 presents the analysis of back-
ward induction. Section 5 examines our class of forward induction games.
Section 6 concludes.
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2. THE MobDEL

We work with a finite, stochastic evolutionary model. The study of
stochastic evolutionary models in games was pioneered by Foster and
Young (1990) and Young (1993) and pursued by Kandori et al. (1993) and
then Samuelson (1991a}. Our model borrows heavily from Samuelson
(1991a), which in turn relies heavily on the work of Kandori et al.

Let G be a finite extensive form game with perfect recall and without
moves by nature. Let I = 1, -, n denote the set of players and Z the
set of terminal nodes (outcomes). An assignment of payoffs to terminal
nodes is given by the function 7: Z — R". We restrict attention to games
G that satisfy the condition that every path through the game tree intersects
at most one information set of every player.®

2.1. Learning

Given an extensive form game G, we assume that for every player i
there is a finite population of size A > 1. A typical member of a population
is referred to as an agent. At each time r € {0, 1, 2, . . .}, every possible
combination of agents capable of playing the game meets and plays.

At time 7, each agent of each population is described by a characteristic,
consisting of a pure behavior strategy and a conjecture. A conjecture for
an agent specifies, for each population representing an opponent and for
each action such an opponent may take at one of his information sets,
the number of agents in the population taking that action.* A state of the
system is a specification of how many agents in each population have
each possible characteristic. We let ® denote the set of possible states of
the system and let 8 denote an element of . Associated with every state
is a distribution over terminal nodes, denoted by z{#), that results from
the matching process.

In each period, after agents have been matched, each agent of each
population independently takes a random draw from a Bernoulli trial.
With probability 1 — ¢ € (0, 1), the agent’s characteristic does not change.
With probability u, the draw produces the outcome ‘“‘learn.”” We assume
that an agent who learns is able to observe the outcomes of all matches
of the current round of play. Note that we take the extensive form of the

} In addition to being a natural class of games in which to examine subgame perfection,
because questions of rational behavior after evidence of irrationality do not arise (cf. Bin-
more, 1987, 1988; Reny, 1993), this assumption allows us to specify very straightforward
rules for updating strategies and conjectures. See footnotes 6 and 8 for details.

4 Note that our conjectures describe opponents’ actions rather than beliefs about nodes
in information sets, as in Kreps and Wilson (1982).
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game seriously here, in that we do not allow players to observe actions
at information sets that are not reached during the course of play.’

Given this information, the agent first updates his conjectures to match
the observed frequency of actions at all information sets that were reached
during period r. Updated conjectures about play at information sets that
are reached are uniquely specified® and are the same for all agents who
learn. Conjectures at unreached information sets are unchanged.’

Given his new conjecture, the agent updates his behavior strategy. At
all information sets where his current action is a best response, his action
remains unchanged.? At all information sets where his current action is
not a best response against his conjecture, the agent changes to an action
that is chosen according to some probability distribution (which depends
only on the agent’s information about the current state) that puts positive
probability on all actions that are best responses.

The learning mechanism defines a collection of probabilities of the form
p; for all i and j in ©@. These probabilities in turn constitute a Markov
process on the state space 0.

2.2. Mutations

We now add ‘“‘mutations’ to our evolutionary model. At the end of
each time ¢, each agent takes another independent draw from a Bernoulli
trial. With probability 1 — A € (0, 1), this draw produces no change in
this agent’s characteristic. With probability A, this draw produces the

¥ Canning (1992a.b) also examines evolutionary processes that are explicitly tailored to
the structure of extensive form games.

® Here we use our assumptions that every player moves at most once along each path
and that learning players observe the outcomes of all matches: Suppose player i’s information
set h is reached in some match. Whether / is reached depends only on the choices of player
['s opponents, so it must be that for all agents from population / there is a matching that
allows their behavior at 4 to be observed. All learning agents then observe this behavior
and update their conjectures to match the actual distribution of actions by player i agents
at information set s. The assumption that learning agents observe the current state is strong,
but allows a convenient characterization of conjectures. We suspect that our results will
hold as long as learning agents have ‘‘good enough’’ information, but have not investigated
how good is good enough.

7 Because agents update conjectures to match the most recently observed play, we take
an agent’s conjecture about another agent to be a strategy rather than a probability distribu-
tion over strategies. Assuming that learning agents observe the most recent play and change
their conjectures to match this play allows us to work with a finite space state, w.ich
simplifies the analysis.

# Again, whether one of the agent’s own information sets is reached does not depend on
the agent’s behavior strategy. Therefore his conjectures and hence action remains unchanged
at any information set that was not reached in the previous state. In particular, changes in
an agent’s actions at an information set A cannot cause that agent to now potentially reach
and hence choose a new action at the previously unreached information set 4’.
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outcome ‘‘mutate.”’ In this case, the agent changes to a characteristic
that is randomly determined according to a probability distribution that
puts positive probability on each of the characteristics that are possible
for this agent.

Let g; be the probability that mutations change the state of the system
from i to j. Note that for all i and j, g; > 0. Let

Yi = Z Pl (1)
i€

Then vy is the probability that the combination of learning and mutation
moves the system from state i to j. We are interested in the Markov
process given by {y;}; ;ce. We let I'(G) denote this process.

Because q; > 0 for all i and j in ©, we have y; > O for alli and j in ©.
The following results are standard (cf. Billingsley, 1986; Freidlin and
Wentzell, 1984) and are given here without proof:

LEMMA I.  Given \, the Markov process {y}, ;ce has a unique station-
ary distribution {*(\), where [*(\) is a probability measure on O such
that L*(NC(G) = *(\). The system converges to [*(\) from any initial
condition.

We are interested in the limit of the stationary distribution {*(A) as
mutations become rare, i.e., as A becomes small. We refer to this limit
as the limiting distribution. This limit exists (and hence is unique):

LEMMA 2. lim,_,q.(X) exists.

The limiting distribution is thus unique and independent of the initial
conditions, allowing us to avoid the nonexistence problems of static evolu-
tionary equilibrium concepts. The properties of the model driving this
result are that mutations are completely mixed, so that any strategy may
be introduced by a mutation; the probability of a mutation occurring does
not vary with time; and the probability that a mutation introduces a given
strategy (contingent on a mutation occurring) does not change as the
probability of a mutation decreases.® If these properties hold, then the
remaining details of the mutation process are irrelevant.

An alternative source of noise would be for learning agents to observe
the outcomes of only some rather than all matches (perhaps meeting

° Crawford (1992) argues that time invariance of mutations may not be applicable. In
particular, if mutations are taken to represent either players’ experimentation or mistakes,
then one might except the incidence of mutation to decrease over time, as players learn the
game and hence are less inclined to experiment and less prone to make mistakes. It may
be more plausible to think of mutations that do not vary over time if mutations represent
new entrants into the game.
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only a subset of the agents in the opposing population and observing the
outcomes only of their matches. We suspect that the results would be
similar to ours if populations of agents are sufficiently large (and the
proportion of agents matched in each period remained constant) and the
matching scheme is uniform across agents. Quite different results might
appear if the matching scheme is not uniform, so that there are neighbor-
hood effects. We might also add ‘‘trembling hand" trembles of the kind
studied by Selten (1975) to the model.' This would cause all information
sets to be reached with positive probability and would preclude our con-
structing proofs that rely on the freedom of actions at unreached informa-
tion sets to drift. However, we would be interested in the case of small
trembles, which we would capture by examining the limit as tremble
probabilities approach zero. The results of Samuelson (1991a) suggest that
the addition of trembles will affect the results only if (in the limit) they
are arbitrarily more likely than mutations.

2.3. Limiting Distribution

The basic tool we use to examine the support of the limiting distribution
is the concept of an absorbing set. Let pj; be the probability that the
learning mechanism leads the system from state i to j in n steps. Then:

DeriNITION 1. The set of states Q C O is absorbing if we have p; =
0 for all i € Q and j & Q and if no proper subset of Q has this property.
The basin of attraction of an absorbing set @ is the set B(Q) = {6 3n,
360’ € Q s.t. phy, > 0O}

An absorbing set is then a minimal set with the property that the learning
mechanism cannot take the system out of this set (although mutations
may still move the system out of an absorbing set). Note that an absorbing
set may contain more than one state. The basin of attraction of an ab-
sorbing set is the collection of states from which there is a positive proba-
bility that the learning scheme leads to the absorbing set.

The following lemma is immediate from Samuelson (1991a) (as are Lem-
mas 4 and 5 below) and is given here without proof:

LEMMA 3. The support of the limiting distribution consists only of
elements of absorbing sets. If a state @ appears in the limiting distribution,
then all states in the absorbing set containing 0 are in the support of the
limiting distribution.

10 Canning (1992a,b) examines evolutionary models with trembling hand trembles but
without mutations,
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The intuitive interpretation of Lemma 3 is that the selection mechanism
moves the system more easily into absorbing sets than out of them, and
hence in the limit (as A\ becomes small) is concentrated on absorbing sets.

Not all absorbing sets will appear in the limiting distribution. Young
(1993), Kandori ¢t al. (1993), and Samuelson (1991a) show that the ab-
sorbing sets appearing in the limit are those that are easiest to reach from
all other absorbing sets, in the sense that it takes the fewest mutations to
get to their basins of attraction from other absorbing sets. For example,
Young (1993) and Kandori et al. (1993) show that in a 2 X 2 symmetric
normal form game with two strict Nash equilibria (denoted A and B), the
limiting distribution will consist entirely of equilibrium A if it takes fewer
mutations to transform the system from equilibrium B to A than from A
to B.

This characterization of the limiting distribution in terms of the number
of mutations required to move between absorbing sets may demand the
comparison of very large numbers of very unlikely mutations. It is im-
portant to note that our results are obtained by asking whether absorbing
sets are robust against a single mutation. We think that such results are
the most robust to emerge from the model.

DEFINITION 2. States 8 and 4’ are adjacent if one mutation can change
the state from 6 to 6’ (and hence from 6’ to #). The single-mutation
neighborhood, M (Q), of an absorbing set Q is the set of all §' that are
adjacent to some § € Q.

Our next lemma states that if the basin of attraction of an absorbing set
Q’is only ““one mutation away’’ from an absorbing set O that appears in the
limiting distribution, then Q' is also contained in the limiting distribution.

LEMMA 4. Suppose absorbing set Q is contained in the support of the
limiting distribution and absorbing set Q' satisfies

MQ)N B(Q) # <. 2)

Then Q' is also contained in the support of the limiting distribution.

We can use this result to identify collections of absorbing sets that have
the property that either all or none of them appear in the support of the
limiting distribution.

DEeFINITION 3. A collection of absorbing sets ¢ is a cycle if for all
Q, Q' € @ there exists absorbing sets @, -+ @, € ® suchthat ¢ = @,
Q' =Q,andfori=1,---n—-1

M(Q) N B(Q;.1) #* D.
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A cycle @ is a component if there exists no cycle ¢’ # @ containing ®.
A component @ is locally stable if there is no pair of absorbing sets Q €
® and Q' & @ for which condition 2 holds.

Note that the set of components is a partition of the sets of absorbing
sets. Throughout the following we use C to denote components and write
C(Q) {or C(8)] to denote the unique component containing absorbing set
Q (or state ). A component is locally stable if more than one mutation
is required go from C to any other component. Note that we could also
define a locally stable component as a minimal collection of absorbing
sets having this stability property.!

Remark 1. We find it convenient to speak of the single mutation neigh-
borhood and basin of attraction of a component {defined in the obvious
way as the union of the corresponding sets over the absorbing sets in the
component). We denote the case when the single mutation neighborhood
of a component C and the basin of attraction of a component C’ intersect
(i.., there exists @ € C and Q' € C' such that condition 2 holds) by
writing o *(C, C') = 1. If they do not intersect, we write o *(C, C') > 1.

From Lemma 4 it is easy to see that either all or none of the states
appearing in a component are in the support of the limiting distribution.
The following lemma states that a sufficient condition for a component
not to appear in the limiting distribution is that it is only ‘‘one mutation
away’’ from a locally stable component.

LEMMA 5. Suppose C' is a locally stable component and let Q be an
absorbing set not contained in C'. If there exists an absorbing set Q' in
C’ such that condition 2 holds, then the states in C(Q) are not contained
in the support of the limiting distribution.

Combining Lemmas 4 and 5 we can now prove the following result,
which provides our basic tool for examining the limiting distribution.

ProPOSITION 1. State 0 is in the support of the limiting distribution
only if 0 is contained in a locally stable component. If 8 is in the limiting
distribution, so are all states in the locally stable component C(8).

Proof. First we show that a locally stable component must exist. Con-
sider a component, denoted by C,, and suppose C, is not locally stable.
Then there must exist a component C, such that o*(C,, C,) = 1. [t is

" Qur definition of local stability allows for the possibility that, starting in the single
mutation neighborhood of a locally stable component C, the learning dynamics initially lead
away from this component. It is only required that learning must ultimately lead back to
some state in C. Because our results are established by finding situations where a single
mutation suffices to destabilize a component, they would continue to hold if we defined
local stability in terms of larger numbers of mutations.
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easy to verify that o *(C,, C,) > 1 must hold, since otherwise the union
of the absorbing sets contained in C, and C, would form a cycle, contradict-
ing the fact that C, is a component. Hence, either C, is locally stable or
there exists a component C; # C, such that o*(C,, C;) = 1. As before,
since a component cannot be contained in a cycle, we must have o *(C;,
C,) > 1 and o *(C,, C,) > 1, implying that either C, is locally stable or
that we can continue the argument to find a new component C, such that
M(C,) does not intersect the basins of attraction of C,, C,, and C;. Since
the state space of our process is finite, there can only be a finite number
of components. Continuing this construction must thus ultimately lead to
a locally stable component. Next, it is immediate from Lemma 4 that
either all or none of the states appearing in a component are contained
in the limiting distribution. Now suppose a component, again denoted by
C,, is contained in the support of the limiting distribution. If C, is not
locally stable, then we can use the same construction as above to find a
sequence C,, - -+ C, such that C, is locally stable and o *(C,;, C;,,) = 1.
But then Lemma 4 implies that C, _, must be in the support of the limiting
distribution, whereas Lemma 5 implies that C, _, cannot be in the support
of the limiting distribution. This contradiction proves that C; must be
locally stable, proving the proposition. m

If there i1s a unique locally stable component, Proposition | implies that
the support of the limiting distribution coincides with the states appearing
in that component. If there are multiple locally stable components and
one wishes to determine which of these components constitute the support
of the limiting distribution, than one must resort to the more general
mutation-counting arguments of the type employed by Young (1993) and
Kandori et al. (1993).

We are especially interested in cases in which the limit consists entirely
of singleton absorbing sets because the latter exhibit considerable struc-
ture. First:

DEFINITION 4. A state is a self-confirming equilibrium if each agent’s
strategy is a best response to that agent’s conjecture and if each agent’s
conjecture about opponents’ strategies matches the opponents’ choices
at information sets that are reached in the play of some matches.

This is similar to Fudenberg and Levine’s more general notion of a self-
confirming equilibrium (1991), except that we find it convenient to define
this concept directly in the state space of the Markov process rather than
in the strategy space of the game.'”

12 See Kalai and Lehrer (1991) for a similar equilibrium concept. There may be self-
confirming equilibria in the game G that we cannot support as self-confirming equilibria in
the state space of our Markov process because the former require mixed strategies that
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It then follows immediately from the definitions that:

Remark 2. For 8 € 8, {6} is a singleton absorbing set if and only if 8
corresponds to a self-confirming equilibrium.

Note that we get equivalence between singleton absorbing sets and self-
confirming equilibria rather than Nash equilibria."

When discussing singleton absorbing sets, we often let # denote both
an element in the state space and the singleton absorbing set containing
that element. When discussing a component C, we also find it helpful to
abuse notation by writing 8 € C for any state 8 contained in any absorbing
set contained in C.

Consider a self-confirming equilibrium. The component containing this
state contains states corresponding to the same path through the extensive
form game but a variety of out-of-equilibrium behavior and out-of-equilib-
rium conjectures. Some additional terminology is helpful in making this
precise. Given a self-confirming equilibrium outcome, we say that player
i can force entry into a subgame G(a,) if there exists an information set
h of player i that is reached during the play of the self-confirming equilib-
rium and an action a; for player i at A that is not chosen by any player {
agent and such that the decision node resulting from the choice of q; is
the root of a subgame of G. This subgame is denoted by G(a,)). Then (the
proof is in the Appendix):

ProroOSITION 2. (2.1) Let {68} be a singleton absorbing set. Let 8' differ
from 8 only in actions prescribed at information sets that are not reached
in any matchings in state 0 (i.e., every agent in 0 can be paired with a
distinct agent in 8 such that the two agents hold identical conjectures
(at all information sets) and play identical actions at all information sets
reached in any matching under 6). Then {0’} is also a singleton absorbing
set and 8’ € C(6).

(2.2) Suppose that, given 8', player i can force entry into a subgame
G(a;). If 0" differs from 6’ only in the conjectures that agents from popula-
tions other than i hold over choices at information sets in G(a;), then 8"
€ C(8).

cannot be duplicated as population proportions in our finite population. A similar difficulty
arises when we consider subgame perfect equilibria. In the following analysis, we do not
distinguish between equilibria in the game G and in the state space of our Markov process.
Hence, we implicitly assume that the population size is such that we can achieve any desired
equilibrium on every subgame in the state space. Similar results can be obtained for pure
strategy versions of the equilibrium concepts without this assumption. It would be useful
to extend the model in order to address the question of when population proportions are
“‘close enough’’ to effectively allow mixed strategy equilibria to be achieved.

13 Noéldeke and Samuelson (1992) provide an example in which a self-confirming equilibrium
that is not a Nash equilibrium appears in the limiting distribution of the evolutionary process.
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The implication of this result is that the evolutionary process is not effec-
tive at imposing discipline at unreached information sets. If a self-confirm-
ing equilibrium appears in the support of the limiting distribution, so does
any state that can be reached by allowing actions at unreached information
sets to drift.

3. LocALLY STABLE OUTCOMES

This section examines locally stable components of singleton absorbing
sets. From Proposition 1, we know that the limiting distribution contains
only locally stable components and contains all of the absorbing sets in
any component that contributes to the limiting distribution. Our only
hope for single-valued equilibrium predictions then lies with locally stable
components of absorbing sets that all correspond to the same self-confirm-
ing equilibrium outcome. In this case, we call the outcome involved a
locally stable outcome. More formally:

DEFINITION 5. An outcome z* is locally stable if there exists a locally
stable component C such that for all 8 € C, z(8) = z*.

Studying such outcomes allows us to characterize the limiting distribution
when the latter is ‘‘nicely behaved’ and also provides some clue as to
when it will be so behaved.

Locally stable outcomes are analogs of static refinements of evolution-
ary stability concepts. In each case, one couples an equilibrium condition
with a stability requirement and shows that the resulting outcome possess
desirable properties. In each case, however, existence and uniqueness is
problematic. In the following sections, we turn to dynamic considerations
because locally stable outcomes may not exist and may not be unique,
and even the existence of a unique locally stable outcome may not ensure
that it is contained in the support of the limiting distribution.'*

We first establish a backward induction property for locally stable out-
comes:

PrOPOSITION 3. Let G be an extensive form game with each player
moving at most once along each path. Then every locally stable outcome
is a subgame perfect equilibrium outcome.

1t is possible to construct games that have two locally stable components, one corre-
sponding to a locally stable outcome and one containing a nonsingleton-absorbing set. In
such a case, the support of the limiting distribution may consist solely of the states in the
second component. The existence of a locally stable outcome thus does not suffice to imply
that the evolutionary process results in convergence to equilibrium behavior.
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Proof. Let z* be a locally stable outcome generated by the locally
stable component C. C contains only singleton-absorbing sets.!> Suppose
z* does not correspond to the subgame perfect equilibrium outcome. Then
every state § € C satisfies the condition that there exists a player i who
can force entry into a subgame G(a,) such that every subgame perfect
equilibrium of G(a,) yields i a higher payoff than does z*. Proposition 2
ensures that the component C contains a state 8 in which the actions and
conjectures of all players who have an information set in G(a;,) correspond
to a subgame perfect equilibrium of G(q;).'"* Now consider a mutation in
the actions of a player i agent that causes G(a,) to be reached. Then with
positive probability, all player i agents learn. These agents will switch
their actions so as to enter G(a;). The learning mechanism then cannot
further adjust actions or conjectures in G(a,), since these constitute a self-
confirming equilibrium on G(a;). This in turn ensures that the learning
mechanism leads to an absorbing set, say O, that contains at least one
state not resulting in the outcome z. We then have @ & C and M(§) N
B(Q) # ), contradicting the local stability of C.

We now turn to forward induction properties. Proposition 3 showed
that a self-confirming but not subgame perfect equilibrium will fail to be
locally stable because there must be a player who can force entry into a
subgame with a subgame perfect equilibrium that makes the player better
off than the original equilibrium. The following proposition extends this
argument to show that subgame perfect equilibria also may fail to be
locally stable. This occurs because states supporting the subgame perfect
equilibrium outcome again allow a variety of behavior off the equilibrium
path, including behavior that, once revealed, will tempt agents away from
the subgame perfect equilibrium in quest of a higher payoff. This requires
only that an agent has the ability to cause a subgame that has a self-
confirming equilibrium promising the player a higher payoff than the sub-
game perfect equilibrium to be reached. It may be impossible to support
this higher payoff as an equilibrium in the entire game, so that subsequent
adjustments must lead away from this payoff, but these adjustments cannot
lead back to the original equilibrium. This potential instability of subgame
perfect equilibria provides the basis for our discussion of forward in-
duction.

PROPOSITION 4. Let G be an extensive form game with each player
moving at most once along each path. Suppose outcome z* is locally
stable. If, given the locally stable component supporting z*, player i can

% 1t is easy to see that every nonsingleton-absorbing set must contain states 6, ', such
that z(68) # z(6').

1 Here we use our assumption that each player moves at most once along every path,
which implies that player / has no information set in G(«a;). Proposition 2 then implies that
we can choose the desired conjectures for all players having an information set in G(a ).
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force entry into a subgame G (a;), then no self-confirming equilibrium of
Gl(a;) can give player i a higher payoff than does z*.

Proof. This follows by the same argument as the proof of Proposition
3. The only additional observation required is that if the actions and
conjectures of the agents who have information sets in G(a,) agree with
a self-confirming equilibrium on this game, then once player i enters the
subgame G(a,), the learning process cannot cause any adjustments on this
subgame. =

The result in Proposition 4 associates a strong forward induction property
with locally stable outcomes. In many games this property will be too
stringent to be satisfied by any of the subgame perfect equilibrium out-
comes. Proposition 4 hence identifies one possible source for the nonexist-
ence of locally stable outcomes (Example 2 in the next section illustrates
another possibility for the nonexistence of locally stable outcomes).

In two-player games (with each player moving at most once along any
path), these results can be sharpened. We think of a game G as proceeding
by having player 1 first choose which of player 2's information sets & in
the game G to reach, at which point a normal form game is played with
strategy sets given by 2’s behavior strategies (in &) at k and 1’s strategies
(in G) that cause A to be reached. We refer to this latter representation
of the game as the extended form of G. It is a straightforward variation
on Proposition 3 that any locally stable outcome of G must correspond
to a subgame perfect equilibrium outcome of the extended form of G."7

In addition, for generic games of this class, Proposition 4 implies that
alocally stable outcome of G corresponds to a subgame perfect equilibrium
outcome of the extended form satisfying the Never-Weak-Best—Re-
sponse (NWBR) property.'® This follows from the fact that in generic
games from this class, a subgame perfect equilibrium outcome s* fails the
NWBR property only if there is an unreached subgame with a Nash
equilibrium giving player 1 a higher payoff than s*.

We illustrate the forward induction properties of locally stable outcomes
in two-player games with the following example.

ExaMpLE 1. Consider the game whose extended form is given by

T, 4,1 —4,0 T, 3,3 —5,-5
B, 0,0 2.1 B, -5 -5 1,1

17 We require here that the population size is such that any (possibly mixed) Nash equilib-
rium in any subgame of the extended form of G can be achieved by appropriate population
proportions.

% A subgame perfect equilibrium outcome s* of the extended form satisfies NWBR if it
is also a subgame perfect equilibrium outcome of the extended form obtained by removing
strategies that fail to be best responses to any elements of the Nash component contain-
ing s*. See Kohlberg and Mertens (1986).
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where player 1 first chooses one of the matrices, and then players 1 and
2 play the game represented by that matrix, with player 1 choosing rows
and player 2 choosing columns. There are no dominated strategies in this
game, so that iterated weak dominance fails to eliminate any strategies.
NWBR eliminates the subgame perfect equilibrium (7, L,). In particular,
B, is a best response to no element in the component supporting ourcome
(T,, L,). Once this is eliminated, subgame perfection requires player 2 to
choose L, at his first information set, at which point (7,, L,) ceases to be
an equilibrium. Note that NWBR cannot eliminate the subgame p2rfect
equilibrium given by (B,, R,), since every strategy is a best reply to some
element in the component supporting this outcome.

In contrast, the only locally stable outcome in this game is (7,, L,). To
see this, consider a singleton-absorbing set 8 supporting the outcome (B,,
R,) or (T,, L,). By Proposition 2, the component C(8) contains a state in
which all player 2 agents choose L, at their first information set. Now let
a mutation that causes a player 1 agent to play T, occur. Then with positive
probability, all player 1 agents learn and switch to 7,. This yields a new
singleton-absorbing set #' supporting outcome (7, L,). Since the latter
equilibrium gives player 1 the highest possible payoff in the game and
action L, is a strict best reply for player 2 at the relevant information set,
the component C(#') contains only states yielding the outcome (7, L;)
and is easily seen to be locally stable for all sufficiently large population
sizes. (T;, L,) is the unique locally stable outcome, since an argument
similar to the one just given shows that neither the outcome (B8,, R, nor
a mixed strategy equilibrium outcome is locally stable.

4. BACKWARD INDUCTION

Even if a game admits a unique subgame perfect equilibrium s*, the
results of the previous section do not allow us to conclude that s* appears
in the limiting distribution, much less that s* is the only outcome in that
distribution. The only possible locally stable outcome is s*, but a locally
stable outcome may fail to exist or may not comprise the entire limiting
distribution. To address these issues we must go beyond the study of
locally stable outcomes to examine the dynamic process. The complexity
of this task forces us to consider a restricted class of games. In this section
we consider extensive form games with each player moving at most once
along each path, as before, but now restrict attention to generic games of
perfect information. We find that the subgame perfect equilibrium must
appear in the limiting distribution, but only under stringent conditions will
it be the only outcome in the limiting distribution.'®

¥ These games are dominance solvable, so that the subgame perfect equilibrium is the
outcome of iterated elimination of weakly dominated strategies in the normal form. Our
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Our genericity condition is that for every playeri €/, z # 27 € Z >
w(z) # m,(z'). It is well known that such games have a unique subgame
perfect equilibrium.2¢

We begin by establishing that such games have only singleton absorbing
sets, which in turn implies that the evolutionary process converges to a
locally stable component containing only states that yield self-confirming
equilibrium outcomes. The Appendix proves (all subsequent proofs are
in the Appendix):?!

ProprOSITION 5. Let G be a generic extensive form game of perfect
information with each player moving at most once along each path. Then
all absorbing sets are singletons.

Next, we show that there is a unique locally stable component that
contains the subgame perfect equilibrium outcome. From Proposition 1
this implies that the limiting distribution satisfies a backward induction
property in the sense that it must assign strictly positive probability to
the subgame perfect equilibrium. Furthermore, if the subgame perfect
equilibrium outcome is locally stable, it must be the unique outcome
appearing in the support of the limiting distribution. The proof of this
result, which combines ideas from the proof of Propositions 1 and 3,
exploits the fact that absorbing sets are singletons.

PropOSITION 6. Let G be a generic extensive form game of perfect
information with each player moving at most once along each path. Then
there is a unique locally stable component containing the subgame perfect
equilibrium outcome.

Proposition 4 showed that the subgame perfect equilibrium outcome
will fail to be locally stable if some player can be tempted away from the
subgame perfect equilibrium path by a self-confirming equilibrium that
promises that player a higher payoff.?? The following example shows
that the necessary conditions for a locally stable outcome established in

finding that the subgame perfect equilibrium will often not be the only outcome in the limiting
distribution is then related to Samuelson’s (1991a) finding that a similar model does not in
general eliminate weakly dominated strategies in the normal form.

 Note that the unique subgame perfect equilibrium will always be in pure strategies, so
that the question of whether mixed strategies can be duplicated by population proportions
does not arise.

2 Canning (1992b) shows that all the absorbing sets for a fictitious play process in extensive
form games of perfect information are singletons. In a model with trembling hand trembles
of the type introduced by Selten (1975), but without mutations, Canning finds that the
subgame perfect equilibrium is the unique limiting outcome (as trembles become small).

2 It is easy to establish that for all two-player games (from the class of games under
consideration) the subgame perfect equilibrium outcome is locally stable for every sufficiently
large population size and is thus the only outcome in the limiting distribution of our evolution-
ary process.
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Proposition 4 are not sufficient to imply that the subgame perfect equilib-
rium outcome is locally stable.

ExampLE 2. Consider the game shown in Fig. 1.

The unique subgame perfect equilibrium is given by the strategy combi-
nation (R, R, R), for a payoff of (1, [, 1). Let 8¢ be the state in which all
agents from all populations play R and conjectures match these actions.
Let 6, be a state in which all agents in populations 1 and 2 play L. and
agents from population 3 play R, with conjectures matching these aclions.
Note that 6, is a self-confirming equilibrium and gives payoffs (0, 0, 0).
We now show that 6; must be contained in the support of the limiting
distribution.

By Proposition 6, 8 is in the support of the limiting distribution and
so is (by Proposition 2) the state in which all agents from populations 1
and 2 play R and all agents from population 3 play L, with conjectures
matching the behavior of agents at reached decision nodes and agents
from population 1 and 2 conjecturing that all agents from population 3
play R. Now let a single mutation cause an agent from population 2 to
play L. With positive probability, all agents from population 2 (but no
other agents) now receive the learn draw, update their conjecture to match
the observation that all agents from population 3 play L, and switch to
playing a best reply of L. Suppose in the next stage of the evolutionary
process all agents from population 1 (but no other agents) learn. They
update their conjectures to match the observed behavior of other agents,

FiG. 1.
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viz. that agents from population 2 are playing L, and then switch to their
best reply of playing L. It is easily checked that the resulting state is a
singleton-absorbing set yielding the same outcome as 6, . Using Proposi-
tion 2 again, it thus follows that 8, € C(6;) and consequently this self-
confirming equilibrium must appear in the support of the limiting distri-
bution.

This example allows us to illustrate the differences between our out-
comes and Swinkels’ (1992b) equilibrium evolutionarily stable sets. It is
easy to show that in the game of Example 2, the (unique) EES set and
our limiting distribution both contain a set of strategies corresponding to
the payoff (1, 1, 1).?} In our case, this set contains states corresponding
to any possible mixture on the part of player 3, including mixtures that
violate the conditions for a Nash equilibrium. It is the presence of these
states that causes the subgame perfect equilibrium outcome to fail local
stability, because single mutations can lead from these states to learning
dynamics that draw the system away from the subgame perfect outcome.
The corresponding EES set allows only Nash equilibria and hence includes
mixtures on the part of player 3 only if less than one third probability is
placed on L. The dynamic intuition behind the EES set is that deviations
from Nash equilibrium, even at unreached subgames, prompt immediate
responses that push the system back to the EES set, so that the system
is not free to drift away from Nash equilibria via movements at unreached
information sets.

Proposition 4 and Example 2 suggest that the subgame perfect equilib-
rium outcome will correspond to the unique outcome in the limiting distri-
bution of the evolutionary process if one precludes the possibility that
some player is ‘‘tempted’’ away from the subgame perfect equilibrium by
a (possibly nonequilibrium) higher payoff. To make this intuition precise,
we introduce a bit more terminology. We say that the subgame perfect
equilibrium outcome z* is a strict outcome (cf. Balkenborg, 1992) if no
player can force entry into a subgame that has a terminal node with a
higher payoff than the subgame perfect equilibrium, or more formally:
Suppose that given the subgame perfect equilibrium outcome, player i
can force entry into the subgame G(g;) and let Z(a;) denote the set of
terminal nodes contained in G(a;). For z* to be a strict outcome

Yz € Z(a;): m(z*) > m(2)

3 Thomas (1985a,b) offers the set-valued concept of an evolutionarily stable (ES) set.
This differs from Swinkels’ EES set in that potential entrants are not required to be best
responses to their immediate postentry environment. As a result, ES sets require robustness
against more entrants than do EES sets, causing the former to be subsets of the latter. For
reasons similar to those causing our limiting distribution to contain more states than the
EES set in Example 2, there is no ES in this game.
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must hold. We then have:®

ProrosiTION 7. Let the game be as in Proposition 6. If the subgame
perfect equilibrium outcome is strict, it is the unique outcome in the
limiting distribution for all sufficiently large population sizes.

Our results provide both good and bad news for backward induction.
Subgame perfection presents the only possibility for a locally stable out-
come. In many games, however, the limiting distribution contains states
that do not yield the subgame perfect outcome path. These results suggest
a reinterpretation of the role of backward induction in finite extensive
form games of perfect information, with subgame perfection being a suffi-
cient but not necessary conditions for an outcome to be interesting.

5. FORWARD INDUCTION

In the spirit of the previous section, we examine a class of games simple
enough to investigate whether the forward induction properties of locally
stable components carry over to characterize the limiting distributions of
our evolutionary process. We consider two player games whose extended
form calls for player 1 to first choose between an outside option, yielding
payoff vector x, and entering a normal form game G.

The analysis of these games is complicated by the fact that they may
have nonsingleton-absorbing sets. We can make some progress in spite
of this, but the following assumption allows us to strengthen the results.

Assumption 1. (1.1} If a player i agent, called agent A, receives the
learn draw and (after updating conjectures) finds that he is not playing a
best reply, but other player i agents are playing best replies, then agent
A switches to a best reply played by one of the other player i agents.

(1.2) No Nash equilibrium of game G gives player 1 the same payoff
as the outside option.

Assumption (1.1) introduces some inertia into the learning process, indi-
cating that when switching strategies, agents will choose best replies that
are already played by other members of their population if such strategies
exist. This assumption is likely to be reasonable in contexts where learning
is at least partly driven by imitation. Assumption (1.2) is a mild genericity
assumption.

¥ Note that Propositions 4 and 7 are not converses of one another, since Proposition 7
requires that no terminal node in G(a) give player i a higher payoff than m(z*), while
Proposition 4 requires that a self-confirming equilibrium outcome in G(a)) give a higher
payoff than 74z*).
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ProOPOSITION 8. Suppose that there exists a strict Nash equilibrium
of the game G providing player 1 with a payoff higher than x,.
(8.1) Then for all sufficiently large A the limiting distribution does
not contain a state in which all player 1 agents choose the outside option.
(8.2) If Assumption 1 holds, then for all sufficiently large A, the
limiting distribution does not contain a state in which any player 1 agent
chooses the outside option.

Van Damme (1987b, 1989) formulates a notion of forward induction for
generic extensive form games. For generic games from our class, van
Damme’s formulation takes the following form: if one Nash equilibrium
in the game G provides player 1 with a payoff higher than x, and all other
Nash equilibria of G provide player 1 a lower payoff, then any equilibrium
in which player [ plays the outside option fails forward induction. The
idea here is that if G contains a unique equilibrium offering a higher
payoff to player 1 than x,, then player 1’s act of entering G provides an
unambiguous signal that 1 expects this equilibrium to appear in G and
will play 1’s part of this equilibrium. Player 2 then finds it optimal to play
2’s part of the equilibrium. This makes the equilibrium available to player
1, so that 1 will not choose the outside option.

Proposition 8 yields a forward induction notion that differs in two im-
portant respects from van Damme’s. First, we do not require that the
equilibrium in the game G providing i/ with a higher payoff than adhering
to the outside option be unique.” Van Damme requires uniqueness to
ensure that the signal provided by entry into the subgame will be unambigu-
ous. Ambiguity is not a difficulty in the evolutionary approach, as evolu-
tion will assign an unambiguous meaning to the action of entering the
subgame.

Second, although the existence of a Nash equilibrium in the subgame
exhibiting certain properties appears as a condition of the proposition,
our result does not require an assumption of equilibrium play in the sub-
game and hence requires no assumption of equilibrium play after nonequi-
librium actions. In particular, while our result establishes that the outside
option cannot appear in the limiting distribution, it does not follow that
the limiting distribution must correspond to an equilibrium of G. We
cannot rule out the possibility that the limiting distribution corresponds
to a locally stable component containing some nonsingleton-absorbing set
(that contains only states in which player 1 always enters G and receives
a higher payoff than the outside option).

We now turn to an example (where we do not require Assumption 1)
that allows us to explore the relationship between the outside option and

I Our requirement that this equilibrium be strict plays a role similar to van Damme’s
assumption that the game is generic.
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the equilibrum that is selected in game G. Unlike our earlier results, this
example exploits arguments based on comparisons of large numbers of
mutations. These are required to ascertain which of several locally stable
outcomes will appear in the limiting distribution.

ExAMPLE 3. Let the game G be given by, where letters represent
payoffs:

L R
T a,a be
B c¢d dd

We assume that d > a > b > ¢ with (¢ — ¢) > (d — b). This ensures
that (7, L) and (B, R) are pure strategy Nash equilibria, with (B, R) bzing
Pareto dominant and (7, L) being risk dominant, and with both yielding
a higher payoff than the mixed strategy equilibrium payoff (denoted m).

Now consider the game G in which player 1 chooses between an outside
option x, giving payoff x to player 1, and game G. The outcome here will
depend upon the relative magnitudes of x and the payoffs in the subgame.
We assume that the population size is large enough that any strict Nash
equilibrium is locally stable.

Two cases have been addressed by our previous results. If x > d, then
there is only one component, which is composed of singleton-absorbing
sets and gives outcome x. All states in the support of the limiting distribu-
tion thus yield outcome x. If x < m, then there are three components,
corresponding to the three equilibria in G. The component consisting of
the mixed strategy equilibrium fails to be locally stable, whereas the other
two components (for sufficiently large population size) yield locally stable
outcomes. An argument analogous to that of Kandori et al. (1993) (ex-
tending their analysis to our state space and learning mechanism) shows
that the limiting distribution will consist entirely of the risk dominant
equilibrium (7, L) in this case.

If m < x < d, we must examine the dynamics of this model to derive
the support of the limiting distribution:

PROPOSITION 9. Let m < x < d and

_ bd — ca
d-c)—(a-b)

*

(3)

Then for A sufficiently large, the limiting distribution yields the following
locally stable outcomes as a function of x:
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Case | m<x<x* (T, L)
Case 2 x*<x<a (B, R)
Case 3 a<x<d (B,R)

In Case 1, the outside option is so unprofitable as to be irrelevant. In
Case 3, the outside option eliminates a but preserves d as an equilibrium
outcome. There are then two components, corresponding to the outcomes
x and (B, R). The latter is locally stable but the former is not, since it
takes only one mutation to reach the basin of attraction of outcome (B,
R) from the component supporting x. The limiting disribution then selects
only (B, R).

Case 2 is more intriguing. In the absence of the outside option, the limit
consists entirely of (7, L), while the addition of the outside option causes
the imit to be entirely (B, R). The interesting aspect of this result is that
the outside option disrupts neither of the pure strategy Nash equilibria of
the game G (since x < a < d) and never appears in the limiting distribution,
but still affects that distribution. To see why this result appears, note that
in the absence of the outside option, the outcome is (7, L) because it
takes fewer mutations to move the system from (B, R) to the basin of
attraction of (T, L) than to accomplish the reverse movement. With the
addition of the outside option, the relevant calculation now concerns how
many mutations it takes to move the system first from (B, R) to the outside
option and then from the outside option to (7, L). If the outside option
is sufficiently attractive, this can now require more mutations than the
reverse path, yielding (B, R).* It is easy to show that x* < a, ensuring
that the proposition is not vacuous.

6. CONCLUSION

We have examined the evolutionary foundations of backward and for-
ward induction, the two basic building blocks of equilibrium refinements.

We find that our evolutionary model offers mixed support for backward
induction. We have examined the class of games in which backward
induction is most likely to ““work’’: finite extensive form games of perfect
information in which each player moves at most once along any equilib-
rium path. We find that the limiting distribution of the evolutionary process
will include the unique subgame perfect equilibrium of such a game and
that this equilibrium presents the only possibility for a unique limiting

» This occurs because (B, R) is Pareto dominant, making it easier in terms of mutations
to move from (7, L) to the outside option than from (B, R) to the outside option.
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distribution, However, in the absence of strong conditions, the limiting
distribution will also include self-confirming equilibria that are not sub-
game perfect.

Self-confirming equilibria that are not subgame perfect can appear in
the limiting distribution because the evolutionary system can be tempted
away from the subgame perfect equilibrium outcome by the lure of higher
payoffs. In games with multiple subgame perfect equilibria, these same
forces, by allowing the system to be drawn away from some of the equilib-
ria, can produce forward induction properties. In outside option games,
we find a forward induction property that strengthens van Damme’s
(1987b, 1989) notion of forward induction.

We conclude that if one embraces the evolutionary approach to games,
then backward induction is likely to play a somewhat different role than
is often the case, being sufficient but not necessary to identify an outcome
as interesting, while forward induction is likely to play a larger role than
is often the case.

Our analysis can be extended to examine communication in games
where messages do not have exogenously given or intrinsic meanings. The
inferences attached to out-of-equilibrium moves in our forward induction
games arise endogenously as part of the evolutionary process. In a similar
way, meaning can be attached to unused signals in cheap talk and signaiing
games. This allows these unused messages to destabilize some equilibria,
thus providing evolutionary foundations for the arguments that appear in
the equilibrium refinements literature.?” In Noldeke and Samuelson (1992),
we develop this argument for ‘‘small’’ cheap talk and signaling games.
Further work is required to extend the analysis to more general games and
to refine the connection between our limiting distribution and equilibrium
refinements.

APPENDIX: PROOFS

Proof of Proposition 2. Let 8 and 8’ have the specified property. Then 6 and 6’ feature
ideatical conjectures at all information sets and identical actions at every information set

T For example, Farrell's credible neologisms (1993) and Matthews et al.’s announcement
proof equilibria (1991) appear to involve forces similar to those that appear in our evolutionary
model.
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reached during the play of any match. Because all of the actions taken in state 8 are best
replies 10 agents’ conjectures, the same is true of 8, ensuring that 8’ is a singleton-absorbing
set. To show that ' lies in ((8), we need only note that we can construct a sequernce of
singleton-absorbing sets beginning with ¢ and leading to 6', each successive pair of which
is adjacent, by altering, one agent at a time, the actions at unreached information sets the
prevail in state @ to match those of state 6’. Similarly, 6" is in C (9) because altering the
conjectures of agents from populations other than i in a subgame that they cannot cause to
be reached does not affect the optimality of their actions at reached information sets.

Proof of Proposition 5. Let 8 be a state that is not a self-confirming equilibrium. It
suffices to show that with positive probability, the learning mechanism leads from ¢ to a
state that yields a self-confirming equilibrium (and is hence a singleton-absorbing set). This
implies that every state that is not a seif-confirming equilibrium lies in the basin of attraction
of a self-confirming equilibrium, so that the only absorbing sets are singletons consisting of
self-confirming equilibria. To show this, fix ¢ and consider the evolutionary sequence in
which, in each period, all agents receive the learn draw. Let X, ..., X,, be a sequence of
sets of nodes constructed by letting X consist of all nodes that are followed only by terminal
nodes and letting X for i > 1 consist of all nodes not contained in X, ..., X;.; and followed
only by nodes contained in X,, ..., X;_;. Let 7, be large enough that if x; is a node of X,
and if there are at least two periods in which some match reaches node x|, then x; has
already been reached in at least two periods prior to f, (since X is finite, #; exists). Then
no conjectures about actions at any node x; € X, can change after period ¢, ; because either
node x, has already been twice reached, in which case actions (after the first time the node
is reached) and conjectures (after the second time) must match the unique optimal action
at this node and cannot subsequently be changed (because the actions in question can never
be suboptimal),® or the node is never again reached, in which case conjectures cannot be
subsequently changed by the learning process. Now let X, be the collection of nodes that
are followed only by either terminal nodes or nodes in X|. A similar argument shows that
there exists a time ¢, after which conjectures at nodes in X, cannot change. Continuing this
argument establishes the existence of a (finite) period ¢, after which no conjectures can
change. In period 1,, + 1, all agents will switch to best responses to these conjectures,
with these best responses confirming the conjectures (since there is no further conjecture
adjustment), yielding a self-confirming equilibrium. Hence, the learning process ieads to a
self-confirming equilibrium with strictly positive probability, establishing the desired
result. =&

2 Note that we use here the assumption that each player moves only once along each
path, so that if player i moves at this node, then conjectures about i°’s behavior at this node
cannot subsequently be altered by having / change an action at a prior node that previously
made this node unreachable.
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Proof of Proposition 6. Let C be a locally stable component. We show that C must
contain a state yielding the subgame perfect equilibrium outcome. A simple extension of
the argument showing Proposition 2 then implies that C must contain all singleton-absorbing
states corresponding to the subgame perfect equilibrium outcome, thus yielding the result.
To show that C must contain a state yielding the subgame perfect equilibrium outcome,
consider an arbitrary singleton-absorbing set 8 contained in C. Let X, - - - X, be the sequence
of nodes constructed in the proof of Proposition 5. Let n, be the smallest integer such that
8 prescribes play at a node Xp, that is reached in the course of play, that is contained in the
set X, , and that does not match play prescribed by the subgame perfect equilibrium. (If
there 1s no such n,, then 6 yields the subgame perfect equilibrium outcome and we are
done.) By Proposition 2, C contains an element, say 8, with n, = n,, with 8 and 8’ yielding
identical play and conjectures, and with ' prescribing actions corresponding to the subgame
perfect equilibrium at every node that is not reached. Consider 8’. Let a single mutation
that causes an agent at node x, to switch to the subgame perfect equilibrium action occur.
Then with positive probability, all agents who move at node X, learn and switch tc the
subgame perfect equilibrium action at node Xy, Any subsequent learning, because it cannot
alter actions following node X, (or any other nodes followed by subgame perfect equilibrium
actions) will then lead to a state 8,, which is either the subgame perfect equilibrium or
satisfies n, > n,. Since C is locally stable, we have 8, in C. As this argument can be applied
to any 8 € C and m is finite, this ensures that the subgame perfect equilibriumisinC. B

Proof of Proposition 7. Let 7, be the maximal payoff that could result for player { if he
deviates from the subgame perfect equilibrium path. Since the subgame perfect equilibrium
outcome is a strict outcome, we have 7; < 7;(z*). Let m; = min_¢,m{2); i.e., 7, is the worst
possible payoff player i could receive. Define 'A_‘» = (w(z2*) ~ =)/ (mw(2*) - 7)) and let & =
maxiK,». Consider A > A and a singleton-absorbing set §* yielding the subgame perfect
equilibrium outcome. By Propositions 5 and 6, it suffices to show that, given 8%, a sirgle
mutation cannot yield a state that lies in the basin of attraction of a self-confirming equilibrium
that does not yield the subgame perfect equilibrium outcome. Suppose that a single mutation
occurs, and call the resulting state 8,. If this mutation changes the characteristic of an agznt
of player i who cannot force entry into a subgame. then 6, yields the subgame perfect
equilibrium outcome. Hence we may assume that the mutation changes the characteristic
of an agent, who we refer to as the affected agent, of player i who could force entry into a
subgame G(a;). Suppose this mutation does not cause the affected agent to change ais
strategy on the equilibrium path. Then the current state remains unchanged until the affected
agent receives the learn draw, and if he does so he will update his conjecture to match the
observed behavior of other agents. Since the subgame perfect equilibrium outcome is a
strict outcome, the resulting state must be a self-confirming equilibrium yielding the subgarne
perfect equilibrium path. Finally, suppose the mutation causes the affected agent to force
entry into a subgame G(a;). By construction it is the case that for any A > A. all agents but
the affected agent will, upon receiving the learn draw, not change their action. Hence, the
only adjustment in actions that can be caused by the learning process is that the affected
agent eventually switches back to the subgame perfect equilibrium path, completing the
proof of local stability of the subgame perfect equilibrium outcome. ®

Proof of Proposition 8. (8.1) Let 8 be a singleton-absorbing set corresponding to the
Nash equilibrium of the game G that yields player 1 a higher payoff than x. Because this
Nash equilibrium is assumed to be strict, {6’} is a locally stable component for sufficiently
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large A. To show that the limiting distribution excludes states in which all player 1 agents
play the outside option, it suffices to show that any absorbing set Q containing such a state
satisfies the condition of Lemma 3, i.e., o(C(Q), C(8")) = 1. Hence, consider a state 8 in
which all player | agents play the outside option. If 6 is a singleton-absorbing set, then it
follows by a simple variation of the argument in Proposition 6 that o *(C(8), C(8")) = 1. [In
particular, C(8) contains a state in which all player 2 agents play their part of the equilibrium
of G whose player 1 payoff exceeds x,, a single mutation causing a player 1 agent to enter
G then yielding a state in the basin of attraction of ¢'.] Hence a singleton-absorbing set in
which all agents from population 1 choose the outside option cannot appear in the limiting
distribution. To complete the proof, it suffices to show that a state @ in which all player }
ageats choose the outside option cannot be part of a nonsingleton-absorbing set. Suppose
that it is. Then this absorbing set, denoted @, must contain a state 4’ in which not all player
I agents play the outside option {(since otherwise @ would be a singleton), with pgy > 0
(since the learning mechanism leads with positive probability from any state in a nonsingleton-
absorbing set to any other). py, > 0 can hold only if the outside option is a strict best reply
in state ' or is a weak best reply and no player 1 agents currently play best replies. Let
either of these conditions hold. Then there is a positive probability that all (and only) player
I agents learn in state @', with these agents swiching to the outside option. This yields a
singleton-absorbing set (since the outside option is by hypothesis a best reply for player |
agents and any strategies for player 2 agents are best replies to the outside option). Because
6 is a singleton-absorbing set, it cannot be that Q is a nonsingleton-absorbing set (because
6 € ), yielding a contradiction.

(8.2) Let Assumption 1 hold. Then we show that there cannot exist a nonsingleton-
absorbing set containing a state in which some (although possibly not all) player 1 agents
play the outside option. Suppose such a set exists, denoted Q. Then ¢ must contain two
states, say 6 and ', such that no player 1 agent plays the outside option in state §’, some
player | agents play the outside option in state 8, and p,, > 0.” Then the outside option
must be a best reply for player 1 agents in state 8'. If it is a unique best reply (or is a weak
best reply but no other best reply is currently player), then with positive probability all (and
only) player 1 agents learn and the learning mechanism leads to a self-confirming equilibrium
and hence singleton-absorbing set in which all player 1 agents choose the outside option,
contradicting the assumption that Q is a nonsingleton-absorbing set. If some other best reply
is currently played. then under Assumption 1.1, no player 1 agents can switch to the outside
option, contradicting p,, > 0. Hence, no nonsingleton-absorbing set can contain states in
which player 1 agents play the outside option. The proof is then completed by noting that,

* If not, then the outside option must be a best reply in every state in @. However, there
cannot exist a set of strategies for a player that are best replies in every state of a nonsingleton-
absorbing set. If such a set § existed, then there must exist a state in the absorbing set O
in which all player 1 agents play strategies in §. However, no subsequent adjustments in
player 1 strategies can occur, since the strategies in S are best replies in every state in Q.
With paositive probability, the other player's agents then all learn and switch to best replies,
yielding a self-confirming equilibrium and hence a singleton-absorbing set, contradicting the
fact that Q is an absorbing set.
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given Assumption 1.2, there cannot exist a singleton-absorbing set in which some but not
all player | agents play the outside option. W

Proof of Proposition 9. We only consider Case 2; Cases | and 3 are straightforward.
For sufficiently large population size, the game has three components of singleton-absorbing
sets, corresponding to the three Nash equilibrium outcomes of the game: x (supportzd by
every state in which all player 1 agents have conjectures that make choosing the outside
option a best reply), (T, L), and (B, R). Each of the latter two components consists of a
single state. Let n, be the number of states in C(x). Let ny = o*((B, R), C(x)), and let
n, = a*(T, L), C(x)), where n, n, > 1 by local stability of the strict Nash equilibria. Note
that o (C(x), (T, L)) = 1 = a*(C(x), (B, R)). Let D(8,} = ny + n; + n, — 1, DUT, L) =
n, + n., and DUB, R)) = n, + n,, where 9, represents any state in the component C{(x).
D(Q) can intuitively be interpreted as the least number of mutations required to construct
a path from every other absorbing set to Q. It is shown in Samuelson (1991a) that the limiting
distribution will consist of those absorbing sets that minimize D(-). So the limit will consist
entirely of (T, L) if ny > n; and will consist entirely of (B, R) if n, < n;. Now note that

n, > ny if and only if p > g, where (1 - pla + pb = x and gc + (I -
g)d = x. Recalling that ¢ > b and d > ¢, we see that p < ¢, and the
limiting distribution will consist entirely of (B, R), if (¢ — xMa ~ b <

(d — x)/(d — ¢) or, from Eq. (3), if x > x*, which is the desired result. B
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