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Abstract. The question of whether knowledge is definable in terms of belief, which has played
an important role in epistemology for the last 50 years, is studied here in the framework of epis-
temic and doxastic logics. Three notions of definability are considered: explicit definability, implicit
definability, and reducibility, where explicit definability is equivalent to the combination of implicit
definability and reducibility. It is shown that if knowledge satisfies any set of axioms contained in
S5, then it cannot be explicitly defined in terms of belief. S5 knowledge can be implicitly defined by
belief, but not reduced to it. On the other hand, S4.4 knowledge and weaker notions of knowledge
cannot be implicitly defined by belief, but can be reduced to it by defining knowledge as true belief.
It is also shown that S5 knowledge cannot be reduced to belief and justification, provided that there
are no axioms that involve both belief and justification.

§1. Introduction. The observations that knowledge and belief are related goes back
to Plato’s dialogue Theaetetus, whose protagonist suggests that knowledge is justified true
belief (JTB). Two millennia later, analytic philosophers such as Ayer (1956) and Chisholm
(1957) adopted Plato’s slogan. But then a three-page paper by Gettier (1963) refuted
the proposed definition by means of a few counterexamples; this started a new area of
epistemological study of knowledge that tried to justify and clarify the notion of knowledge
as JTB.

Another flourishing new area of epistemology was started at the same time by Hintikka’s
(1962) book Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Hintikka studied knowledge and belief as modalities, employing and developing for this
purpose the syntax and semantics of modal logic, thus laying the foundations of modern
epistemic logic. As indicated by the title of Hintikka’s book, knowledge and belief were
intertwined in epistemic logic since its inception.

As noted recently by Stalnaker (2006) and van Benthem (2006), the formal study of epis-
temic logic has contributed very little to the study of knowledge as JTB. Indeed, there seems
to have been very little communication between epistemic logic and epistemology; several
recent monographs and articles devoted to JTB have altogether ignored the developments
in epistemic logic in the past 40 years (see, e.g., Alston, 1989; BonJour & Sosa, 2003;
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Swinburne, 2001). While there is certainly awareness of the theory of JTB among re-
searchers in epistemic logic, there seems to have been very little work on it. For example,
a survey of epistemic logic of Lenzen (1978) formalized the notions of JTB in modal
logic, but did not apply the tools of this logic to analyze the theory. There has been a little
more activity recently. For example, Stalnaker (2006) proposed and studied a new logic
of knowledge and belief, addressing some of the issues that were raised in the literature
on JTB, while Artemov & Nogina (2005) introduced a logic of justified knowledge. (Van
Benthem (2006) provides an overview of some of the recent lines of research.)

There is a central aspect of the theory of JTB that seems particularly suited to the tools
of epistemic logic: the definability of knowledge. Most variants of the theory of JTB share
in common a quest for a definition or expression of knowledge in terms of belief and
possibly other things. But what does it mean to define knowledge in terms of belief, or,
more generally, to define one modality in terms of others? We develop a general theory of
modal definability in a companion paper (Halpern et al., 2008). Here we present the main
results and apply them to specific logics of knowledge and belief.1

We consider three different notions of definability, and show that there is a surprisingly
rich interplay between these notions of definability and the assumptions we make about the
underlying notion of knowledge. Our results highlight the special role of the much debated
negative introspection axiom for knowledge in the context of definability. They also give us
the tools to reexamine the adequacy of weak logics of knowledge and explicate the notion
of epistemic luck.

We briefly describe the three notions of definability here, so as to be able to outline our
results in a little more detail. In first-order logic, the notions of implicit definability and
explicit definability of predicates are standard, and are known to be equivalent by Beth’s
(1953) theorem. These notions can be lifted to the definability of modalities in modal logics
in a straightforward way. We explain the definitions in the context of knowledge and belief.

Consider a logic � for knowledge and belief. Knowledge is explicitly defined in � if
there is a formula DK (for “definition of knowledge”) in � of the form K p ↔ δ, where
δ is a formula that does not mention the knowledge operator. Knowledge is implicitly
defined in � if, roughly speaking, � “determines” knowledge uniquely. Syntactically, this
determination means that any two modal operators for knowledge that satisfy � must be
equivalent. Semantically, this means that two Kripke models of � with the same set of
worlds that agree on the interpretation of belief (and on the interpretations of all primitive
propositions) must agree also on the interpretation of knowledge.

Unlike the case of first-order definability, these two notions of definability do not co-
incide for modal logics; implicit definability is strictly weaker than explicit definability.
In Part I, we define another notion of definability, reducibility, and prove that implicit
definability combined with reducibility is equivalent to explicit definability. Knowledge is
reducible to belief in � if all the theorems in � follow from the logic of belief included in
� together with the definition DK.2

In this paper, we consider logics � of knowledge and belief where the logic of belief in �
is KD45. The logic � is assumed to include the two axioms, suggested by Hintikka (1962),
that provide the link between belief and knowledge: the axiom that whatever is known is
also believed (K p → Bp), and the axiom that all beliefs are known (Bp → K Bp). Our

1 We have included enough review in each paper to make them both self-contained.
2 We also require that the logic of belief and DK be a conservative extension of the logic of belief.

We discuss this issue in more detail in Section 5.
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first result shows that as long as the logic of knowledge in � is contained in S5, knowledge
is not explicitly defined in �. By the equivalence theorem of the companion paper, in any
such logic it is impossible that knowledge is both implicitly defined in � and reducible to
belief. Which of these properties holds for a logic of knowledge and belief depends on the
properties of knowledge. When knowledge satisfies S5, it is not reducible to belief, but,
somewhat surprisingly, it is implicitly defined by belief. On the other hand, when the logic
of knowledge is contained in S4.4, then knowledge is not implicitly defined but is reducible
to belief.

The reducibility of S4.4 knowledge to belief requires a formula that defines knowledge
in terms of belief. The defining formula is perhaps the most natural candidate: the formula
K p ↔ p ∧ Bp, denoted TB, which defines knowledge as true belief. The connection
between the formula TB and the logic of knowledge S4.4 was already pointed out by
Lenzen (1979), who showed that the logic generated by adding TB to KD45 contains S4.4.
The reducibility of S4.4 knowledge and all weaker logics of knowledge to belief implies
that these logics do not capture the distinction between knowledge and mere (unjustified)
true belief.

The irreducibility of S5 knowledge to belief raises the question of whether S5 knowledge
is reducible to belief and an additional modality: justification. We addressed this question
in the companion paper (Halpern et al., 2008), using algebraic semantics. Using the result
obtained in the companion paper, we conclude here that if there are no axioms that involve
both justification and belief, then S5 knowledge is not reducible to belief and justification.

Finally, we address the question of defining KD45 belief in terms of knowledge. It is
shown that it can be neither explicitly not implicitly defined for any logic of knowledge
contained in S5, and hence for any weaker logic. Yet KD45 belief can be reduced to
S4.4 knowledge by the axiom Bp ↔ ¬K¬K p. The fact that adding this formula to S4.4
generates the logic of KD45 was already observed by Lenzen (1979).

The rest of this paper is organized as follows. In Section 2, we review the standard
logics of knowledge and belief and their semantics in terms of Kripke models and frames.
In Section 3, we review the definitions of the three notions of definability that we consider
from the companion paper, and state the main result of the companion paper, that explicit
definability is equivalent to implicit definability and reducibility. Using these definitions,
we consider the extent to which knowledge can be defined in terms of belief (and vice
versa) in Section 4. In Section 5 we take a closer look at the notion of reducibility, consider
some variants of the definition similar in spirit to other notions considered in the literature,
and examine the extent to which our results hold with these variants. In Section 6, we
consider what our results have to say about epistemic luck (Pritchard, 2005) and negative
introspection. Proofs are relegated to the Appendix.

§2. Logics of knowledge and belief. We assume that the reader is familiar with the
standard logics of knowledge and belief, and their semantics. We briefly review the relevant
material here. (Some of this material is taken verbatim from the companion paper; we
include it here to make this paper self-contained.)

Let P be a non-empty set of primitive propositions. Let M1, . . . Mn be modal operators
or modalities. Formulas are defined by induction. Each primitive proposition is a formula.
If ϕ and ψ are formulas then ¬ϕ, (ϕ → ψ), and Miϕ for i = 1, . . . n, are also formulas.3

3 The modalities in this paper are unary. It is straightforward to extend our results to modal
operators of higher arity.
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The propositional connectives ∨, ∧, ↔ are defined in terms of ¬ and → in the usual way;
we take true to be an abbreviation of p ∨¬p. The language L(M1, . . . Mn) is the set of all
formulas defined in this way.

For the purposes of this paper, we take a (modal) logic � to be any collection of
formulas in a language L(M1, . . . , Mn) that (a) contains all tautologies of propositional
logic; (b) is closed under modus ponens, so that if ϕ ∈ � and ϕ → ψ ∈ �, then ψ ∈ �;
and (c) is closed under substitution, so that if ϕ ∈ �, p is a primitive proposition, and
ψ ∈ L(M1, . . . , Mn), then ϕ[p/ψ] ∈ �, where ϕ[p/ψ] is the formula that results by
replacing all occurrences of p in ϕ by ψ . A logic � is normal if, in addition, for each
modal operator Mi , � contains the axiom KMi , Mi (p → q) → (Mi p → Mi q), and is
closed under generalization, so that if ϕ ∈ �, then so is Miϕ. In this paper, we consider
only normal modal logics. If �1 and �2 are two sets of formulas, we denote by �1 + �2
the smallest normal modal logic containing �1 and �2. Even if �1 and �2 are themselves
normal modal logics, �1 ∪ �2 may not be; for example, it may not be closed under the
substitution rule. Thus, �1 + �2 will in general be a superset of �1 ∪ �2. Note that if �
is a normal logic and L is a language (which might not contain �), then � ∩L is a normal
logic.

We are often interested in logics generated by axioms. The logic generated by a set A
of formulas, typically called axioms, is the smallest normal logic that contains A.

The logic of belief we adopt here is the normal logic in the language L(B) generated by
the following three axioms:

(DB) Bp → ¬B¬p

(4B) Bp → B Bp

(5B) ¬Bp → B¬Bp.

The first axiom states that one cannot believe a contradiction. The other two axioms
require that belief is positively and negatively introspective. The logic generated by these
axioms is conventionally called KD45. To emphasize that the logic is in L(B) we denote
it by (KD45)B .

The logics of knowledge we consider are subsets of the logic (S5)K in the language
L(K ), where S5 is the normal logic generated by the following three axioms:

(TK ) K p → p

(4K ) K p → K K p

(5K ) ¬K p → K¬K p.

The logic (S4)K is the normal logic generated by TK , 4K . There are several logics of
interest between (S4)K and (S5)K . A key role is played here by the logic (S4.4)K , which
is generated by TK and 4K , and the following weakened version of 5K :

(4.4K ) p → (¬K p → K¬K p).

The following two axioms link knowledge and belief in logics that contain both
modalities:

(L1) K p → Bp

(L2) Bp → K Bp.

We briefly review the semantics of frames and Kripke models. A frame F for the
language L(M1, . . . , Mn) is a tuple (W, R1, . . . , Rn), where W is a non-empty set of
possible worlds (worlds, for short), and for each i = 1, . . . , n, Ri ⊆ W × W is a binary
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relation on W , called the accessibility relation for the modality Mi . A Kripke model M
based on the frame F is a pair (F, V ), where V : P → 2W is a valuation of the primitive
propositions as subsets of W .

The function V is extended inductively to a meaning function [[·]]M on all formulas.
We omit the subscript M when it is clear from context. For each primitive formula
p, [[p]] = V (p). For all formulas ϕ and ψ , [[¬ϕ]] = ¬[[ϕ]], where we abuse notation
and use ¬ to denote set-theoretic complementation, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], and [[Miϕ]] =
{x | Ri (x) ⊆ [[ϕ]]}, where Ri (x) = {y | (x, y) ∈ Ri }.

We write (M, w) |� ϕ if w ∈ [[ϕ]]. When [[ϕ]] = W we writeM |� ϕ and say that ϕ is
valid inM. The formula ϕ is valid in a frame F if it is valid in each of the models based
onF . The set of formulas that are valid in a frameF is called the theory ofF , denoted Th(F).

For a class of frames S, Th(S) is the set of formulas that are valid in each frame in S.
A logic � is sound for S if � ⊆ Th(S), and is complete for S if � ⊇ Th(S).

Let � be a logic. A frame F is said to be a � frame if � ⊆ Th(F). The logics that we
focus on in this paper are the logic of belief (KD45)B , logics of knowledge that are subsets
of (S5)K , and logics of belief and knowledge that are subsets of (KD45)B + (S5)K +
{L1,L2}.

In the sequel we use the following characterizations of � frames for some logics �:

• A frame F = (W, RB) is a (KD45)B frame iff RB is serial, transitive, and Eu-
clidean.4

• A frame F = (W, RK ) is an (S4.4)K frame iff RK is reflexive, transitive, conver-
gent, and remotely symmetric, where a relation R is convergent if (w,w) ∈ R and
(w, y) ∈ R implies that there exists a world z such that (x, z) ∈ R and (y, z) ∈ R,
and R is remotely symmetric if (x, y) ∈ R and (y, z) ∈ R implies that (z, y) ∈ R
or x = y.

• A frame F = (W, RK ) is an (S5)K frame iff RK is an equivalence relation.
• Let �1 be the logic generated by L1. Then a frame (W, RB, RK ) is a �1 frame iff

RB ⊆ RK .
• Let �2 be the logic generated by L2. Then a frame (W, RB, RK ) is a �2 frame iff

for all x , y, and z in W , if (x, y) ∈ RK and (y, z) ∈ RB , then (x, z) ∈ RB .

It is well known that for each of the logics � mentioned above, � is sound and complete
with respect to � frames (Georgacarakos, 1976; van der Hoek, 1993). Moreover, if the
logic � is generated by the union of several of the logics above, then a frame is a � frame
if and only if it satisfies the conditions above for each of the generating logics. In this case
too, the logic � is sound and complete with respect to the family of � frames.

§3. Three notions of definability. Since we are interested in the extent to which
knowledge can be defined in terms of belief, we need to clarify what we mean by “define”.
In this section, we review the three different notions of defining one modality in terms of
others examined carefully in the companion paper, and restate the main results from that
paper. Again, much of the text is taken verbatim from the companion paper.

Let δ be a formula in L(M1, . . . , Mn−1). The formula

(DMn) Mn p ↔ δ

4 R is serial if for each x there exists a y such that (x, y) ∈ R; R is Euclidean if, for all x , y, and z,
if (x, y) ∈ R and (x, z) ∈ R then (y, z) ∈ R.
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is called a definition of Mn (in terms of M1, . . . , Mn−1). Consider a logic � in the language
L(M1, . . . , Mn).

Explicit definability: Mn is explicitly defined in � if there is a definition
DMn of Mn such that DMn ∈ �.

To capture implicit definability in multimodal logic, let M ′
n be a modal operator distinct

from M1, . . . , Mn , and consider the language L(M1, . . . , Mn, M ′
n). The logic �[Mn/M ′

n]
is obtained by replacing all occurrences of Mn in formulas in � by M ′

n .

Implicit definability: Mn is implicitly defined in � if Mn p ↔ M ′
n p ∈

� + �[Mn/M ′
n].

These definitions of explicit and implicit definability are obvious analogues of explicit
and implicit definability of predicates in first-order logic. However, in first-order logic,
Beth’s (1953) celebrated theorem states that implicit and explicit definability coincide.
In the context of modal logic, as we show by example (see Section 4), they do not.

To simplify notation, we henceforth takeL = L(M1, . . . , Mn),L0 = L(M1, . . . , Mn−1),
and �0 = �∩�0. With this notation, explicit definability can be described by the inclusion
�0 + DMn ⊆ �.

The notion of reducibility, which we introduce next, seems to capture our intuition of
defining knowledge in terms of belief better than the notion of explicit definability. When
we define knowledge as true, justified belief, we do not expect this definition to follow
from the logic that characterizes knowledge. We expect just the opposite: that the desired
properties of knowledge follow from this definition when it is added to the logic of belief
and justification. We get this effect by reversing the inclusion in the above description of
explicit definability. Recall that a logic � in a language L is a conservative extension of a
logic �′ in a language L′ ⊆ L if �′ = � ∩ L′.

Reducibility: Mn is reducible to M1, . . . , Mn−1 in � if there is a def-
inition DMn of Mn , such that � ⊆ �0 + DMn , and �0 + DMn is a
conservative extension of �0. In this case, we say that Mn is reducible
to M1, . . . , Mn−1 by DMn .

The requirement that �0 +DMn be a conservative extension of �0 guarantees that when
� is consistent, then �0 + DMn is also consistent. But this requirement is needed also to
ensure that the definition DMn does not affect the operators M1, . . . , Mn−1. Without this
requirement it is possible that the definition “sneaks in” extra properties of the defining
modalities. We demonstrate this and further discuss reducibility in Section .

The main result of the companion paper shows that the three notions that we have
considered are intimately connected: explicit definability is equivalent to the combination
of implicit definability and reducibility; this is formalized in Theorem 3.1 below. Examples
in Section 4 show that explicit definability is not equivalent to implicit definability or
reducibility separately. Thus, the situation in modal logic is quite different from that in
first-order logic, where implicit and explicit definability coincide.

THEOREM 3.1. (Halpern et al., 2008) The modal operator Mn is explicitly defined in �
if and only if Mn is implicitly defined and reducible to M1, . . . , Mn−1 in �.

§4. Definability in epistemic–doxastic logics. In this section we study logics in the
language L(B, K ) that are subsets of (KD45)B + (S5)K + {L1, L2}, and apply the three
notions of definability from Section to the modalities B and K .
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4.1. Defining knowledge in terms of belief. We show that knowledge cannot be de-
fined explicitly in terms of belief in any of the logics in which we are interested.

THEOREM 4.1. The modality K cannot be defined explicitly in the logic (KD45)B +
(S5)K + {L1, L2}, and hence not in any logic contained in it.

In contrast to the universality of this theorem, the other two notions of definability
depend on whether we consider S5 knowledge or S4.4. We first consider epistemic logics
contained in S4.4.

4.1.1. Definability of K for S4.4 and weaker logics True belief is the most natural
candidate for a definition of knowledge in terms of belief. It is universally accepted among
epistemologists that knowledge cannot be thus defined. However, as Theorem 4.2 below
shows, provided we accept the linking axioms (which seem fairly non-controversial), for
all logics contained in S4.4, knowledge can be reduced to belief by defining it as true
belief. This would suggest that none of these logics is a good candidate for the “true” logic
of knowledge.

Consider the definition of knowledge as true belief:

(TB) K p ↔ (p ∧ Bp).

THEOREM 4.2. For all logics � such that (KD45)B ⊆ � ⊆ (KD45)B + (S4.4)K +
{L1, L2}, the knowledge modality K is reducible to B in � by TB. Moreover, if � =
(KD45)B + �′ + {L1, L2} for �′ ⊆ (S5)K , then K is reducible to B in � by TB if and
only if �′ ⊆ (S4.4)K .

It follows from Theorem 4.2 that (S4.4)K ⊆ (KD45)B + TB. Corollary A.8 (proved in
the Appendix) shows that (KD45)B + TB is a conservative extension of (S4.4)K . Thus,
((KD45)B + TB) ∩ L(K ) ⊆ (S4.4)K . Therefore, ((KD45)B + TB) ∩ L(K ) = (S4.4)K ,
which means that S4.4 is the logic of knowledge defined as true belief.

Applying the equivalence in Theorem 3.1 to Theorems 4.1 and 4.2, we immediately
obtain the following conclusion:

THEOREM 4.3. The modality K is not implicitly defined in (KD45)B + (S4.4)K +
{L1, L2}, and hence also not in any logic contained in this logic.

4.1.2. Definability of K for S5 The definability properties of K in the logic of belief
and S5 knowledge are the opposite to those described in Theorems 4.2 and 4.3.

THEOREM 4.4. The modality K is implicitly defined in the logic (KD45)B + (S5)K +
{L1, L2}.

By Theorem 3.1, explicit definability is equivalent to implicit definability and reducibil-
ity. Thus, the following result, which stands in contrast to Theorem 4.2, follows immedi-
ately from Theorems 4.1 and 4.4.

THEOREM 4.5. The modality K is not reducible to B in the logic (KD45)B + (S5)K +
{L1, L2}.

In the Appendix (see Proposition A.2) we show that there is a unique way to extend
a Kripke model for KD45 belief to a Kripke model for S5 knowledge. It may thus seem
somewhat surprising that S5 knowledge is not reducible to belief. As we show in the com-
panion paper, this apparent disconnect can be explained by considering (modal) algebras,
which provide a more general approach to giving semantics to modal logic than Kripke
models (Blackburn et al., 2001). In particular, we show (see Theorem 5.4 in Halpern
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et al. (2008)) that there is an algebraic model for (KD45)B that cannot be extended to
an algebraic model for S5 knowledge.

Table 1 summarizes our main results about defining knowledge in terms of belief.

4.2. Justification. While we have shown that S5 knowledge is not reducible to belief,
our results do not preclude the possibility that it is reducible to belief and justification
in some logic of these modalities. Note that, if it is, then it follows from Theorems 3.1
and 4.4 that S5 knowledge would then be explicitly defined in terms of belief and
justification.

With no constraints, knowledge is trivially reducible to belief and justification. We
simply assume that the modal operator J (for justification) satisfies all the S5 axioms,
and that the axioms L1 and L2 hold with K replaced by J . If � is the resulting logic, then
K is reducible to J in � via the definition K p ↔ J p.

In the companion paper we show that, roughly speaking, if the interaction between
B and J is rather weak, then knowledge cannot be reduced to a combination of belief and
justification. We provide both a semantic and more syntactic characterization of “weak in-
teraction”. The semantic characterization involves algebras. The syntactic characterization
is relevant for the results of this paper, so we restate it.

THEOREM 4.6. Let � be a logic inL(B, J, K ) such that �∩L(B, J ) = (KD45)B+�J ,
where �J ⊆ S5J . Then K is not reducible to B and J in �.

The “weak interaction” between B and J is captured by saying that the axioms for B
and J can be “decomposed” into axioms for B ((KD45)B) and axioms for J (which are
contained in S5J ). Using Theorem 4.6, we can prove the following result.

COROLLARY 4.7. Let � = (KD45)B +�J +(S5)K +{L1, L2} be a logic inL(B, J, K ),
where �J ⊆ (S5)J is a logic in L(J ). Then K is not reducible to B and J in �.

These results suggest that if S5 knowledge is defined in terms of true justified belief,
then there must be some interaction between justification and belief.

The philosophical interest in Corollary 4.7 depends in large part on what are viewed as
reasonable characteristics of justification. We are not aware of work on logics of justifica-
tion in the context of epistemic logic beyond that of Artemov & Nogina (2005). Artemov
and Nogina do not consider a logic with a J operator, but instead have formulas of the
form t : ϕ, which can be read “ϕ is known for reason t”. The term t can be thought
of as a justification for ϕ. If we define Jϕ to hold if there exists a t such that t : ϕ
holds, then Artemov and Nogina’s axioms imply that J satisfies S4. However, Artemov
and Nogina require that Jϕ → Kϕ, so their notion of justification is stronger than the
one we have implicitly been considering. It remains to be seen whether there is a logic of
justification that captures the more standard philosophical intuitions and allows knowledge

Table 1. Definability of knowledge by belief

reduction of implicit explicit
knowledge definition definition

to belief of knowledge of knowledge

(KD45)B + (S5)K + {L1, L2} − + –
(KD45)B + (S4.4)K + {L1, L2} + (by TB) – –
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to be defined in terms of belief and justification; of course, this means that J cannot satisfy
the hypotheses of Corollary 4.7.

4.3. Defining belief in terms of knowledge. Although the focus in the literature has
been on defining knowledge in terms of belief, we can ask the same questions about
defining belief in terms of knowledge. Somewhat surprisingly, we get results that parallel
those for defining knowledge in terms of belief, in particular the following analogues of
Theorems 4.1 and 4.2.

THEOREM 4.8. The modality B cannot be defined explicitly in the logic (KD45)B +
(S5)K + {L1, L2}, and hence not in any logic contained in it.

To study reducibility of belief to knowledge, we consider the definition of belief as
possible knowledge given by the formula

(PK) Bp ↔ ¬K¬K p.

The following proposition, due to Lenzen (1979), can be easily verified by showing that
TB and all the axioms of KD45 are provable in (S4.4)K + PK and that PK and all the
axioms of S4.4 are provable in (KD45)B+TB.

PROPOSITION 4.9. (KD45)B +TB = (S4.4)K + PK.

By Lenzen’s definition, this equality establishes that the logics KD45 and (S4.4)K are
synonymous. As suggested above, Proposition 4.9 can be viewed as saying four things:
(a) PK ∈ (KD45)B +TB, (b) (S4.4)K ⊆ (KD45)B+TB, (c) TB ∈ (S4.4)K + PK, and (d)
(KD45)B ⊆ (S4.4)K + PK. The first part of Theorem 4.2 can be viewed as a strength-
ening of (b), since it shows that (S4.4)K + {L1, L2} ⊆(KD45)B +TB, and that (KD45)B

+TB is a conservative extension of (KD45)B . The following result strengthens (d) in the
corresponding way.

THEOREM 4.10. For all logics � such that (S4.4)K ⊆ � ⊆ (KD45)B + (S4.4)K +
{L1, L2}, the belief modality B is reducible to K in � by PK.

The equivalence in Theorem 3.1 combined with the previous two theorems immediately
implies the following:

THEOREM 4.11. The modality B is not defined implicitly in the logic (KD45)B +
(S5)K + {L1, L2}, and hence not in any logic contained in (KD45)B + (S5)K + {L1, L2}.

§5. A closer look at reducibility. Our requirement in the definition of reducibility
that �0 + DMn be a conservative extension of �0 has no analogue in the work of Lenzen
(1979) or Pelletier & Urquhart (2003). One consequence of requiring that �0 + DMn be a
conservative extension of �0 is proved in the companion paper (see Proposition 3.1); we
restate the result here. A definition of a modality Mn by the formula Mn p ↔ δ is simple if
δ contains no primitive propositions other than p.

PROPOSITION 5.1. (Halpern et al., 2008) If Mn is reducible to M1, . . . , Mn−1 in �,
then it is reducible by a simple definition.

In the next subsection we consider another consequence of requiring conservative ex-
tensions; in the second subsection we explain why it is an arguably necessary requirement;
finally, in the last subsection, we consider reducibility when logics are not required to be
normal.
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5.1. Consistency. It is easy to see that if � is inconsistent, then Mn is reducible to
Mn, . . . , Mn−1 in � by any definition. If � is consistent, which is the case of interest,
then �0 is also consistent, but for some definitions DMn , �0 + DMn may be inconsistent,
in which case the inclusion � ⊆ �0 + DMn trivially holds. As the following example
shows, without requiring that �0 +DMn be a conservative extension of �0, for every logic
� we can find such undesired definitions.

EXAMPLE 5.2. Consider the definition DMn given by the formula Mn p ↔ ¬true.
Substituting true for p, we conclude that Mntrue ↔ ¬true ∈ �0 + DMn . By normality,
Mntrue ↔ true ∈ �0 + DMn . Thus, �0 + DMn is inconsistent, and hence � ⊆ �0 +
DMn .

Obviously, if �0 is consistent, then �0 + DMn is guaranteed to be consistent if it is a
conservative extension of �0. But we can prevent the undesirable situation described in
Example 5.2 just by requiring that �0 + DMn be consistent, rather than requiring that it be
a conservative extension of �0. This leads to the following definition.

Weak reducibility: Mn is weakly reducible to M1, . . . , Mn−1 in � if
either � is inconsistent or if there is a definition DMn of Mn such that
� ⊆ �0 + DMn , and �0 + DMn is consistent.

5.2. Why require a conservative extension? Weak reducibility does not suffice to
prevent the defining formula from adding extra properties to the defining modalities, even
if we use a simple definition. The key point is that the requirement that �0 + DMn be a
normal logic means that �0 + DMn must contain all substitution instances of the axiom
KMn , Mn(p → q) → (Mn p → Mnq), and the formula Mntrue. Let �δ consist of all
substitution instances of δ[p/(p → q)] → (δ → δ[p/q]), and the formula δ[p/true].
Since �0 + DMn contains Mn p ↔ δ, it clearly must contain �δ . (For if ψ is a substitution
instance of δ[p/(p → q)] → (δ → δ[p/q]), let ψ ′ be the corresponding substitution
instance of Mn(p → q) → (Mn p → Mnq). Since �0 is normal, ψ ′ ∈ �0. By applying
DMn and propositional reasoning repeatedly, it easily follows that ψ ∈ �0 + DMn .)
Thus, �0 + DMn cannot be a conservative extension of �0 unless �δ ⊆ �0. As the
following result shows, this is also a sufficient condition for �0 +DMn to be a conservative
extension of �0. Therefore, if �0 + DMn is not a conservative extension of �0, then �δ

is not a subset of �0, but is a subset of �0 + DMn . Hence, adding DMn to �0 results
in new formulas, those in �δ which are not in �0, that are satisfied by the modalities
M1, . . . , Mn−1.

PROPOSITION 5.3. If DMn is a simple definition, then �0 + DMn is a conservative
extension of �0 iff �δ ⊆ �0.

Proposition 5.3 follows from a characterization of �0+DMn , proved as Proposition A.10
in the Appendix.

Using these insights, we can show that knowledge is weakly reducible to belief by
a simple definition. This is done by a definition of K that “redefines” B to be an S5
knowledge operator in (KD45)B + DK.

THEOREM 5.4. The modality K is weakly reducible to B in the logic (KD45)B +
(S5)K + {L1, L2} by the simple definition

DK = K p ↔ ((p ∧ Bp) ∨ (¬p ∧ Bp) ∨ (p ∧ B¬p)).
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To us, Theorem 5.4 suggests that weak reducibility is an inappropriate notion, and is the
major reason that we added the requirement that �0 + DMn be a conservative extension of
�0 to the definition of reducibility.

5.3. Normality. Given the power of the assumption of normality, we conclude by con-
sidering what happens if we drop it. Let �⊕ DM denote the smallest logic (not necessarily
normal) that contains � and DM; We can define the notions of (weak) reducibility′ just by
replacing + by ⊕ in the definition of (weak) reducibility.

The analogue of Proposition 5.1 holds with no change in proof for reducibility′; thus,
for reducibility′ we can consider simple definitions without loss of generality. This is not
the case for weak reducibility′. The next result shows that K is not weakly reducible′ to B
by a simple definition, and hence not reducible′ to belief, but K is weakly reducible′ to B
by a non-simple definition.

THEOREM 5.5. The modality K is not weakly reducible′ to B by a simple definition
in the logic (KD45)B + (S5)K + {L1, L2}, and hence not reducible′ to B. However, K is
weakly reducible′ to B in (KD45)B + (S5)K + {L1, L2} by the definition K p ↔ (Bp ∧
(Bq → q)).

§6. Epistemic luck, negative introspection, and knowledge as true belief. When
knowledge is defined as true belief, the difference between knowledge and belief is com-
pletely external; even externalists would reject such a definition of knowledge. According
to Theorem 4.2, all the logics of belief and knowledge where the axioms of knowledge are
contained in (S4.4)K can be derived from the definition of knowledge as true belief. Thus,
such logics fail to express an internal aspect of knowledge that distinguishes it from true
belief.

A different objection to defining knowledge as true belief was raised by Foley (1984). He
used the term “epistemic luck” to describe the case that a believed sentence ϕ turns out to
be true. Since knowledge should be due to more than just luck, chance, or serendipity, true
belief, that is, belief that turns out to be true by mere luck, should not count as knowledge.
Several authors tried to explicate and analyze epistemic luck (see Pritchard, 2005, and the
references therein). For example, Pritchard (2004) suggests an explanation of epistemic
luck in the framework of the semantics of possible worlds. His analysis makes use of the
distance between possible worlds. We now suggest a simpler explanation of epistemic luck
in terms of the logic of belief adopted.

We start by defining the opposite of epistemic luck. We say that the formula ¬ϕ ∧
Bϕ represents epistemic misfortune with respect to ϕ. If ¬ϕ ∧ Bϕ happen to be true,
the believing agent is epistemically unfortunate. It might seem reasonable to say that
ϕ ∧ Bϕ represents epistemic luck with respect to ϕ, but whether this is indeed rea-
sonable depends on ϕ and on the logic of belief we adopt, as the following examples
show.

If we adopt a logic of belief in which tautologies are always believed, then believing a
tautology ϕ should not count as epistemic luck. No luck is involved in believing something
one must believe. Similarly, if the logic of belief we adopt is KD45, then believing Bψ
should not count as epistemic luck. This belief is the result of self-introspection, which is
assumed in KD45 to always be correct. But believing Kψ does involve epistemic luck;
this belief can be incorrect. Roughly speaking, there is luck only when there is room for
misfortune, that is, if it is consistent to believe ϕ even if ϕ is false. This suggests the
following definition of epistemic luck:
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The formula ϕ ∧ Bϕ represents epistemic luck with respect to ϕ in logic
� if ¬ϕ ∧ Bϕ is consistent in �.

The difference between the first two examples and the third should now be clear. If ϕ
is a tautology or of the form Bψ , then ¬ϕ ∧ Bϕ is inconsistent (in the case of Bψ , this
follows from 5B and DB). On the other hand, ¬Kϕ ∧ BKϕ is consistent.

In order to properly define knowledge in terms of belief, we need to get rid of epistemic
luck. Defining knowledge as true justified belief can be viewed as eliminating, or at least
weakening, the luck element by requiring justification. But we can achieve the same
objective directly without adding justification. We start with a KD45 belief modality, B.
In order to make this belief modality a knowledge modality we add an axiom that ensures
that epistemic misfortune is logically impossible. But requiring that epistemic misfortune
is logically impossible amounts to saying that ¬(¬ϕ ∧ Bϕ), or equivalently Bϕ → ϕ, is
valid. Adding this axiom turns the belief modality B into an S5 knowledge modality. We
can summarize this as follows:

An S5 knowledge modality is a KD45 belief modality for which no
formula represents epistemic luck.

These observations also shed some light on the issue of negative introspection. A stan-
dard intuitive argument against the negative introspection axiom 5K is the following. An
agent may not know ϕ, but still believe that he knows ϕ, and therefore is unable to know
that he does not know ϕ. We can require this to be the only case that 5K fails to hold
by including the following axiom in the logic: ¬(¬K p → K¬K p) ↔ (¬K P ∧ BK p).
A straightforward argument, whose proof we omit, shows that this axiom already follows
once we define knowledge as true belief.

PROPOSITION 6.1. ¬(¬K p → K¬K p) ↔ (¬K p ∧ BK p) ∈ (KD45)B+TB.

But the hollow meaning of knowledge in (KD45)B + TB also renders this explanation
of the failure of 5K hollow. Indeed, it is easy to see that (¬K p ∧ BK p) ↔ (¬p ∧ Bp) is
also a theorem of (KD45)B + TB. Thus, in (KD45)B + TB, this argument for the failure
of 5K is tantamount to epistemic failure. In summary, the intuitive explanation of why 5K

should not hold does not capture the internal nature of knowledge.
Although knowledge as true belief does not imply negative introspection, it is consistent

with it; that is, (KD45)B + TB + 5K is consistent. However, it follows easily from Proposi-
tion 6.1 and the discussion above that (KD45)B + TB + 5K implies Bp → p. That is, this
set of axioms precludes false beliefs, and makes B a knowledge operator. Moreover, it is
immediate that both K and B satisfy L1 and L2 with respect to B, that is, L1 and L2 hold
both as stated and when we replace K by B. Thus, the following result follows easily from
Theorem 4.4.

PROPOSITION 6.2. Bp ↔ K p ∈ (KD45)B + TB + 5K .

By assuming both that knowledge is true belief and that knowledge satisfies 5K we
give up the distinction between knowledge and belief, and hence also the content of the
definition of knowledge as true belief.
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Appendix: Proofs. For the proof of Theorem 4.1, we need the following definition.
Given an algebraic modelM for a language L, let [[L]]M = {[[ϕ]]M | ϕ ∈ L}.

THEOREM 4.1. The modality K cannot be defined explicitly in the logic (KD45)B +
(S5)K + {L1, L2}, and hence not in any logic contained in it.

Proof. If K is defined explicitly in (KD45)B + (S5)K + {L1, L2} via the definition
K p ↔ δ, then for every modelM of this logic, [[K p]]M = [[δ]]M, and hence [[K p]]M ∈
[[L(B)]]M. We prove the theorem by constructing a model M such that [[K p]]M
/∈ [[L(B)]]M.

Consider the ((KD45)B + (S5)K + {L1, L2}) frame F = (W, RB, RK ), where W =
{w1, w2, w3}, RB = {(w1, w1), (w2, w2), (w3, w2)}, and RK = RB∪{(w2, w3), (w3, w3)}.
LetM = (F, V ) be the model based on F such that V maps each primitive proposition
to {w1, w2}. It is easy to show by induction on the structure of formulas in L(B) that
[[L(B)]]M = {∅, W, {w1, w2}, {w3}}, but [[K p]]M = {w1}. �

To prove Theorems 4.2, 4.4, and 4.8, we need a number of results concerning algebraic
extensions and conservative extensions.

LEMMA A.1. If L1 ⊆ L2, �1 ⊆ �2 are two logics in the corresponding languages
such that �2 is a conservative extension of �1, and �′ is a logic such that �1 ⊆ �′ ⊆ �2,
then �′ is a conservative extension of �1.

Proof. If �2 is a conservative extension of �1, then �1 = �2 ∩ L1. Since �1 =
�1 ∩ L1 ⊆ �′ ∩ L1 ⊆ �2 ∩ L1 = �1, it follows that �1 = �′ ∩ L1. Thus, �′ is a
conservative extension of �1. �

PROPOSITION A.2. Every (KD45)B frame can be uniquely extended to a ((KD45)B+
(S5)K + {L1, L2}) frame.

Proof. Let (W, RB) be a (KD45)B frame. Define RK so that (x, y) ∈ RK iff there
exists a world z such that (x, z) ∈ RB and (y, z) ∈ RB . Obviously, RK is reflexive and
symmetric. To show transitivity, suppose that (x, y) ∈ RK and (y, z) ∈ RK . Then there
exist w and w′ such that (x, w) ∈ RB , (y, w) ∈ RB , (y, w′) ∈ RB , and (z, w′) ∈ RB . Since
(y, w) ∈ RB and (y, w′) ∈ RB , it follows from the Euclidean property that (w′, w) ∈ RB .
By the transitivity of RB , we have (z, w) ∈ RB . Since (x, w) ∈ RB by assumption, it
follows from the definition of RK that (x, z) ∈ RK , as desired.

To prove that RB ⊆ RK , note that if (x, y) ∈ RB then, by the Euclidean property,
(y, y) ∈ RB , and hence (x, y) ∈ RK . If (x, y) ∈ RK and (y, z) ∈ RB , then there exists a
world w such that (x, w) ∈ RB and (y, w) ∈ RB . By the Euclidean property, (w, z) ∈ RB ,
and by transitivity, (x, z) ∈ RB . To show that the property corresponding to L2 holds,
suppose that (x, y) ∈ RK and (y, z) ∈ RB . Then, by definition, there exists some w such
that (x, w) ∈ RB and (w, y) ∈ RB . By the transitivity of RB , it follows that (x, z) ∈ RB , as
desired. This completes the proof that (W, RB, RK ) is a ((KD45)B +(S5)K +{L1,L2}) frame.

Suppose that R′
K is another relation such that (W, RB, R′

K ) is a (KD45 + S5 + {L1,L2})
frame. Then, RK ⊆ R′

K . Indeed, if (x, z) ∈ RB and (y, z) ∈ RB , then (x, z) ∈ R′
K and

(y, z) ∈ R′
K , since RB ⊆ R′

K . By the symmetry and transitivity of R′
K , (x, y) ∈ R′

K . To
show that R′

K ⊆ RK , suppose that (x, y) ∈ R′
K . By seriality, for some world z, (y, z) ∈

RB , and hence, by the property corresponding to L2, we must have (x, z) ∈ RB . Thus, by
the definition of RK , (x, y) ∈ RK . This completes the uniqueness part of the theorem. �
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The following lemma, proved in the companion paper, will be useful in our later
results:

LEMMA A.3. (Halpern et al., 2008) If L1 ⊆ L2, �1 ⊆ �2 are two logics in the
corresponding languages such that �1 is sound and complete for a family S of frames,
and each frame in S can be extended to a �2 frame, then �2 is a conservative extension
of �1.

The following corollary is immediate from Proposition A.2 and Lemmas A.3 and A.1.

COROLLARY A.4. If (KD45)B ⊆ � ⊆ (KD45)B + (S5)K + {L1, L2}, then � is a
conservative extension of (KD45)B.

Thus, the logics of most interest to us here are conservative extensions of KD45. In
particular, for each such logic �, the logic �0 in the definition of reducibility is KD45.

PROPOSITION A.5. Every (KD45)Bframe can be extended to a ((KD45)B + TB) frame.

Proof. Let (W, RB) be a (KD45)B frame. Define RK to be the reflexive closure of
RB , that is, RK = RB ∪ {(x, x) : x ∈ W }. IfM is a model based on (W, RB, RK ), then
x ∈ [[Kϕ]]M iff RK (x) ⊆ [[ϕ]]M, which is equivalent to RB(x) ∪ {x} ⊆ [[ϕ]]M, which
holds iff x ∈ [[Bϕ]]M ∩ [[ϕ]]M = [[ϕ ∧ Bϕ]]M. �

Applying Lemma A.3, we get the following corollary.

COROLLARY A.6. The logic (KD45)B + TB is a conservative extension of (KD45)B.

PROPOSITION A.7. Every (S4.4)K frame can be extended to an ((S4.4)K + (KD45)B +
TB+ {L1,L2}) frame.

Proof. Let (W, RK ) be an (S4.4)K frame. Define

RB = RK \ {(x, x) : ∃y such that (x, y) ∈ RK but (y, x) �∈ RK }.
We now show that RB is Euclidean, transitive, and serial.

We claim that

if there exists some z �= x such that (z, x) ∈ RK , then (x, x) ∈ RB . ( 1)

To prove ( 1), suppose that the antecedent holds. Since RK is reflexive, we have (x, x) ∈
RK . Suppose that (x, y) ∈ RK . If y = x , then clearly (y, x) ∈ RK . If y �= x , then by
remote symmetry and the fact that (z, x) ∈ RK , we must have (y, x) ∈ RK . Thus, by the
definition of RB , (x, x) ∈ RB , as desired.

To see that RB is transitive, suppose that (x, y) ∈ RB and (y, z) ∈ RB . If y = x , then
(x, z) ∈ RB is immediate. So suppose that x �= y. Since (x, y) ∈ RB and (y, z) ∈ RB ,
we must have (x, y) ∈ RK and (y, z) ∈ RK . Since RK is transitive, (x, z) ∈ RK . By
definition, (x, z) ∈ RB if z �= x . But if z = x , then we have (y, z) ∈ RK , so it is immediate
from ( 1) that (x, x) ∈ RB . So in either case, (x, z) ∈ RB , as desired. RB is serial because,
for each x , either (x, x) ∈ RB or, for some y �= x , (x, y) ∈ RK , and thus (x, y) ∈ RB .
Finally, to show the RB is Euclidean, suppose that (x, y) ∈ RB and (x, z) ∈ RB . We show
that (y, z) ∈ RB by considering the following exhaustive list of cases.

• x = y: Then it is immediate that (y, z) ∈ RB .
• x �= y, x = z: Thus, (x, x) ∈ RB . Since (x, y) ∈ RB , we must have (x, y) ∈ RK .

We must also have (y, x) ∈ RK , otherwise, by the definition of RB , we would not
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have (x, x) ∈ RB . Since y �= x , we have (y, x) ∈ RB . Since x = z, we have
(y, z) ∈ RB , as desired.

• x �= y, x �= z, y = z: Since (x, y) ∈ RK and x �= y, by ( 1), we must have
(y, y) ∈ RB , as desired.

• x �= y, x �= z, y �= z: By convergence, there is some w such that (y, w) ∈ RK

and (z, w) ∈ RK . By remote symmetry, (w, z) ∈ RK ; by transitivity, (y, z) ∈ RK .
Since y �= z, it follows that (y, z) ∈ RB .

Thus, we have shown that (W, RB, RK ) is a (KD45)B frame. Since RK is reflexive, it
follows that RK = RB ∪ {(x, x) : x ∈ W }. As shown in the proof of Proposition A.5,
(W, RB, RK ) is a frame for the logic generated by TB. As RB ⊆ RK , it is also a frame for
the logic generated by L1. Finally, we need to show that it is a frame for the logic generated
by L2. Suppose that (x, y) ∈ RK and (y, z) ∈ RB . We need to show that (x, z) ∈ RB . Since
RB ⊆ RK , we must have (y, z) ∈ RK . Thus, by the transitivity of RK , (x, z) ∈ RK . If
x �= z, then it is immediate that (x, z) ∈ RB . But if x = z, then the result is immediate
from ( 1). �

The following two corollaries are immediate from Proposition A.7 and Lemma A.3.

COROLLARY A.8. The logic (KD45)B + TB is a conservative extension of (S4.4)K .

COROLLARY A.9. The logic (KD45)B +(S4.4)K +{L1, L2} is a conservative extension
of (S4.4)K .

We are finally ready to prove Theorem 4.2.

THEOREM 4.2. For all logics � such that (KD45)B ⊆ � ⊆ (KD45)B + (S4.4)K +
{L1, L2}, the knowledge modality K is reducible to B in � by TB. Moreover, if � =
(KD45)B + �′ + {L1, L2} for �′ ⊆ (S5)K , then K is reducible to B in � by TB if and
only if �′ ⊆ (S4.4)K .

Proof. Let � satisfy the inclusions in the theorem. By Corollary A.4, � ∩ L(B) =
(KD45)B . By Corollary A.6, (KD45)B +TB is a conservative extension of (KD45)B . Thus,
it remains to show that � ⊆ (KD45)B + TB. Since � ⊆ (KD45)B + (S4.4)K + {L1, L2},
by Lemma A.1, it suffices to show that (KD45)B + (S4.4)K +{L1, L2} ⊆ (KD45)B +TB.
By Proposition 4.9, it suffices to show that {L1, L2} ⊆ (KD45)B + TB.

It is immediate that K p → Bp ∈ (KD45)B + TB, so L1 ∈ (KD45)B + TB. For L2,
note that Bp → B Bp ∧ Bp ∈ (KD45)B + TB. Substituting Bp for p in TB, it follows that
B Bp ∧ Bp ↔ K Bp, so Bp → K Bp ∈ (KD45)B + TB. This completes the first half of
the theorem.

For the second half, it suffices to show that if �′ ⊆ (S5)K and K is reducible to B in
� = (KD45)B + �′ + {L1, L2} by TB, then �′ ⊆ (S4.4)K . Indeed, �′ ⊆ � ∩ L(K ) ⊆
((KD45)B + TB) ∩ L(K ) ⊆ (S4.4)K . The first inclusion is obvious. The second follows
from the reducibility of K to B in �, and the third by Corollary A.8. �

THEOREM 4.4. The modality K is defined implicitly in the logic (KD45)B + (S5)K +
{L1, L2}.

Proof. There is a semantic proof of this result in the companion paper (see Theorem 5.1
there and the remark that follows). It is also straightforward to provide a proof based on
the fact, shown in Proposition A.2, that every frame (KD45)B can be uniquely extended to
a (KD45B+ (S5)K + {L1, L2}) frame. We provide a direct syntactic proof here.
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We first show that for all formulas ϕ ∈ L(B, K ), ϕ ↔ Bϕ ∈ � iff ϕ ↔ Kϕ ∈ �.
Suppose that ϕ ↔ Bϕ ∈ �. By generalization and KK , we must have Kϕ ↔ K Bϕ ∈ �.
By L2 and TK , Bϕ ↔ K Bϕ ∈ �. Putting together the pieces, it easily follows that
ϕ ↔ Bϕ ∈ �.

For the converse, suppose that ϕ ↔ Kϕ ∈ �. By L1, it follows that ϕ → Bϕ ∈ �. It
remains to show that Bϕ → ϕ ∈ �. By 5K and TK , we have that ¬Kϕ ↔ K¬Kϕ ∈ �.
Since, by assumption, ϕ ↔ Kϕ ∈ �, it follows that ¬ϕ ↔ ¬Kϕ ∈ �, and hence that
¬ϕ ↔ K¬Kϕ ∈ �. Applying L1 again gives us that ¬ϕ → B¬ϕ ∈ �. Using DB , we get
that B¬ϕ → ¬Bϕ ∈ �. Thus, Bϕ → ϕ ∈ �, as desired.

It follows from what we have shown that ψ ↔ K1ψ ∈ �1 + �2 iff ψ ↔ K2ψ ∈
�1 + �2. By 4K and TK , K1ϕ ↔ K1 K1ϕ ∈ �1 + �2, and thus

K1ϕ ↔ K2 K1ϕ ∈ �1 + �2. ( 2)

By the generalization rule and TK , K2(K1ϕ → ϕ) ∈ �1 + �2. By axiom KK2 ,

K2 K1ϕ → K2ϕ ∈ �1 + �2. ( 3)

By ( 2) and ( 3), K1ϕ → K2ϕ ∈ �1 + �2. The converse implication follows in the same
way. �

COROLLARY 4.7. Let � = (KD45)B +�J +(S5)K +{L1, L2} be a logic inL(B, J, K ),
where �J ⊆ (S5)J is a logic in L(J ). Then K is not reducible B and J in �.

Proof. By Proposition A.2, every ((KD45)B +�J )frame can be extended to a � frame,
and thus by Lemma A.3, � ∩ L(B, J ) = (KD45)B + �J . The result now follows from
Theorem 4.6. �

THEOREM 4.8. The modality B cannot be defined explicitly in the logic (KD45)B +
(S5)K + {L1, L2}, and hence not in any logic contained in (KD45)B + (S5)K + {L1, L2}.

Proof. As in the proof of Theorem 4.1, it suffices to construct a model of ((KD45)B +
(S5)K + {L1, L2}) in which [[Bp]] �∈ [[L(K )]]. Let F = (W, RB, RK ) be a frame for
this logic, where W = {w1, w

′
1, w2, w

′
2}, RB = {(wi , wi ), (w

′
i , wi ) : i = 1, 2}, and

RK = RB ∪ {(w′
i , w

′
i ) : i = 1, 2}. LetM = (F, V ) be the model based on F such that

V (p) = {w1, w
′
2}, and for each other primitive formula q, V (q) = W . It is easy to show by

induction on the structure of formulas inL(K ) that [[L(K )]] = {∅, W, {w1, w
′
2}, {w′

1, w2}}.
But [[Bp]] = {w1, w

′
1}. �

THEOREM 4.10. For all logics � such that (S4.4)K ⊆ � ⊆ (KD45)B + (S4.4)K +
{L1, L2}, the belief modality B is reducible to K in � by PK.

Proof. Let � satisfy the inclusions in the theorem. By Corollary A.9, � ∩ L(K ) =
(S4.4)K . By Corollary A.8, (KD45)B + TB is a conservative extension of S4.4, and there-
fore, by Proposition 4.9, (S4.4)K + PK is a conservative extension of S4.4.

Thus, it remains to show that � ⊆ (S4.4)K + PK. Since � ⊆ (KD45)B + (S4.4)K +
{L1, L2}, by Lemma A.1, it suffices to show that (KD45)B + (S4.4)K + {L1, L2} ⊆
(S4.4)K + PK. By Proposition 4.9 it suffices to show that {L1, L2} ⊆ (S4.4)K + PK.

Let �′ = (S4.4)K + PK. For L1, note that K p → ¬K¬K p is in �′, since it is the
contrapositive of K¬K p → ¬K p, which follows from TK . The desired result now follows
by applying PK. For L2, it suffices to show that both K p → (Bp → K Bp) and ¬K p →
(Bp → K Bp) are in �′. For the first formula, note that since K p → Bp ∈ �′ (by L1),
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by generalization, so is K K p → K Bp. Now using the axiom 4K , it follows that K p →
K Bp ∈ �′. Finally, propositional reasoning shows that K p → (Bp → K Bp) ∈ �′. For
the second formula, by axioms KK and 4K we conclude that K p → K Bp is in �′. The
second formula is obtained by substituting K p for p in 4.4K , and then substituting Bp for
¬K¬K p, by PK. �

To prove Proposition 5.3, we first provide a characterization of �0 + DMn .

PROPOSITION A.10. Suppose that DMn = Mn p ↔ δ is a simple definition. Then
�0 + DMn = {ϕ : ϕt ∈ �0 + �δ}.

Proof. Let �∗ = {ϕ : ϕt ∈ �0 + �δ}. As we observed earlier, �δ ⊆ �0 + DMn ,
so �0 + �δ ⊆ �0 + DMn . Moreover, since ϕ ↔ ϕt ∈ �0 + DMn , we must have
�∗ ⊆ �0 + DMn . On the other hand, it is easy to see that �0 ⊆ �∗ and DMn ∈ �∗
(since (Mn p ↔ δ)t = (δ ↔ δ)). Thus, to show that �0 + DMn ⊆ �∗, it suffices to
show that �∗ is a logic. Since ((Mn p ∧ Mn(p → q)) → Mnq)t ∈ �δ . it follows that
((Mn p ∧ Mn(p → q)) → Mnq) ∈ �∗. Similarly, Mntrue ∈ �∗. Clearly �∗ contains
all instances of propositional tautologies. The argument that �∗ is closed under modus
ponens and generalization is almost identical to an analogous argument in the proof of
Theorem 3.1 in the companion paper. We sketch the details here.

To see that �∗ is closed under modus ponens, suppose that ϕ, ϕ → ψ ∈ �∗. But then
ϕt and (ϕ → ψ)t = ϕt → ψ t are in �0 + DMn . Thus, ψ t ∈ �0 + DMn , so ψ ∈ �∗,
as desired. Another argument in this spirit shows that �∗ is closed under substitution.
Finally, we must show that �∗ satisfies the generalization rules. If M �= Mn and ψ ∈ �∗
then, by definition, ψ t ∈ �0 + DMn . Moreover, (Mψ)t = M(ψ t ) ∈ �0 + DMn by the
generalization rule for M in �0 + DMn . Hence, Mψ ∈ �∗. If M = Mn , we proceed
as follows. Since (Mnψ)t = δ[p/ψ t ], we need to show that δ[p/ψ t ] ∈ �0 + DMn .
Since ψ t ∈ �0 + DMn , it follows that ψ t ↔ true ∈ �0 + DMn . It easily follows that
δ[p/ψ t ] ↔ δ[p/true] ∈ �0 + DMn (cf. By Lemma A.1 in the companion paper). Since
Mntrue ∈ �∗, it follows that δ[p/true] ∈ �0 + DMn . Thus, δ[p/ψ t ] ∈ �0 + DMn , as
desired. �

Proposition 5.3 is now almost immediate.

PROPOSITION 5.3. If DMn is a simple definition, then �0 + DMn is a conservative
extension of �0 iff �δ ⊆ �0.

Proof. We have already observed that �δ ⊆ �0 + DMn . Thus, if �0 + DMn is a
conservative extension of �0, we must have �δ ⊆ �0. For the converse, if �δ ⊆ �0, then
it follows from Proposition A.10 that �0 + DMn = {ϕ : ϕt ∈ �0}. It is immediate that
(�0 + DMn) ∩ L(M1, . . . , Mn−1 = �0. �

THEOREM 5.4. The modality K is weakly reducible to B in the logic (KD45)B +
(S5)K + {L1, L2} by the simple definition

DK = K p ↔ ((p ∧ Bp) ∨ (¬p ∧ Bp) ∨ (p ∧ B¬p)).

Proof. Denote by δ the formula ((p∧Bp)∨(¬p∧Bp)∨(p∧B¬p)). As �δ ⊆ �0+DK,
the formula δ[p/(p → false)] → (δ → δ[p/false]) is also in this logic. The axioms
of KD45 ensure that δ[p/false] ↔ false. Since p → false is propositionally equivalent
to ¬p, the formula B(p → false) ↔ B¬p ∈ KD45. This observation together with
straightforward propositional reasoning shows that δ∧δ[p/(p → false)] ↔ ((p∧ B¬p)∨
(¬p ∧ Bp)). The upshot of this is that ((p ∧ B¬p)∨ (¬p ∧ Bp)) → false ∈ KD45 + DK.
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Propositional reasoning now shows that (Bp → p)∧ (B¬p → ¬p) ∈ KD45+DK. Thus,
B satisfies all the axioms of S5. Moreover, it follows that δ ↔ Bp ∈ KD45 + DK. Thus,
K p ↔ Bp ∈ KD45+DK. Hence K is equivalent to B in KD45 + DK and also satisfies the
S5 axioms. The equivalence of K and B also trivially implies that {L1, L2} ⊆ KD45+DK.

It remains to show that KD45 + DK is consistent. To do this, it suffices to construct a
Kripke model that satisfies KD45 + DK. It is easy to see that any Kripke model where RB

is an equivalence relation and RK = RB does so. �
To prove Theorem 5.5, we first provide a characterization of �0 ⊕ DMn , similar in spirit

to that of �0 + DMn given in Proposition A.10.

PROPOSITION A.11. Suppose that DMn = Mn p ↔ δ is a simple definition. Then
�0 ⊕ DMn = {ϕ : ϕt ∈ �0}.

Proof. Let �∗ = {ϕ : ϕt ∈ �0}. Clearly, �0 ⊆ �∗ and DMn ∈ �∗ (since, as
we observed earlier, (Mn p ↔ δ)t = (δ ↔ δ)). It is straightforward to show from the
definition that �∗ contains all instances of propositional tautologies and is closed under
substitution. �

THEOREM 5.5. The modality K is not weakly reducible′ to B by a simple definition in
the logic (KD45)B + (S5)K + {L1, L2}, and hence not reducible′ to B. However, K is
weakly reducible′ to B in (KD45)B + (S5)K + {L1, L2} by the definition K p ↔ (Bp ∧
(Bq → q)).

Proof. We first show that K is not weakly reducible′ to B by a simple definition in
the logic � = (KD45)B + (S5)K + {L1, L2}. Suppose, by way of contradiction, that K
is weakly reducible′ to B by the simple definition DK. Then, � ⊆ �0⊕ DK. As � is
a normal logic, it follows that �0⊕ DK is also normal, and thus �0⊕ DK = �0 + DK.
By Proposition A.11, �0⊕ DK is a conservative extension of �0. This implies that K is
reducible to B in �, which contradicts Theorem 4.5.

It remains to show that K is weakly reducible′ to B in (KD45)B + (S5)K + {L1, L2} by
the definition DK = K p ↔ (Bp ∧ (Bq → q)). Since {Btrue, (Btrue → true)} ⊆ KD45,
it is easy to see by substituting true for both p and q in DK that K true ∈ KD45 + DK.
Substituting true for p in DK, we also have that Bq → q ∈ KD45 + DK. Thus, B satisfies
all the axioms of S5. Substituting true for q in DK, we have that K p ↔ Bp ∈ KD45+DK,
which shows that S5 ⊆ KD45 + DK. The equivalence of K and B also trivially implies
that {L1, L2} ⊆ KD45 + DK. The argument that KD45 + DK is consistent is identical to
that used in Theorem 5.4. �
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