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Econometrica, Vol. 54, No. 5 (September, 1986), 1003-1037 

ON THE STRATEGIC STABILITY OF EQUILIBRIA' 

BY ELON KOHLBERG AND JEAN-FRANCOIS MERTENS 

A basic problem in the theory of noncooperative games is the following: which Nash 
equilibria are strategically stable, i.e. self-enforcing, and does every game have a strategically 
stable equilibrium? We list three conditions which seem necessary for strategic stability- 
backwards induction, iterated dominance, and invariance-and define a set-valued equi- 
librium concept that satisfies all three of them. We prove that every game has at least one 
such equilibrium set. Also, we show that the departure from the usual notion of single-valued 
equilibrium is relatively minor, because the sets reduce to points in all generic games. 

KEYWORDS: Nash equilibrium, stable equilibrium. 

1. INTRODUCTION 

THE CONCEPr OF EQUILIBRIUM, as defined by Nash (1951), is central in the 
theory of noncooperative games. It reduces the set of all possible strategic choices 
by the players to a much smaller set of those choices that are stable in the sense 
that no player can increase his payoff by unilaterally changing his strategy. 

One might be tempted to conclude that Nash equilibria must actually be 
"strategically stable" (self-enforcing). However, such a conclusion would be false, 
as the example in Figure 1 demonstrates: (T, R), i.e. "T" for player I and "R" 
for player II, is a Nash equilibrium. Yet, even though communication is impos- 
sible, player II will obviously deviate to L whenever he has to play, thus upsetting 
the equilibrium. 

Since not all Nash equilibria are strategically stable, the natural question that 
arises is: which ones are? 

In the context of games in extensive form, Selten (1975) has proposed the 
concept of "perfect" equilibrium. Kreps and Wilson (1982) have proposed a 
variant-"sequential" equilibrium. Both concepts restrict attention to those Nash 
equilibria that can be obtained by a process of backwards induction (like (M, L) 
in the example). 

But while the restriction to "backwards induction equilibria" is necessary for 
strategic stability, it is far from being sufficient: One can construct simple examples 
of perfect or sequential equilibria which, at least in our opinion, are not 

2,2 3,3 
T L 

M II / 0,0 

FIGURE 1 
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strategically stable. Further, both these concepts are flawed in that the equilibria 
they define may change when the description of the game tree is changed in an 
irrelevant way (for instance, when a three way choice of some player is replaced 
by two consecutive binary choices) or when a strictly dominated move is deleted. 

In the context of games in normal form, it has long been recognized that the 
concept of Nash equilibrium is not restrictive enough in that it admits the use 
of (weakly) dominated strategies. Luce and Raiffa (1957) suggested one might 
restrict attention to Nash equilibria of the reduced normal form that is obtained 
by a process of iterated elimination of dominated strategies. Myerson (1978) and 
Kalai and Samet (1984) have proposed other ideas for restricting the set of Nash 
equilibria in normal form games ("proper" and "persistent" equilibria). But all 
these normal form concepts are far from implying strategic stability, and they 
too suffer from basic flaws. 

Furthermore, the two developments-one of restricting the set of Nash equi- 
libria in extensive games, and the other of restricting the set of Nash equilibria in 
normal form games, have been quite separate (currently prevalent opinion being 
that normal form analysis cannot capture the essence of backwards induction). 
Our view is that they should be unified: that a good concept of "strategically 
stable equilibrium" should satisfy both the backwards induction rationality of 
the extensive form and the iterated dominance rationality of the normal form, 
and at the same time be independent of irrelevant details in the description of 
the game. Our object in this paper is to define an equilibrium concept which 
satisfies all these requirements. 

Section 2 contains a discussion, while Section 3 contains a formal development. 
Each section can be read independently of the other. 

2. DISCUSSION-I OF REQUIREMENTS FOR STRATEGIC STABILITY 

2.1. Approach and Point of View 

A noncooperative game is played without any possibility of communication 
between the players. However, we may think of the actual play as being preceded 
by a more or less explicit process of preplay communication (the course of which 
has to be common knowledge to all players), which gives rise to a particular 
choice of strategies. Loosely speaking, such a prescription of strategies, one for 
each player, is "strategically stable"2 if in any actual play of the game, no player 
will ever have an incentive to deviate from his prescribed strategy.3 

2 Note that strategic stability is quite distinct from dynamic stability, which is a property usually 
associated with an adjustment process, or from evolutionary stability (in the sense of Maynard Smith 
(1976)). 

We also wish to stress that our sole concern is with the strategic stability of a given prescription 
of strategies, and not with the process of arriving at such a prescription. For example, consider the 
game below: L R 

T 3,3 0,0 

B 0,0 1,1 

Whatever "incentive to deviate" may mean, once the players expect the strategies B, R to be played, 
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For any given game, there is often widespread agreement about which equilibria 
are more stable than others-although the exact extent of the strategically stable 
equilibria may be in part a matter of taste. We agree that an ideal way to discuss 
which equilibria are stable, and to delineate this common feeling, would be to 
proceed axiomatically. However, we do not yet feel ready for such an approach; 
we think the discussion in this section will abundantly illustrate the difficulties 
involved.4 Instead, we will heuristically discuss some "necessary conditions" for 
strategic stability, and try to motivate the type of equilibrium concept one is led 
to if one wishes to satisfy them. 

2.2. Review of Definitions 

The discussion in this paper is mostly informal, and can be followed without 
familiarity with the details of the various equilibrium concepts appearing in the 
literature. For the sake of completeness, however, we provide below a brief review 
of the relevant definitions. 

We will use the term "(game) tree" for the extensive form of a game with 
perfect recall (i.e., where every player remembers whatever he knew previously, 
including his past actions). 

The agent normal form (Selten) of a tree is the normal form of the game 
between agents, obtained by letting each information set be manned by a different 
agent, and by giving any agent of the same player that player's payoff. 

neither player will have an incentive to unilaterally deviate. So the equilibrium "1, 1" is strategically 
stable. We will have nothing to say about the distinction between "1, 1" and the more attractive 
(strategically stable) equilibrium "3, 3." In our mind, such a distinction deals with the pre-play 
bargaining game, and hence with cooperative theory, rather than with the game itself. 

3 We adhere to the classical point of view that the game under consideration fully describes the 
real situation-that any (pre)commitment possibilities, any repetitive aspect, any probabilities of 
error, or any possibility of jointly observing some random event, have already been modelled in the 
game tree. In particular, the "incentive to deviate" must be understood in the context of a one-shot 
play of the game itself, and probabilities of error-such as those appearing in the definition of "perfect 
equilibrium," must not be interpreted as probabilities that the players will actually err in choosing 
their strategies. Also, no random event (not described in the extensive form) can be observed by a 
player, except if it is completely independent of any random event observed by any other player and 
of the moves of nature in the tree. Indeed, any such additional observation would lead to the "extensive 
form correlated equilibria" of F. Forges (1984). Even before the start of the game such observations 
have to be forbidden (except for random variables that are common knowledge to all players, if also 
the analysis is done conditionally to those random variables). Indeed such observations would lead 
to the "normal form correlated equilibria" (cf. loc. cit.). We must therefore think of the game being 
played as follows: the referee (or experimenter) starts to select players who do not know each other, 
and puts them in separate cubicles, with no means of communication to the outside world-not even 
a window-other than a computer terminal. The players first get from the terminal a full description 
of this setup, and of the game they are going to play, and next they are told a recommended mixed 
strategy vector, and that it is a stable equilibrium, expected to be adhered to by all participants. 
Finally, the computer makes them play the game (informing them whenever they reach an information 
set, and asking them for their moves-with additional precautions if the game does not have perfect 
recall). In principle, in situations where those restrictions are not met, the game tree is just used as 
a shorthand notation for the rules of a much bigger "extended game" (cf. loc. cit.), and it is the 
stability of the equilibria of the extended game that has to be analyzed. 

4 See also Appendix E. 
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A behavioral strategy of a player in a tree is a list of (mixed) strategies, one 
for each of his agents. Kuhn (1953) has shown that every mixed strategy of a 
player in a tree is equivalent to some behavioral strategy, in the sense that both 
give the same probability distribution on the endpoints whatever be the strategies 
of all opponents. 

A sequential equilibrium (Kreps-Wilson) of an n-player tree is an n-tuple 
of behavioral strategies which is the limit of a sequence ((m) of completely 
mixed (i.e., strictly positive) behavioral strategies, such that every agent 
maximizes his expected payoff given the strategies of all other agents and 
given the limiting conditional probability distribution on his information set 
implied by (am). 

An E-perfect equilibrium of a normal form game (Selten) is a completely mixed 
strategy vector, such that any pure strategy which is not a best reply has weight 
less than E. 

An E-proper equilibrium of a normal form game (Myerson) is a completely 
mixed strategy vector, such that whenever some pure strategy s, is a worse reply 
than some other pure strategy S2, the weight on s, is smaller than E times the 
weight on S2 

A perfect (proper) equilibrium of a normalform game is a limit (E -* 0) of E-perfect 
(proper) equilibria.5 

A perfect (proper) equilibrium of a tree is a perfect (proper) equilibrium of its 
agent normal form. 

It is evident that "proper" is a stronger requirement than "perfect." It is also 
easy to verify that a perfect equilibrium of a tree is sequential (Kreps-Wilson). 

Existence theorems have been proved for all the above concepts (Kreps-Wilson, 
Myerson, Selten). 

2.3. Backwards Induction Rationality 

One necessary condition for "strategic stability" (of an n-tuple of prescribed 
strategies) is that, at every point during any play of the game, each player must 
believe that his prescribed strategy will maximize his expected payoff in the 
remainder of the game, i.e., a strategically stable equilibrium must conform with 
backwards induction. 

In games of perfect information, the meaning of this requirement is clear 
(Zermelo (1912)). But in games of imperfect information the meaning is 
ambiguous at best: for example, is (T, R) a "backwards induction equilibrium" 
in the following game? (Dotted lines denote information sets.) 

S An equivalent (in fact, Selten's (1975) original) definition of perfect equilibrium is as follows: e 
is a perfect equilibrium of a normal form game if for any E > 0, there exists a vector of positive 
numbers 81, . . ., an (n players), and a vector of completely mixed strategies o1, . . ., on, such that the 
perturbed game where every strategy s of player i is replaced by (1 - 8i)s + 8io-i has an equilibrium 
e-close to e. 
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2,2 L 3'3 

TM 

R0x,0 

F(x): I where x 2. 

0,0 

FIGURE 2 

The answer depends on II's assessment of the conditional probabilities of the 
two points in his information set. (It is "yes" if he assesses the conditional 
probability of the bottom point to be at least 3/4.) But what is a reasonable 
assessment of the conditional probabilities of two points, each having probability 
zero? 

So the interpretation of "backwards induction" hinges on what assessments 
of probabilities are considered reasonable. One quite natural interpretation 
appears to be that of "sequential equilibrium": any assessment is reasonable as 
long as it is consistent with the probabilities implied by the equilibrium strategies, 
and as long as assessments in different information sets do not contradict one 
another. In the example, if I chooses T, then any assessment by II is reasonable; 
so (T, R) is a sequential equilibrium. (Formally, let (1-lOs, E, 9?) and (E, 1- s) 
be completely mixed strategies for players I and II, respectively. They converge 
to "T" for player I and "R" for player II, and the conditional probability on 
the bottom point of the information set converges to .9.) 

Observe, however, that (T, R) is strategically unstable: player II knows that I 
will never choose B, which is strictly dominated by T (and also by M for x > 1) 
so if II sees he has to play, he should deduce that I, who was supposed to play 
T and was sure to get 2 in this way, certainly did not choose B, where he was 
sure to get less than 2; player II should thus infer that I had in fact played M, 
betting on a chance to get more than 2 (and on the fact that II would understand 
this signal); and so player II should play L, and hence player I should play M, 
deviating from the equilibrium prescription. (Moreover, for x = 2, player I has 
an additional, more direct reason to deviate from T to M: T is dominated by M.) 

We see then that conformity with backwards induction, while being necessary 
for strategic stability, is not sufficient.6 

6This conclusion would remain unchanged if instead of using sequentiality we used some other 
formal interpretation of "backwards induction," e.g. "perfectness". Indeed, for x <2, the "bad" 
equilibrium "2, 2" is perfect in F(x) (because the strategies (1- los, e, 9s), (E, 1 - e) are (9s)-perfect). 
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3,3 

FIGURE 3 

2.4. Invariance 

Consider again the game F(x), with 1 < x < 2. We saw that the "bad" equi- 
librium "2, 2" was sequential; however, it is no longer sequential in the above 
presentation of the same game (Figure 3). (Because here, at the second information 
set of Player I, his choice M strictly dominates his choice B, so that player I has 
to choose M there rather than B in any sequential equilibrium, and therefore 
player II should assign probability one to the position following choice M. Thus 
player II has to choose L and therefore player I has to choose M: the only 
sequential equilibrium is "3, 3".) 

This example highlights a basic flaw in the concept of "sequential equilibrium": 
it depends on all the arbitrary details with which the tree was drawn.7 Thus, if 
one would like a "strategically stable" equilibrium to be free of the same flaw, 
one must require that it remain sequential regardless of the irrelevant details in 
the presentation of the tree. (As we have seen, such a requirement would reduce 
the set of equilibria in our example to the "good" equilibrium "3, 3".) 

The papers by Thompson (1952) and Dalkey (1953) show that if two game 
trees without moves of nature have the same normal form (i.e., up to duplicated 
pure strategies) then one may be transformed into the other by a sequence of 
completely inessential transformations of the game tree, like the one we made 
for F(x) ("coalescing of moves"-the other 3 basic transformations being infla- 
tion-deflation,8 addition of superfluous moves,9 and interchange of simultaneous 
moves10). The same result easily implies its own extension to games with moves 
of nature, the only additional basic transformation required being that, whenever 

7 "Perfect" equilibrium suffers from the same flaw: As we have seen in footnote 6, for x <2, the 
equilibrium "2, 2" is perfect in the first version of F(x); however, it is not perfect in the second 
version (we even know that it is not sequential). 

8 I.e., splitting an information set in two parts if the player can anyway deduce in what part he is 
from his knowledge of the strategy he is using. 

9 superfluous move is a move such that its outcome does not affect at all the rest of the game 
(including terminal payoffs), and such that no player is informed of its outcome. 

10T represent a pair of simultaneous moves of two players in the tree, one has to draw first the 
move of one of them, next the move of the other (uninformed of the result of the first choice). One 
asks that the two different representations thus obtained by considered as equivalent. 
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a move by nature leads only to terminal nodes, it is equivalent to a terminal node 
with the corresponding expected payoffs.1" So any solution that is independent 
of those 5 categories of irrelevant details of the tree must depend only on the 
normal form. 

In particular, then, a strategically stable equilibrium of a game tree must be 
sequential in any other game tree having the same normal form. 

One may wonder whether this requirement is not so restrictive as to rule out 
existence. The answer is "no", as is shown by the following proposition, whose 
proof is given in Appendix A (recall that every normal form game has a proper 
equilibrium)."2 

PROPOSITION 0: A proper equilibrium of a normalform is sequential in any tree 
with that normal form. 

In other words, given a game tree, a proper equilibrium of its normal form 
will give a sequential equilibrium in any variant of that tree obtained by applying 
any of the above-mentioned inessential transformations. 

Yet even a proper equilibrium may be strategically unstable. For example, the 
bad equilibrium "2, 2" is proper in F(0) (because (1 E2, E2 E), (E, 1 - E) is 

E-proper). 
It appears then that being sequential in any variant of the tree does not guarantee 

strategic stability. But have we considered all possible variants? Note, in par- 
ticular, that players are explicitly allowed to randomize between moves (or 
between strategies) in a game-for instance, player I is allowed to toss some coin 
to decide between T and M in F(0). The result of the coin toss is a choice by 
nature, so a fully equivalent description of the same game is shown in Figure 4. 
Yet in this tree the only sequential equilibrium remaining is the "good" equi- 
librium "3, 3." (At player I's second information set, his choice to toss a coin 
strictly dominates his choice B. So in any sequential equilibrium, he has to choose 
there either the coin toss or M. Therefore the conditional distribution on player 
II's information set has to assign zero probability to the position following B. 
Thus player II has to choose L and therefore player I has to choose M: the only 
sequential equilibrium is "3, 3.") 

If this form of adding or deleting superfluous moves is added to the list of 
inessential transformations,13 then two game trees can be transformed one into 
the other if and only if they have the same normal form, modulo adding or 

" Use first the above result, treating nature like any other player and handling the probabilities 
of nature's choices properly, to transform by the first four operations the given tree to a tree with 
simultaneous moves corresponding to the normal form, with nature moving last. Use then the 
additional operation to get rid of nature, next again the first four operations to clean the resulting 
tree of any duplicate strategies, etc. 

12 This proposition first appeared in Kohlberg and Mertens (1982). A refinement is given by van 
Damme (1984). 

13 If one wants a formal definition in the tree, this sixth elementary transformation says that, in 
an information set that is followed by no other information set, one may add or delete moves that 
lead in effect to a lottery between other moves. 
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I1,1 

FIGURE 4 

deleting pure strategies that are equivalent to convex combinations of other pure 
strategies (i.e., give the same payoffs to all players whatever be the strategies of 
all opponents). It is this concept of reduced normalform that we will use: where 
all pure strategies that are convex combinations of other pure strategies have 
been deleted. 

We are thus led to the following invariance requirement, in addition to our 
previous backwards induction requirement: The set of "strategically stable" 
equilibria should depend only on the reduced normalform of the game.14 

Putting the two requirements together, a strategically stable equilibrium should 
conform with backwards induction (e.g., be sequential) in any game tree with 
the same reduced normal form as that of the given game. 

Thus it is natural to ask whether every game has an equilibrium which is 
sequential in any tree with the same reduced normal form, and whether such an 
equilibrium must in fact be strategically stable. The first question is addressed 
in Section 2.8, and the second in Appendix E. 

2.5. Why Invariance? 

Selten (1975) writes: .. . it is clear that for the purpose of the investigation 
of the problem of perfectness, the normal form is an inadequate representation 
of the extensive form." Kreps and Wilson (1982) write: "Analyses that ignore 
the role of beliefs, such as analysis based on normal form representation, inher- 
ently ignore the role of anticipated actions off the equilibrium path.... This 
lacuna often weakens the normative implications of the analysis, and in the 
extreme yields Nash equilibria that are patently implausible." 

14As we have seen, the known solution concepts that satisfy backwards induction (sequential, 
perfect, proper) fail to be invariant; conversely, the invariant solution concepts (Nash, Nash in 
undominated strategies, normal form perfect, persistent, etc.) do not yield backwards induction. 
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In other words, according to this point of view, any equilibrium concept defined 
on the normal form will miss the essence of backwards induction in the extensive 
form. We disagree with such beliefs: in fact, Proposition 0 shows them to be false.15 

More generally, we believe that elementary transformations, like those sug- 
gested by Thompson and Dalkey, are irrelevant for correct decision making: after 
all, the transformed tree is merely a different presentation of the same decision 
problem, and decision theory should not be misled by presentation effects. We 
contend that to hold the opposite point of view is to admit that decision theory 
is useless in real-life applications, where problems present themselves without a 
specific formalism such as a tree. The results of Thompson and Dalkey therefore 
imply that any solution concept (under our caveat of footnote 3) should only 
depend on the normal form. 

For an equilibrium solution, one can give an additional argument, which does 
not rely so much on step by step equivalences of games (more or less independently 
of the solution concept), but argues instead from the solution concept: In essence, 
an equilibrium is just a simultaneous solution of each player's individual decision 
problem. Therefore, since the normal form is sufficient in individual decision 
theory, and since the normal form of the game allows the recovery of all 
conceivable such one person normal forms (i.e. for any prior on the strategies 
of the opponents), it should be sufficient for equilibria. 

Put slightly differently, no reasonable definition of rationality could imply a 
different behavior for the strategist when he has to give instructions to his agents 
in advance of the play, as compared to the situation where he would have to 
carry out those instructions himself. 

In some sense, the fact that the reduced normal form captures all the relevant 
information for decision purposes results directly from the (almost tautological) 
fact that what matters for decision purposes in an outcome is only the correspond- 
ing utility vector (and not e.g., the particular history leading to that outcome). 
This is the point of view we adopt in the whole paper (e.g., when interpreting 
the outcomes as the corresponding utility vectors in the result of Thompson 
(1952)). 

This is also the argument for adding the fifth elementary transformation (for 
games with moves of nature) to those of Dalkey and Thompson, and the specific 
argument for adding the sixth is quite similar. 

Indeed, the extensive form is only an abbreviated notation for a fuller descrip- 
tion where any additional choice of a lottery between several actions is explicitly 
available to the players.16 

15 Proposition 0 seems the most striking consequence of properness and follows almost immediately 
from the definition. Was it the above mentioned point of view that prevented it from being discovered 
immediately? 

16 Even physically if so desired; e.g., in the parable of the strategist and the agents, by instructing 
the agent to make that specific lottery; or, in our parable of the player sitting in a cubicle (footnote 
3), where he has for instance to push one of two buttons to indicate his move, by having the player 
build for himself a small mechanical device with three buttons, two of which make the device push 
the corresponding button of the terminal and the third makes the device randomize between the two. 
More realistically, a company might use agents. In fact, many organizations set policies in one 
decision center, and have other levels of the organization implement them. 
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This argument implies more generally a second aspect of the invariance require- 
ment, namely that one should treat mixed strategies just like pure strategies. In 
particular, one should therefore also identify any two "duplicate" mixed 
strategies. It is in this sense that we will interpret the reduced normal form 
strategies (i.e., as the equivalence classes given this identification).17 

Anyway, the sufficiency of the normal form is the traditional position, and we 
think it is sufficiently well founded that, in order to substantiate beliefs like the 
ones cited above and to reject this classical point of view, one would need an 
example of two game trees with the same normal form, and whose "reasonable 
equilibria" are completely different-say every equilibrium payoff whatsoever is 
patently implausible in one of the two trees. Preferably, both trees should in 
addition be generic.18 

No examples approaching anything of this nature were ever produced. Indeed, 
if one interprets "patently implausible" as "nonsequential," then Proposition 0 
already implies the impossibility of such an example; even if one has much more 
stringent requirements for plausible equilibria, and even if one interprets the 
"normal form" as the "reduced normal form," this paper will imply the impossibil- 
ity of such an example. 

2.6. Remarks on Backwards Induction 

In games of perfect information, the idea of backwards induction may be 
characterized by the following properties: 

(BIO) a solution of a one-player game should be consistent with payoff 
maximization; 

(BIl) a solution of a game induces a solution in any subgame; 
(BI2) any solution of a subgame is part of a solution of the game; 
(BI3) a solution of a game remains a solution when a subgame is replaced by 

a terminal position at which the players receive their expected payoffs (according 
to this solution) in the subgame. 

Sequential equilibrium seems to be the direct generalization to games of 
imperfect information, because it satisfies all four properties (Nash equilibrium 
does not satisfy BIl, perfect and proper equilibria do not satisfy B13; it is not 
clear whether proper equilibrium satisfies B12). 

But, while in (generic) games of perfect information, all these properties seem 
to conform with the idea of strategic stability, this is no longer the case in games 
of imperfect information. Specifically, we claim that one should not insist on 
B12, and perhaps not on B13, as properties of a "strategically stable" equilibrium. 

17 For instance, all mixed strategies that give rise to the same behavioral strategy will be equivalent. 
This identification makes the interpretation of statements like Proposition 0, or the comparison of 
the solution of two games having the same reduced normal form, both easier and more natural. 

18 Also, one would then want a precise statement about which one exactly of the elementary 
transformations is objectionable and what should be the influence of this transformation on a "good" 
solution concept. The solution concept exhibiting this specific influence should then still be invariant 
under the other elementary transformations. 
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(One should certainly insist on BIO; as for BIl, it-like Selten's "subgame 
perfectness"-follows immediately from the idea of strategic stability.) 

Regarding B12, our requirement that the solution be invariant under inessential 
transformations of the tree contradicts it. For example, this invariance requirement 
implies, as we have seen, that only the equilibrium "3, 3", but not the (strategically 
stable) equilibrium "1, 1" of the subgame be part of a strategically stable equi- 
librium of F(0) (Figure 3). 

Essentially what is involved here is an argument of "forward induction": a 
subgame should not be treated as a separate game, because it was preceded by 
a very specific form of preplay communication-the play leading to the subgame. 
In the above example, it is common knowledge that, when player II has to play 
in the subgame, preplay communication (for the subgame) has effectively ended 
with the following message from player I to player II: "Look, I had the opportunity 
to get 2 for sure, and nevertheless I decided to play in this subgame, and my 
move is already made. And we both know that.you can no longer talk to me, 
because we are in the game, and my move is made. So think now well, and make 
your decision." 

Thus, in some sense, just as much as we would like each strategically stable 
equilibrium to conform with backwards induction, we would like the solution 
concept (as a correspondence) not to satisfy all the backwards induction proper- 
ties: it should violate B12 to save the forward induction. 

Regarding B13, it is incompatible with admissibility (i.e. the restriction to 
undominated strategies), which is a much more basic requirement following from 
strategic stability (see the section below). For example, consider the game shown 
in Figure 5. If the top subgame is replaced by a terminal position with payoffs 
(1, 1), admissibility would force player I to choose top in any solution. Similarly 
he should choose bottom in any solution. Hence the contradiction. (The same 
example shows that neither perfect nor proper equilibria satisfy B13.) 

2.7. Iterated Dominance Rationality 

A. Admissibility 

Basic decision theory postulates that a player will never actually choose an 
inadmissible, i.e. (weakly) dominated, strategy (e.g., Luce and Raiffa (1957, p. 

o1,1 

II/ 

I 0,0 
1 ,~~~~~1, 

0,0 

FIGURE 5 
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287, Axiom 5)). Thus in a strategically stable equilibrium, the players' strategies 
must be admissible. Because the admissibility requirement is central in what 
follows (e.g., it is the reason we discard an otherwise satisfactory concept, "fully 
stable equilibrium"), we would like to assuage any doubts the reader might have 
regarding its exclusion of all dominated strategies, and not only of strictly 
dominated ones: 

First, we note that the founders of decision theory were clearly well aware that 
an even simpler and in some sense more "elegant" theory could be obtained 
using a less restrictive axiom involving strict dominance. (For instance, one would 
then always have the equality of the Bayes procedures and the admissible 
procedures-while statisticians from Wald on have to make do with statements 
like "the admissible procedures are the proper Bayes procedures and some of 
their limits.") Yet they still insisted on requiring admissibility. The requirement 
goes back to Wald; according to Arrow, this "rule ... is extremely reasonable" 
(K. J. Arrow (1951, p. 429)), and Luce and Raiffa add (loc. cit., p. 307) that it 
remains "equally acceptable" in the context of games. 

In addition, we may observe that exclusion of dominated strategies follows 
from the exclusion of strictly dominated moves and from our invariance 
requirement: assume player I should use strategy s in equilibrium, and s is 
dominated by t. Assume first also that the other players' payoff is the same in 
rows s and t wherever player I's payoff is so. Then we can draw a tree 
for this normal form where player I first chooses either the pair (s, t) or any 
of his other strategies, next player II makes his choice, and finally, player I 
is asked to choose between s and t only if it matters. In such a game, to 
choose s is a strictly dominated move, so whatever be player I's beliefs on the 
others' strategy choices, he should use t rather than s. Changing now the others' 
payoffs to revert to the given game can change player I's beliefs about their 
strategy choices, but cannot change the fact that, whatever be those beliefs, he 
should use t rather than s. 

For those reasons, we follow the above cited authors in considering admissibility 
of the players' strategies as a basic requirement for strategic stability. 

B. Iterated Dominance 

One might argue that, since dominated strategies are never actually chosen, 
and since all players know this, then deletion of such strategies can have no 
impact on strategic stability. This would lead to requiring that a strategically 
stable equilibrium remain so when a dominated strategy is deleted (and hence, 
when the deletion is done iteratively). 

Unfortunately, however, this requirement is incompatible with existence. For 
example, any strategically stable equilibrium in the game 
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L R 

T 3, 2 2, 2 

Q2: M 1,1 0,0 

B 0, 0 1,1 

should also be strategically stable in the game 

L R 

T 3, 2 2, 2 

M 1,1 0,0 

so that, by admissibility, it must be (3, 2). But by a similar argument, it must be 
(2,2). 

It seems then that "strategic stability" requires the presence of both (3, 2) and 
(2, 2), i.e., we are led to a concept of set-valued equilibrium. (We will later see 
in Sections 2.8 and 3.5 that each one of two additional basic requirements also 
leads to a set-valued equilibrium.) But even a set-valued concept cannot satisfy 
our iterated dominance requirement, because-by exactly the same argument as 
above-that requirement would imply both that (2, 2) and that (3, 2) must be the 
only point of the set.19 

One sees that, to preserve existence, we can only ask for inclusion; hence the 
iterated dominance requirement: A strategically stable set of equilibria in a game 
G must contain a strategically stable set of equilibria in any game G' obtainedfrom 
G by deletion of a dominated strategy. 

All the known solution concepts that satisfy backwards induction-sequential, 
perfect, and proper equilibrium-fail to satisfy the iterated dominance require- 
ment: (the singleton) "2, 2" is sequential, perfect and proper in F(0) but is no 
longer so when the (strictly) dominated strategy B is deleted. 

In fact, it might seem from our previous examples that the only reason those 
backwards induction solutions failed to imply strategic stability was their failure 
to satisfy iterated dominance. One might therefore conclude that strategic stability 
could be obtained by first reducing the normal form to some submatrix by iterative 
eliminations of dominated strategies,20 and then applying the relevant backwards 
induction solution (i.e., proper equilibrium). But, while the procedure would be 
successful in a game like F(0), where eliminating B, then R, then T reduces the 

"9 The same example shows that the difficulty will not disappear if we restrict attention to the 
elimination of strictly dominated strategies. 

20 Taking care in one way or another of the difficulty that the resulting submatrix could depend 
on the order of the eliminations (as in the game Q2). 
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2,2 L/ ' 

<~ ~~~~~ rL0 4,-4 

-4, 4 

FIGURE 6 

normal form to the "good" equilibrium "3, 3," the same procedure fails in the 
above variant of F(O) (Figure 6). 

In this game, any dominance relationship appears only after the (zero-sum) 
subgame has been replaced by its value. Thus, all strategies are undominated, 
and therefore the above-described procedure will simply give all backwards 
induction solutions, i.e., it will not exclude "2, 2''.21 (In fact, the whole strategy 
space is persistent.22 So even if one asked for properness after iterated persistency, 
the bad equilibrium "2, 2" would persist.) 

21 "2, 2" is proper because ((1, e2, 8, E), (E, 8, 1)) is 8-proper. 
22 R = fl 1 Ri, where Ri is a closed convex subset of player i's strategy simplex, is persistent 

(Kalai and Samet (1984)) if it is minimal with respect to the following property: there is a neighborhood 
of R such that every n-tuple of strategies in that neighborhood has a best reply in R. It is easy to 
see that a persistent set must contain a Nash equilibrium (such an equilibrium is called "persistent"). 

The normal form of Figure 6 is 

LL LR R 

T 2,2 2, 2 2,2 

M 3, 3 3, 3 0,0 

BT 4,-4 -4, 4 1, 1 

BB -4,4 4,-4 1, 1 

Any persistent set has to contain at least T or M, since it contains a Nash equilibrium. Assume it 
contains T: the best reply LR against (1 - e) T+ eBT has to be part of the persistent set and similarly 
LL. But M is the only best reply against !LL+!LR, so M is certainly part of any persistent set. Thus 
the persistent set has to contain LL (best reply against (1 - e)M+ eBB) and similarly LR, and 
therefore the best replies BT and BB against those strategies. So it has to contain the best reply R 
against 'BT+'BB, and finally the best reply T against R: it is the full strategy space. 
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REMARKS: 1. One might think that the iterated dominance requirement should 
apply not just for deletion but also for addition of dominated strategies, i.e., that 
a strategically stable set of equilibria in a game G must be contained in a 
strategically stable set of equilibria in any game G' obtained from G by addition 
of a dominated strategy. However, we disagree: consider, for example, the game 

3, 2 21 2, 

Every point on the interval from (3, 2) to (2, 2) is a strategically stable equilibrium 
(II has no incentive to deviate because his payoff is 2 regardless of his choice, 
whereas I cannot deviate at all). But adding a dominated strategy, we obtain a 
game 

3,2 2,2 

1,1 0,I 0o 

in which (by admissibility) only (3, 2) is strategically stable. F. Forges suggested 
the following explanation which, while being a bit philosophical, seems to us to 
be the basic reason for this asymmetry: strategic stability depends on the whole 
given situation. So, when some implausible alternatives are deleted, the analysis 
has already taken their unlikeliness into account. However, adding possibilities 
that were physically not present previously cannot and should not have been 
anticipated. 

2. The admissibility requirement rules out upper-semicontinuity: it implies that 
(T, L) is the unique strategically stable equilibrium of 

L R 

T 2,2 2,2 

B 1,1 0,0 

even though (T, R) is the unique (strategically stable) equilibrium of 

L R 

T 2,2 2+E,2? 2 

B 1,1| 0,0 
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2.8. Equivalence of Equilibria 

Our discussion of backwards induction in Section 2.4 concluded with the 
requirement of sequentiality in any equivalent tree, where two trees were con- 
sidered equivalent if they had the same reduced normal forms. We start with an 
example showing that this requirement may be impossible to satisfy. 

L R 

T 1,-I 1,-I 

A: M 2,-2 -2,2 

B -2,2 2,-2 

For any 0 S a S 1, the tree shown in Figure 7 has the same reduced normal form; 
but in its unique sequential equilibrium, player II goes left with probability 
(4-3a)/(8 -4a). 

(In any equilibrium T is at least as good for I as M, so giving the hand to 
nature is also at least as good as M. On the other hand, player II has to use both 
L and R with positive probability in any equilibrium, so that in any sequential 
equilibrium player I's probability of choosing B has to be strictly between 0 and 
1. Thus player I has to expect the same payoff in his second information set from 
giving the hand to nature as from playing B. Solving this equation for player II's 
probability of L yields (4-3 3 a)/ (8 - 4a).) 

1,-i 

1,-i a /2,-2 
1-a 

T A* -2, 2 
a (a)://:I 

I / . 0 z 2,-2 

-2, 2 
FI E 7-2, 2 

2, -2 

FIGURE 7 
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(We would like to stress that the argument above, and hence the fact that 
"sequentiality in every equivalent tree" cannot be satisfied by a single-valued 
concept, does not depend on the specific definition of sequentiality. Rather, it 
follows from basic backwards induction, i.e. the requirement that each agent's 
assessment of the conditional probabilities in his own information set be consistent 
with the other agents' strategies, and that each agent's strategy maximize his 
payoff given his assessment. (Sequentiality requires much more, e.g. consistency 
across assessments of all agents of all players.) Moreover, in the particular 
example here there can be no ambiguity about what's meant by "backwards 
induction," because all conditional probabilities are positive and uniquely deter- 
mined by Bayes' rule from the strategies.) 

So it is clear that any concept satisfying "sequentiality in every equivalent tree" 
will have to consider all equilibria (1, -1) in the game A as equivalent, as being 
the same.23 

The example might suggest that equilibria be defined as being equivalent when 
they give the same payoffs (or the same distribution of payoffs) to all players, 
i.e., when they differ only off the equilibrium path.24 However, once we accept 
such a notion of equivalence, we are forced to also accept as equivalent equilibria 
which differ along the equilibrium path: Consider first a three-person game tree, 
A3, which is identical to A except that, after player I's first move, player III, who 
is uninformed of that move, has to choose L or R; this choice has no effect on 
I and II's payoffs (which remain as in A), while the payoff to III is 1 if II has 
played (i.e., if I has chosen X) and matched III's choice, and 0 otherwise. Since 
the game between I and II is unaffected by III's choice, equilibria that were 
equivalent in A must still have to be considered equivalent in A3. But, as we have 
seen, the unique equivalence class of A is its full set of Nash equilibria, where 
player II's probability of going right, say s, varies from 4 to 3. Player III, since 
his move matters only if X, will play as if the superfluous move (i.e. his choice 
after T) has been deleted. Thus he will choose right with probability t, where 
t=0 if s< , t varies from 0 to 1 for s= , and t=1 for s> . 

Now consider a five-person game tree, A5 which is identical to A3 except that 
there are two additional players, IV and V, who are uninformed of the play of 
A3 and who play one of two zero-sum games (having different values) FL or FR, 

depending on the move of player III. Since the game between I, II, and III is 
over before players IV and V enter the picture, equilibria that were equivalent 
in A3 still have to be considered equivalent in A5. But as t varies from 0 to 1, 
the payoffs of players IV and V vary from the value of FL to that of FR. (Choosing 
FL and FR to be of different types, e.g., one completely mixed and the other with 

23 The set of Nash equilibria in A is {((1, 0, 0), (y, 1 - y)): 4 S y - -}. We have shown that all equilibria 
with y (i.e., y = (4 - 3 a)/ (8 - 4a) and 0 S a S 1) should be considered equivalent. A variant 
of A(a) in which the move of nature selects B (rather than M) with probability l - a shows that 
also all equilibria with 2 S y - - should be considered equivalent. 

24 We don't know whether identification of equilibria with the same payoff is sufficient to guarantee 
the existence of an equilibrium which is sequential in any equivalent tree; i.e., the following is an 
open problem: Does every game have a payoff vector such that all game trees with the same reduced 
normal form have a sequential equilibrium with this payoff? 
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a pure-strategy saddle point, we can even obtain an equivalence class in which 
the strategies of players IV and V vary with t through all the (differentiable) 
submanifolds of the set of equilibria.) 

We see then that in nongeneric trees, we may sometimes be forced to recognize 
as equivalent equilibria that differ even along the equilibrium path. 

In the examples above, all equilibria within the same connected component 
of the set of Nash equilibria had to be identified. However, this is not the case 
in general. 

For instance, in Example 8 all equilibria lie within the same connected com- 
ponent (and they even commute); however one-( T, L)-is dominant and all the 
others are dominated, so we certainly cannot consider them equivalent. 

In summary, beyond the fact that equivalence classes seem connected, we 
cannot point to any property (equal payoffs, commutation, being in the same 
differentiable submanifold, etc.) which is either necessary or sufficient for 
equivalence. 

We wish however to stress that any identification of equilibria within a con- 
nected set would not constitute a major departure from the usual notion of 
single-valued equilibrium. Indeed, for any generic tree, all equilibria in the same 
connected component give rise to identical probability distributions over endpoints- 
i.e., they differ only off the equilibrium path. 

To see this, recall that for a generic tree, the set of probability distributions 
on the endpoints induced by Nash equilibria is finite (Kreps and Wilson (1982, 
Theorem 2) and the remarks following its statement; a simple proof is given in 
Appendix C). Therefore, when the players' strategies vary over a connected set 
of equilibria, the distributions over endpoints-which are continuous functions 
of the strategies-must remain constant. 

2.9. Main Requirements 

We now rephrase our requirements for strategic stability in term of a set-valued 
solution concept: 

Existence: Every game has at least one solution. 
Connectedness: Every solution is connected. 
Backwards Induction: A solution of a tree contains a backwards induction (e.g. 

sequential or perfect) equilibrium of the tree. 
Invariance: A solution of a game is also a solution of any equivalent game 

(i.e., having the same reduced normal form). 
Admissibility: The players' strategies are undominated at any point in a solu- 

tion. 
Iterated-Dominance: A solution of a game G contains a solution of any game 

G' obtained from G by deletion of a dominated strategy. 
We wish to emphasize that this list of properties is by no means complete. 

Moreover, it should not even be viewed as part of an axiom system for "strategi- 
cally stable equilibrium" because some of the requirements are phrased in terms 
which are outside decision theory. This list should rather be viewed as a (partial) 
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benchmark against which proposed definitions may be tested (cf. Appendix E 
for more details). 

3. STABLE EQUILIBRIUM 

3.1. Overview of the Results 

We first give a basic result on the structure of the Nash correspondence. 
Motivated by this result, we define two preliminary concepts, "hyperstable" and 
"fully stable" equilibrium, and show that each satisfies existence, backwards 
induction, invariance, iterated dominance, and a version of connectedness. 
However, they fail to satisfy admissibility. We view this failure as fundamental, 
and therefore discard both concepts. 

We then give an incomplete definition of what seems to us the "right" concept, 
which we call "stable equilibrium." In order to not further complicate our 
terminology, we will refer in this paper to equilibria satisfying the incomplete 
definition as "stable." We show that stable equilibrium satisfies existence, invari- 
ance, admissibility, and iterated dominance. We hope that in the future some 
appropriately modified definition of stability will, in addition, imply connected- 
ness and backwards induction. 

3.2. The Structure of Nash Equilibria 

The theorem below says that the graph of the Nash equilibrium correspondence 
(when compactified by adding the point oo) is like a deformation of a rubber 
sphere around the sphere of normal form games (similarly compactified). (We 
recommend that a reader without an independent interest in the geometry of 
Nash equilibria skip the precise statement of this theorem and its proof in a first 
reading of this paper.) 

Formally, fix a finite player set N and finite (pure) strategy sets Sn. Let 
S= Hl nE Sn. Denote by In the space of probabilities on Sn; let = Hl neN ;n- 

Denote by Fn the space of payoff functions of player n, i.e. Fn = Rs, and let 
F = f Fn. Denote by E the graph of the set of equilibria, i.e. E = 

{( G, -) E F x E I 0- is a Nash equilibrium for G}. For any locally compact space 
L, denote by L its one-point compactification. Denote by p the projection mapping 
p: E - F and denote by p its extension by continuity from E to F, defined by 

P(oo) (oo). 

THEOREM 1: p is homotopic to a homeomorphism. More precisely, there exists 
a homeomorphism 0 from F to E such that po 0 is homotopic to the identity on F 
under a homotopy that extends to F. 

PROOF: Let Tn =i ?n Si; Fn is the set of all Sn x Tn payoff matrices Gn,t, but 
it will be more convenient to use the following reparameterization of Fn: let 
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G' G'= G + g where EteT, G' t = 0, i.e., g' is the average over t of G' t. Thus 
F, will be considered as the set of all pairs (G', gf), with YteT, G, t = 0. 

Let Z' = oSs+ E t0TG ti. 
The Zn are continuous functions on E. Conversely, given G and any vector z, 

one can recompute the corresponding point of E in a unique and continuous 
way, as follows: 

First, vn = m- {a a )s+ (zs -a)+ S 1} (player n's equilibrium payoff); next, 
= (Zn _ Vn) ; finally 

(*) gsn =Zs-n_ n- E G n t n a II E gn 
telT, i#n te Tn iT n 

This homeomorphism, from the set of pairs (G, z) to E, is the homeomorphism 
of the statement; and p o 0 maps (G, z) to (G, g). 

There only remains to construct the homotopy. 
Let, for te [0, 1], qt(G, z) =(G, tz+(1- t)g) (and qt(oo) =oo). Since qo= p o 

and q, (which is the identity) are both continuous, we already know the continuity 
of q on [0, 1] x E; so there only remains to show the continuity of q at all points 
of [0, 1] x {oo}, or equivalently that VM, 3K such that ll(G, z)j If K => 
V t, 11 qt (G, z) |M. n nT 

Note that (*) implies zs s s tET"GS,'t1finrtjI; thus, using the 
maximum norm throughout, 

(** lZ - gll 11 Gil + 1. 

So choosing K=2M+1, if IIG,zllIK then either IIGI^ M, in which case 
jlqt(G,z)jjlM, or IIGII<M and IlzllI2M+1, in which case, by (**), lItz+ 
(1- t)gj j :M so again jqt (G, z)jj 1 M. Q.E.D. 

3.3. Hyperstable Equilibria 

The structure of the Nash equilibrium correspondence implies the following 
corollary (see Appendix B for a derivation): 

PROPOSITION 1: The set of Nash equilibria of any game has finitely many 
connected components. At least one of them is such that for any equivalent game 
(i.e., having the same reduced normalform), andfor any perturbation of the normal 
form of that game, there is a Nash equilibrium close to this component. 

Motivated by this result, we will say that S is a hyperstable set of equilibria in 
a game G if it is minimal with respect to the following property: 

PROPERTY (H): S is a closed set of Nash equilibria of G such that, for any 
equivalent game, and for any perturbation of the normal form of that game, there 
is a Nash equilibrium close to S. 

Every game has a hyperstable set of equilibria contained in a single connected 
component of the set of Nash equilibria. To see this, let F denote the family of 
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subsets of a single connected component satisfying condition (H), ordered by 
set inclusion. F is nonempty by Proposition 1; every decreasing chain of elements 
in F has a lower bound (because by compactness the intersection is in F); 
therefore, by Zorn's lemma, F has a minimal element. 

It follows (see Section 2.8) that every generic tree has a hyperstable payoff, i.e. 
a (vector) payoff which is implied by all the equilibria in some hyperstable set. 

In the next section we define fully stable sets, replacing (H) by a less restrictive 
condition. So every hyperstable set contains a fully stable set. Since every fully 
stable set contains a sequential equilibrium (Proposition 3), the same is true for 
hyperstable sets. 

That hyperstable sets are invariant follows from their definition.25As to iterated 
dominance, this follows from an analog of Proposition 2 in which "fully stable" 
is replaced by "hyperstable." 

So "hyperstable equilibrium" satisfies existence, a version of connectedness, 
backwards induction, invariance, and iterated dominance. However, it does not 
satisfy admissibility, as the following example shows (payoffs could be perturbed 
so as to make the tree generic): 

2,2 1,1 

T L 
L R 

T 2, 2 2,12 
i.e. 

0,0 ~ B 11 , 
B R 

FIGURE 8 

25 A concept closely related to hyperstable equilibrium is that of "essential equilibrium": an 
equilibrium e of a normal form G is essential if for any perturbation of G there is a Nash equilibrium 
close to e. Note, however, that essential equilibrium is not an invariant concept. For example, in the 
game 

L i0 3,0 

the set {(1, 0) u (3, 0)} is essential, but it is no longer so in the equivalent game 

1,0 2,0 3,0 ! 

(In contrast, the only hyperstable set in either game is the full interval, (1, 0) to (3, 0).) 
Our result that generic trees have hyperstable payoffs implies in particular that generic normal 

forms have hyperstable (and therefore essential) equilibria. This result, which is well known (Wu 
Wen-Tsun and Jiang Jia-He (1962)), is of limited interest-because any normal form arising from a 
nontrivial tree is nongeneric. 
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The unique hyperstable set is the full interval from (T, L) to (T, R) but only 
(T, L) is admissible. (To see that every hyperstable set must include any given 
mixture of player II, add this mixture as an additional pure strategy and perturb 
the game by increasing slightly player II's payoff in that column.) 

3.4. Fully Stable Equilibrium 

The last example shows that the definition of hyperstability is unsatisfactory, 
i.e. that requiring stability under all perturbations of payoffs might lead to sets 
which are too large. A natural idea, then, is to restrict the perturbations of the 
payoffs to those which arise from perturbations of strategies. That is, we would 
like to perturb the game by requiring that, whenever a player chooses some pure 
strategy, it is in fact some (close by) mixed strategy that is played. 

Thus, in the simplex of strategies, we get a certain number of interior points, 
close to the vertices. But we want the definition to remain unchanged when a 
finite number of additional pure strategies are introduced, convex combinations 
of the old ones. These may lie anywhere in the simplex, but are also perturbed 
so as to become interior points. Thus in fact we are in the situation where each 
player's pure strategy set is replaced by an arbitrary finite subset of completely 
mixed strategies, containing strategies close to the vertices-i.e., his mixed strategy 
simplex is replaced by any closed convex polyhedron in the interior of the simplex, 
and that approximates the simplex in the Hausdorff topology. 

We will say that S is a fully stable set of equilibria of a game G if it is minimal 
with respect to the following property: 

PROPERTY (F): S is a closed set of Nash equilibria of G satisfying: for any 
E > 0 there exists a 8 > 0 such that, whenever each player's strategy set is restricted 
to some compact convex polyhedron contained in the interior of the simplex and 
at (Hausdorff) distance less than 8 from the simplex, then the resulting game 
has an equilibrium point e-close to S. 

As noted earlier, every hyperstable set includes a fully stable set. Therefore, 
every game has a fully stable set which is contained in a single connected 
component of the set of Nash equilibria, and every generic tree has a fully stable 
payoff (However, fully stable sets may be disconnected, for instance {(1, 0) u 
(3, 0)} in the game 

1,0 3,0 

Invariance is obvious from the definition, while iterated dominance and back- 
wards induction follow from the two propositions below. 

PROPOSITION 2: A fully stable set contains a fully stable set of any game obtained 
by deletion of a dominated strategy. 
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PROOF: We will show that the set of those equilibria in the fully stable set that 
assign zero weight to the dominated strategy satisfies (F) in the smaller game: 
Given a perturbation G(E), of the game without the dominated strategy, construct 
a close-by perturbation, G(E, z), by first adding the deleted strategy as an addi- 
tional extreme point in the relevant player's strategy set, then perturbing it just 
like the corresponding (mixed) dominating strategy was perturbed in G(E), and 
finally perturbing all the strategies in the amount z towards the new extreme 
point. Since G(E, z) is a perturbation of the original game, it has an equilibrium 
close to our fully stable set. Such an equilibrium will clearly give zero weight to 
the dominated strategy. So taking a limit of such equilibria (as z -0) will give 
an equilibrium of G(E) close to the fully stable set. Q.E.D. 

PROPOSITION 3: A fully stable set of equilibria of a game tree contains a sequen- 
tial (in fact, even a perfect and proper) equilibrium of the tree. 

The proof of this proposition is an immediate consequence of the two proposi- 
tions below (recall that a perfect equilibrium of a tree-which is defined as a 
perfect equilibrium of the agent normal form-is sequential). 

PROPOSITION 4: Given a game tree, a fully stable set of equilibria of its normal 
form contains a fully stable set of equilibria of its agent normal form. 

PROOF: Given a perturbation of the agent normal form, i.e., a restriction of 
each agent to a polyhedron of completely mixed strategies, define a polyhedron 
of completely mixed strategies for any player by taking the convex hull of all 
points obtained by selecting some extremal strategy for each one of this player's 
agents. Clearly, if the strategy of any one of his agents is in the agent's polyhedron, 
then the player's strategy will be in his own polyhedron. Conversely, when the 
player mixes several behavioral strategies -,a using a lottery over a, agent n's 
component in the behavioral strategy induced by this mixture is the average of 
the o- weighted by agent n's posterior probability over a, and therefore satisfies 
the agent's restrictions. 

Thus, any polyhedral restrictions on the agents' strategies can be obtained by 
some polyhedral restriction on the players' strategies. Q.E.D. 

PROPOSITION 5: A fully stable set of equilibria of a normalform game contains 
a proper (hence perfect) equilibrium of that normal form. 

PROOF: Restrict each player's strategies to the convex hull of the k! vectors 
(where k denotes the number of pure strategies) obtained by permuting the 
coordinates of the vector 

1 
k (1, k., ). 
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Pick an equilibrium point of this perturbed game in the neighborhood of our 
set of equilibria. It is an e-proper equilibrium, because if strategy 1 yields a better 
payoff than strategy 2, best replies involve only those permutations that give 
strategy 1 greater weight than strategy 2-so the total probability of strategy 2 
will be smaller than E times the probability of strategy 1. Q.E.D. 

REMARKS: 1. Proposition 4 shows, in fact, that "fully stable equilibrium" 
satisfies appropriate versions of the backwards induction properties which we 
labelled BIl and B13 (in Section 2.6): The projection of a fully stable set on a 
subgame contains a fully stable set of that subgame26 and a fully stable set contains 
a fully stable set of any truncated game obtained by replacing a subgame with its 
unique equilibrium.27 

2. There is no reason to expect the converse of Proposition 4: a strategically 
stable equilibrium can certainly become unstable when two different agents of 
the same player become one. For example, the equilibrium (2, 2) seems strategi- 
cally stable in the agent-normal form of F(O) (Figure 3) but, of course, it is not 
stable in F(M) itself. 

3. The examples in Section 2.8 show that, in order to get backwards induction 
in every tree, a strategically stable set of the normal form may have to be a full 
equivalence class, while when focusing through the agent normal form on a given 
tree, we may get a singleton. Therefore no equality should be hoped for in analogs 
of Proposition 4. 

4. Proposition 4 is false for perfect as well as for proper equilibria: in the 
example of Appendix A, "1, B" is perfect and proper in the normal form but not 
in the agent normal form. 

So "fully stable equilibrium" satisfies existence, a version of connectedness, 
backwards induction, invariance, and iterated dominance. But it, too, fails to 
satisfy admissibility: consider the following variant of Figure 8 (payoffs could 
be perturbed so as to make the tree generic): 

0,0 2,2 1,1 

L R Z 

Z/ T/ L T 2, 2 2, 2 0,0 

/ I / B 11 R B 1,1 0, 0 0, 0 
II 0,0 

FIGURE 9 

26 Indeed, given any polyhedral restrictions on the strategies of agents in the subgame, consider 
in addition some (polyhedral) restrictions on the strategies of agents outside the subgame, and pick 
an equilibrium of the resulting perturbed game close to our fully stable set. This equilibrium projects 
to an equilibrium of the (perturbed) subgame, because the subgame is reached with positive proba- 
bility. 

27 Given any polyhedral restrictions on the strategies of agents in the truncated game, consider 
in addition some sequence of (polyhedral) restrictions on the strategies of agents in the subgame, 
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Although only (T, L) is admissible, the unique fully-stable set is the interval from 
(T, L) to (T, R). (For instance, (T, R) must be included because it is the unique 
equilibrium when L is perturbed more than R toward Z.) 

3.5. Stable Equilibria 

Looking at our last example, we see that the reason "full stability" led to a 
set which was too large, was that a player's choice was allowed to be affected 
by the perturbation of his own strategies. If we do not want this effect, we have 
to make the perturbations in a player's payoffs independent of his strategies. A 
natural way to achieve this is to perturb every pure strategy in the same amount 
towards the same completely mixed strategy. Clearly, an arbitrary convex combi- 
nation of pure strategies will then also be perturbed in the same way. Thus the 
following definition is invariant under addition or deletion of mixed strategies 
as additional pure strategies (more heuristics can be found in Appendix D). 

We will say that a set of equilibria is stable in a game G if it is minimal with 
respect to the following property: 

PROPERTY (S): S is a closed set of Nash equilibria of G satisfying: for any 
E > 0 there exists some 8S > 0 such that for any completely mixed strategy vector 
Cl o . . , an (n players) and for any Al, . .,, (0< 8i < 80), the perturbed game 
where every strategy s of player i is replaced by (1 - 8j)s + 8i(oi has an equilibrium 
e-close to S. 

REMARKS: 1. This is the same as the definition of full stability, except that 
instead of being restricted to general polyhedral sets, the players' strategies are 
restricted to simplices with faces parallel to the faces of the original simplex. 

2. If we asked for "some" instead of "any" (oh, . . ., o-n and 1, ,an) we 
would simply get perfect equilibria (cf. footnote 5). 

The same arguments used for fully stable sets show that stable sets exist and 
satisfy the following version of connectedness: There exists a stable set which is 
contained in a single connected component of the set of Nash equilibria and every 
generic tree has a stable payoff. In addition, stable sets are invariant (obvious 
from the definition). 

But stable sets might not satisfy the backwards induction requirement. In 
the game A (Section 2.8) {( T, (4, 3)) u (T, (3, '))} is stable; but in its presentation 
below (Figure 10), the unique sequential equilibrium is (T, (2, 2)) 

While in the example of Figure 10 the stable set still gives the same payoffs 
as the sequential equilibrium, in the example shown in Figure 11 (for which we 
are grateful to Faruk Gul) there is a stable set which gives different payoffs than 

converging to the full strategy simplices. This gives a sequence of perturbations of the original game, 
with equilibria close to our fully stable set. Since each one of those equilibria reaches the subgame 
with positive probability, any limit point must induce on the subgame its (unique) equilibrium. So 
any such limit point is an equilibrium of the given perturbation of the truncated game, close to our 
fully stable set. 
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/ ~~~~~~~~L 2,-2 

/ / *~~~~~~~~~~~ R\2 2 

I \~-2, 2 

2,-2 

FIGURE 10 

I 093,3 

29090 L/ \ 5 ,1,19 

I / I< II . * III 10 0 

FIGURE 1 1 

the unique sequential equilibrium: It is easy to verify that {( T, L, 1) u (T, R, r)} 
is a stable set (giving the payoffs (2, 0, 0)), whereas the unique sequential equi- 
librium is ((0, 2, 2), (2, 2), (2, 2)) with payoffs (14, 4, 5).28 

But even with our present definition stable sets are admissible, because (by 
minimality) every equilibrium in a stable set is a limit of equilibria of perturbed 
games, in each of which any dominated strategy becomes strictly dominated. 

Stable equilibria also satisfy the following: 

28 Recall (Section 2.8) that we certainly do not want to identify equilibria in different connected 
components of the set of Nash equilibria. Yet this example shows that with our present definition, 
stable sets may include points from different connected components: 

The set of Nash equilibria consists of three connected components: the sequential equilibrium, 
and two sets in which player I chooses T, and players II and III randomize in such a way that I's 
expected payoff following either M or B is less than or equal to 2 but in one of those sets the 
probability of Ll is greater than or equal to that of Rr and in the other it is less than or equal to that 
of Rr. (The sets are disjoint because, if the probability of Ll equals that of Rr, then the probabilities 
of Lr and of Rl must add up to at least 2, and therefore the expected payoff to I must be at least 
2.5.) Clearly, (T, L, 1) lies in the second component while (T, R, r) lies in the third. 
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PROPOSITION 6: A. (Iterated Dominance) A stable set contains a stable set of 
any game obtained by deletion of a dominated strategy. B. (Forward Induction) A 
stable set contains a stable set of any game obtained by deletion of a strategy which 
is an inferior response in all the equilibria of the set. 

PROOF: Given a perturbation, G(E), of the game without the deleted strategy 
s, construct a close-by perturbation G(E, z) by first adding s as an additional 
extreme point in the relevant player's strategy set, then perturbing it like all the 
other strategies were perturbed in G(E), and finally perturbing all of that player's 
strategies in the amount z towards s. Since G(E, z) is a perturbation of the original 
game, it has an equilibrium close to our stable set. Such an equilibrium will give 
zero weight to s (in case A, because s is strictly dominated in G(E, z); in case 
B, because s is an inferior response in any point close to the stable set). So taking 
a limit of such equilibria (as z -*0) will give an equilibrium of G(E) close to the 
stable set. Q.E.D. 

Proposition 6B captures the "forward-induction" logic (Section 2.6) of our 
basic example F(x) (Figure 2). Kreps (1984) has used a particular case of it 
as an "intuitive criterion" to justify the stable equilibria of signalling games, and 
to show that, in Spence-type signalling games, there is only one stable equilibrium, 
namely Spence's original separating equilibrium. 

REMARK: It seems natural to expect, based on first principles, that a strategi- 
cally stable equilibrium must remain so after deletion of a strategy which is an 
inferior response (at that equilibrium). However, such a requirement cannot be 
satisfied by a single-valued concept. To see this, consider the perfect information 
game (payoffs could be perturbed so as to make the tree generic) shown in Figure 
12. 

The unique backwards induction equilibrium is (T, R), with payoffs "2, 0." So 
any single-valued concept of "strategically stable equilibrium" must accept (T, R) 
as the solution of this game. Yet when the inferior response B is deleted, we 
obtain the game shown in Figure 13, whose unique backwards induction equi- 
librium (alternatively, the unique admissible equilibrium) is (M, L), with payoffs 
"3, 1." 

So Proposition 6B can be satisfied only by a set-valued concept. (Note that 
the unique stable set (of Figure 12) includes (T, (2, 2)); and the strategy B is not 
an inferior response at this equilibrium.) 

L R 
2,0 3,1 0,0 

T 2,0 2, 0 
T LM 

i.e., M 3,1 0,0 

II 1R 1,2 B 3,1 1,2 

FIGURE 12 
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2,0 3,1 L R 

T L T 2, 0 2, 0 

i.e., M 3,1 0,0 
0,0 

I M II R 

FIGURE 13 

Notice that, unlike our previous arguments in favor of a set-valued equilibrium 
concept, the argument above does not rely on having to satisfy existence. 

In summary, then, "stable equilibrium" satisfies existence, a version of con- 
nectedness, invariance, admissibility, and iterated dominance. As we have men- 
tioned before, we hope an appropriate modification will, in addition, satisfy 
connectedness and backwards induction. 

3.6. Application of Stable Equilibrium 

We end with a few applications of our results. In each of these applications, 
we rule out all but one of the candidates for stability by showing that they violate 
some requirement; by existence, the remaining candidate must then be a stable set. 

A. The Previous Examples 

In the game F(x) (Figure 2), the set of Nash equilibria consists of two connected 
components: the singleton (M, L), with payoffs "3, 3," and the interval from 
(T, R) to (T, (2- x)/(3 - x), 1/(3 - x)), with payoffs "2, 2." Since the second 
component disappears after iterated elimination of dominated strategies (B, then 
R), it cannot contain a stable set. So (M, L), i.e. "3, 3," is the unique stable set. 

The same analysis applies for the variant of F(0) in Figure 6.29 
In the games l} and A (Sections 2.7 and 2.8, respectively) as well as in Figures 

8 and 9 and the example of Appendix B, the set of Nash equilibria consists of 
a single connected component. But while in the first two examples we cannot 
rule out any point within the component, in the latter three, all equilibria but 
one are eliminated because of inadmissibility. 

B. An Example from Information Economics 

We conclude with an example, due to Kreps, which captures the central point 
of many recent contributions to information economics (see Kreps (1984) for a 

29 We rely here on the following fact: a stable set contains a stable set of any truncated game 
obtained by replacing any zero-sum subgame by its value (cf. Remark 1 in Section 3.4). 
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discussion). It is the basic ingredient (i.e., a single stage) of the "chain store 
paradox", and can be described as follows: 

First, Nature chooses one of two players, Weak or Strong, with probabilities 
.1 and .9, respectively. 

Next, the chosen player sends either a "strong" or a "weak" signal. A true 
signal is costless, whereas a false signal costs 1 unit. 

Finally, a third player (the Entrant), who is only informed of the signal, must 
decide whether to fight or to retreat. If he fights, he will win or lose 1 unit 
depending on whether his opponent was Weak or Strong. The opponent, on the 
other hand, will lose 2 whenever there is a fight. 

The extensive form is given in Figure 14 (where 0 denotes Nature, the arrows 
indicate the order of play, and payoffs are indicated in the following sequence: 
Weak, Strong, Entrant). 

It is easily verified that the set of Nash equilibria consists of two connected 
components (within each of which the equilibria differ only off the equilibrium 
path): 

(1) The chosen player sends a strong signal; the Entrant retreats if the signal 
is strong, and fights with probability greater than or equal to 2 if the signal is weak. 

(2) The chosen player sends a weak signal; the Entrant retreats if the signal 
is weak, and fights with probability greater than or equal to 2 if the signal is strong. 

Whereas equilibria in the first component appear sensible, those in the second 
component do not. (The Entrant's prior probability of his opponent being strong 
is 90 per cent, but after hearing a strong signal he acts as if his posterior dropped 
to at most 50 per cent.) Yet none of the previously known solution concepts 
could distinguish between these two comnponents (i.e., all the Nash equilibria in 
this example are sequential, perfect, proper, proper after iterated elimination of 

-3,0 ,1 f -2, 0, 1 

w 

-1 ,0,0 rO,O 0, 0,0 

*E 
E 

0,-2,-1 f .9 0,-3,-1 

S S w 

O O O, / r r \ 

FIGURE 14 
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dominated strategies, etc... .). On the other hand, "stability" does distinguish 
between them: (1) is stable, whereas (2) is not. 

To see this, note that sending a strong signal is an inferior response for Weak 
in any equilibrium of component (2) (because the resulting payoff will be between 
-3 and -2, which is less than the equilibrium payoff, 0). But deleting the possibility 
for Weak to send a strong signal will make component (2) unstable (because 
then the Entrant's strategies in (2) will be inadmissible, his choices after a strong 
signal being dominated by the choice r). Thus, by Proposition 6B, (2) does not 
contain a stable set; by existence, (1) does. 

Graduate School of Business Administration, Harvard University, Boston, MA 
02163 

CORE, and Universite Catholique de Louvain, Louvain-la-Neuve, Belgium 

Manuscript received March, 1983; final revision received December, 1985. 

APPENDIX A 

PROPOSITION 0: For any tree, and for any proper equilibrium of its normal form, there exist 
equivalent30 behavioral strategies which form a sequential equilibrium. 

PROOF: Let x = lim x? be a proper equilibrium where the x? are E-proper equilibria. Given a tree, 
let o-_ be the(n-tuple of) behavioral strategies equivalent to x?, and let g,, be the vector of conditional 
probabilities that they imply on information sets. Extract a subsequence along which all those objects 
converge. We have to show that o- = lim o_, is such that each agent maximizes his payoff given ,u and 
given the strategies of the other agents. 

Assume the contrary. Then there is some player, say 1, and a last information set for him, say J, 
such that &-' assigns positive probability to a move in J, say L, whose expected payoff (given ,u and 
cr) is less than that of another move, say R. Since player l's agents in information sets after J are 
assumed to be maximizing l's payoff, it follows that the expected payoff to player 1 (starting in J 
and given ,u and o2 ...u. n) of choosing R and then continuing as in &, is larger than that of 
choosing L, regardless of the continuation. Clearly, the same is true given p? and o-.o- . , provided 
E > 0 is sufficiently small. 

It follows that every normal form strategy of 1 that does not avoid J and chooses L in J has 
smaller expected payoff, given x2?,.. , Xn than a modification of that strategy that chooses R and 
then continue as in &-1. Since x? is E-proper, x? assigns the first strategy probability less than or 
equal to E times the probability of the second strategy. It follows that o-1 assigns to L probability of 
at most kE, where k is the number of (normal-form) strategies of 1. Letting E -0 we see that or1 
assigns to L zero probability, a contradiction. Q.E.D. 

I,A 1,B 

I /0, C 

FIGURE 15 

30 "Equivalent" in the sense of Kuhn's theorem. Remember that we identify such equivalent 
strategies (Section 2.5). 
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Note that the proposition above is no longer true when "sequential" is replaced by "perfect." For 
example, "1, B" is proper in the normal form 

1, A 

1, B 

0, C 

but is not perfect in the tree shown in Figure 15. 

APPENDIX B 

PROPOSITION 1: The set of Nash equilibria of every game has finitely many connected components. 
At least one of them is such that for any equivalent game (i.e. having the same reduced normal form) 
and for any perturbation of the normal form of that game, there is a Nash equilibrium close to this 
component. 

(Mas Collel (private communication) has suggested an alternative proof of this proposition, which 
uses a similar argument as the one below but applied to the mapping used by Nash in his original 
existence theorem rather than to the mapping p of Theorem 1.) 

REMARK: In the statement above, we think of a connected component of equilibria in one game 
as also being a connected component of equilibria in any equivalent game. (There is a natural mapping 
from the equilibria of a game to the equilibria of its reduced normal form: if one pure strategy is 
equivalent to a convex combination of other pure strategies, simply replace its weight by the 
appropriate weights on those other strategies. This mapping between equilibria induces a one-to-one 
mapping between connected components of equilibria.) 

PROOF: (For notation see Section 3.2.) The picture of the proof is as follows: If a connected 
component of the part of the rubber sphere E that lies above some game yo had a neighborhood 
that did not project onto some neighborhood of yo, then that component could be pulled away from 
the vertical above yo by a small deformation. So if all connected components were such, we would 
have a deformation of the rubber sphere with a hole above yo, which is clearly impossible. 

Formally, we first note that the equilibrium set of any game consists of a finite number of connected 
components. This follows from a theorem of van der Waerden (1939, Satz 1, p. 123), that a compact 
set consisting of the solutions to a finite system of algebraic inequalities has a finite triangulation 
(i.e., is homeomorphic to a finite union of compact polyhedra). 

Let then Yo E F be a given normal form, and let Cl, . . ., Cn denote the different connected 
components of the Nash equilibria of yo. We first want to show that 3i such that any game in a 
neighborhood of yo has equilibria close to Ci. 

If not let Oi C . be open neighborhoods of the Ci with disjoint closures such that, Vi, VE > 0, 3 y18 
such that 11 To - yi,. 11 < E and Eq( yi,.) n Oi = 0. By upper-semi-continuity of the equilibrium correspon- 
dence, choose E such that, if y - you |E, then Eq(y) c Ui Oi; letting yi = i,e we have Eq(yi)c 
Ujoi 01. 

Use now Tietze's extension theorem to get a continuous function h: E -. 1 such that Vi, h = vy on 
E n (r x oi) and lIh(e) - yoll < E everywhere. Then we have h(e) # p(e)Ve; thus p - h: E- r is not 
onto because it does not cover zero (its value at oo being oo because h is bounded). But p - h is 
homotopic to p (p - th is a homotopy on E-the boundedness of h insures the continuity at {oo}), 
so that, by Theorem 1, it is homotopic to the identity (modulo the homeomorphism), and therefore, 
by Brouwer's theorem, it is onto: we have a contradiction. 

Consider now what happens if one adds new pure strategies to the game, equivalent to mixed 
strategies in the original game. The new game still has such a connected component, and any such 
component in the new game is mapped to such a component in the old game (as noted before, the 
mapping from equilibria in the new game to equilibria in the old game induces a one to one mapping 
between connected components). As one keeps adding strategies, the (finite) set of such components 
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keeps shrinking, but stays nonempty. This implies that the original game has a connected component 
of equilibria that is stable in the required sense in any game obtained by adding (and/or deleting) 
equivalent pure strategies. Q.E.D. 

REMARK: The statement of the theorem cannot be strengthened to say that there exists a convex 
(or even a contractible) set of equilibria with the above stability properties: in the following example, 
the only set with those properties is homeomorphic to a circle (both in strategy space and in payoff 
space). 

1 1 0,-1 -1,1 
I 

(1,0 0,0 -1,0 

91-1- 0, 1- -2, -2 

The set of Nash equilibrium is exactly the circle depicted. We claim that the whole circle is needed 
if we want to allow for any perturbation of the normal form payoffs, i.e. that no closed proper subset 
of the circle has the required stability property: for all Nash equilibria, except those where one player 
mixes-strictly-between his first and last strategies, there exists a perturbation of this normal form 
with a unique Nash equilibrium in the vicinity of that point. For example, the following perturbed 
game has a single equilibrium, ((E/1+E, 1/1+E, 0), (0, 2, 2)) 

-1, 6- -6,61 -1+E6, -6 

0,-1 -2, -2 

For the remaining points, one has to add say a column equivalent to the mixture (a, 1 - a) on the 
first and last columns and to perturb the resulting normal form. 

APPENDIX C 

PROPOSITION (Kreps and Wilson): For generic extensive games, the set of equilibrium probability 
distributions on endpoints is finite. More precisely, for any tree there is a nontrivial polynomial with 
integer coefficients, such that any vector of endpoint payoffs for which the tree has infinitely many 
equilibrium distributions, is a zero of that polynomial. 

PROOF: By Kuhn's theorem, it is sufficient to consider behavioral strategies. Erasing the part of 
the tree that is reached with zero probability, it is sufficient to prove the finiteness of the number of 
distributions on endpoints arising from completely mixed behavioral equilibria. 

In what follows, all the games we consider will have the same tree (but different endpoint values). 
So we can identify each game with its vector of endpoint payoffs. 

Given such a game G, define a normalized game G in the following way: 
First, consider the set IV, of all those information sets of player n, in which all his moves are last 

moves for him (at least one such information set exists in a finite game of perfect recall). For every 
I E f', and for every move k > 1, add a constant to player n's payoff at all the endpoints that are 
successors of the information set I and the move k, in such a way that the sum of player n's payoffs 
over all those endpoints will be zero. 

Next, consider the set 2, of all those information sets of player n, in which all his moves are 
either last moves for him or else are last moves for him before an information set in vn. For every 
I E , and for every move k > 1, add a constant to player n's payoff at all the endpoints that are 
successors of the information set I and the move k, in such a way that the sum of player n's payoffs 
over all those endpoints will be zero. Notice that, since the game has perfect recall, this second step 
will add the same constant to player n's payoff at all those endpoints that follow the same information 
set IE t1. 

Next, define l", tn, etc ..... G is obtained from G by carrying out this procedure for each 
player n. 

Now, given such a normalized game G and a completely mixed equilibrium of G, one can reconstruct 
G in a unique way: for any information set, the expected payoff in G must be the same for all moves 
in that information set; so for I E lf'n, the corresponding constant in the above-described procedure 
can be recovered by subtracting player n's expected payoff in G following move 2 from his expected 
payoff following move 1, etc..... 



STABILITY OF EQUILIBRIA 1035 

We thus have a rational C' mapping, X, from pairs (H, x)-where H is a normalized game and 
x is a completely mixed n-tuple of behavioral strategies-to games, such that O(G, x) = G whenever 
x is a completely-mixed equilibrium of G. So the set of completely-mixed equilibria of G is finite 
when +17(G) is so. 

Clearly, the dimensions of {(H, x)} and of {G} are the same. It follows that +-l(G) consists of 
finitely many points except when G is a critical value of 40. (For regular G, the set is discrete since 
4 is Cl; it has a finite triangulation by algebraicity (Van der Waerden, loc. cit.); hence it is finite.) 
But the set of critical values of a rational Cl map from R" to R" is contained in the set of zeros of 
a nontrivial polynomial (e.g., using Sard's theorem and the previously cited result of van der Waerden). 
Since the rational map has integer coefficients, it follows that the polynomial can also be chosen so. 

Q.E.D. 

APPENDIX D 

Some Heuristics behind the Definition of Stability 

In a two-person game, any admissible equilibrium point (oa, r) is normal-form perfect: since o( is 
undominated, there exists a completely mixed strategy y of player II such that (r is a best reply 
against y. Similarly r is a best reply against some completely mixed x. Thus, for any E > 0, o( (resp. 
r) is a best reply against r =(1 - E)r+ Ey (resp. o_ = (1 - E)o+ ex), and thus (o_, r_) forms an 
E-perfect equilibrium. This proves our claim. An n-person analog of this statement is contained in 
Selten's criterion of substitute-perfectness (see Selten (1975)). 

Since perfectness in the tree is just perfectness in the agent normal form, this suggests that in some 
sense perfectness is just sequentiality plus admissibility (in the tree). 

Thus we see that this same idea of using perturbed games yields our two requirements of 
backwards-induction and of admissibility (the first step towards iterated dominance), and that the 
admissibility requirement alone already leads to this idea. (This strongly suggests phrasing a definition 
of stability in terms of perturbations of the agent-normal form. "Full stability" is a definition of this 
type (see the proof of Proposition 4). However, as explained in Section 3, one should replace it by 
a definition that considers only normal-?orm perturbations, which are the ones that arise directly 
from the admissibility idea.) 

We now wish to show that our definition of stable equilibrium arises naturally from the requirements 
of perfection and invariance: in the special case of an equilibrium with positive weight on every best 
reply, we claim that perfectness in every equivalent tree implies stability. (Appendix E shows-at 
least with sequentiality-that such a restriction may be necessary.) 

Indeed, if such an equilibrium o(* is perfect in every equivalent tree, and if (r is any vector of 
completely mixed strategies, first define j to be some convex combination of o(* and c- so close to 
the equilibrium o(* as to yield a higher expected payoff than any pure strategy which is not a best 
reply. By adding (r as an additional pure strategy, and drawing an appropriate tree, like the one 
shown in Figure 16, the corresponding agent 2 will thus have to use, in any E-perfect equilibrium 
close to oc*, the additional pure strategy c rather than the inferior strategies, so that the relative 
weights on all inferior strategies will be essentially (when E -- 0) determined by the vector oc: we thus 
have, for arbitrary cr, an equilibrium of the or-perturbed game close to cr*. 

APPENDIX E 

On the Inadequacy of our Requirements as Axioms 

Let us show that even asking for equilibria which are sequential in every tree having the same 
reduced normal form would not guarantee strategic stability. Consider the game shown in Figure 17, 
whose unique backwards induction equilibrium is "3, 3". Let us now add six dummy players, one 
per box of the matrix, where each dummy player gets 1 in that box and 0 otherwise. Clearly, the 
addition of the dummies ought not to impact strategic stability, so "3, 3" should still be the only 
strategically stable equilibrium of the new game, G. But, because of the dummies, any game tree 
with the same reduced normal form as G is essentially one in which both players move simultaneously, 
i.e., at no relevant information set is one player informed of previous moves by the other. In such a 
game, every admissible Nash equilibrium is sequential, in particular "2, 2". So the "bad" equilibrium 
"2, 2" is sequential in every game tree having the same reduced normal form as G. 
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same 
player best replies 

(agent 1) 

player (all players move 
(agent 0) simultaneously) 

same all other 
player pure strategies 

(agent 2) 

FIGURE 16 

2,2 1,1 0,0 2,2 2,2 

1,1 3,3 

,< II / I / - 3,3 1, 1 0, 0 

FIGURE 17 

We see then that even asking for sequentiality in any tree obtained by application of the six 
inessential transformations is insufficient for strategic stability. One may be tempted to conclude that 
the source of the difficulty is that our list of transformations is incomplete. One could then try to 
define an additional transformation which would eliminate dummy players from a game. (However, 
while in examples like the one above it is obvious how to identify dummies, in more complicated 
games the identification of dummies may be difficult.31) 

Our feeling, however, is that the source of the difficulty is in the use of a concept like sequential 
equilibrium. While sequentiality, invariance, dummy properties, etc., are reasonable properties against 
which a proposed solution concept may be checked, they cannot serve as a definition or an axiom: 
one would always find further requirements that are violated in some cases. Presumably, a correct 
definition or axiom system should involve only rationality criteria (like admissibility) about the game 
itself as opposed to criteria (like invariance) about the solution correspondence. In addition, the 
criteria should be phrased in purely decision theoretic terms-e.g., depend only on the best reply 
correspondence-instead of depending on the tree like sequential equilibrium. Such a definition 
would automatically yield the required properties of the correspondence (like invariance, dummy 
properties, backwards induction properties like BIl, correct behavior under deletion of dominated 
strategies, etc). 
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