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Abstract

We consider a multilateral Nash demand game where short-sighted players come to

the bargaining table with requests for both coalition partners and the potentially gen-

erated resource. We prove that group learning leads with probability one to complete

cooperation and a strictly self-enforcing allocation (i.e., in the interior of the core).

Highlighting group dynamics, we demonstrate that behaviors which appear destruc-

tive can themselves lead to beneficial and strictly self-enforcing cooperation.

Keywords: Nash bargaining, learning, core, group conflict.

JEL Codes: C7.

1 Introduction

This paper develops a noncooperative model of multilateral bargaining in which group learn-

ing leads to convergence of allocations to the subset of the core which is strictly self-enforcing.
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The literature on multilateral bargaining has a rich history, including Baron & Ferejohn

(1989), Krishna & Serrano (1996), Chatterjee, Dutta, Ray & Sengupta (1993), Perry & Reny

(1994), and Konishi & Ray (2003), with the latter three finding noncooperative bargaining

foundations for the core (which consists of weakly self-enforcing allocations). In contrast

to such papers, which typically examine the equilibria of dynamic bargaining games with

forward-looking players, we are interested in the learning process resulting from repeated my-

opic play of a static bargaining game that extends the canonical two-player demand model

of Nash (1950). We study learning in the bounded rationality or evolutionary sense of Fu-

denberg & Maskin (1992), Gale, Binmore & Samuelson (1995), and Mailath (1998), among

others.

In our model, formalized in Section 2, N players to come to the bargaining table with

demands for both a potentially generated resource and coalition partners. The groups that

form must be mutually compatible in terms of resource and partner requests, and their ability

to produce the resource is governed by a convex and strictly superadditive characteristic

function. We show in Section 3 that the set of strict Nash equilibrium outcomes of this

static game correspond to the set of strictly self-enforcing (interior core) resource allocations

and complete cooperation.

In Section 4 we study the learning process that results when this game is repeatedly

played over time by myopic (or short-lived) players. By permitting players to include or

exclude other players from their coalition, our model can capture flavorful and realistic group

dynamics. In particular, group settings often display inefficient and destructive behaviors.

Individuals can be excluded from groups or steal away other players’ partners. Groups may

take advantage of individuals who are desperate and alone, or have a scapegoat who absorbs

the impact of a group failure. Individual greed may lead to internal strife, and one group’s

actions can instigate conflict within another. We construct a learning process by which

the destructive behaviors of myopic individuals propel them towards strictly self-enforcing

cooperation. Essentially, we show that the behaviors above are too destructive to sustain

endless cycles of their use.

An interesting related paper by Agastya (1997) finds convergence to core (weakly self-

enforcing) allocations through learning in a demand bargaining model where only resource

requests are submitted. A main difference from this paper is that Agastya (1997) does

not model coalition selection.1 In our model, the dynamics of partner selection lay bare

1Because only resource demands are a strategic option for players, instead of modeling institutional details,
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an interesting convergent process in which conflict itself leads to cooperation. Moreover,

incorporating partner selection into the bargaining mechanism ensures that learning leads

to a strictly self-enforcing outcome. We also show in Section 5.1 that our results extend

when players have “pragmatic” preferences over partners: so long as excluding a given set

of players would not affect her material payoff, the probability a player is willing to exclude

them could depend on the properties of past play; for example, whether they excluded her

earlier.

2 Nash bargaining with N players

There is a group of N ≥ 3 players, denoted by I = {1, 2, . . . , N}. Letting I be the set of

all possible coalitions, the resources a particular group may obtain is described by a convex

and strictly superadditive characteristic function v : I → R. Convexity means that there

are increasing returns to scale: for all S, T ⊆ I, v(S ∪ T )− v(S) ≥ v(T )− v(S ∩ T ). Strict

superadditivity means that there are strictly positive synergies: if S ∩ T = ∅, v(S ∪ T ) >

v(S) + v(T ).

Players come to the bargaining table with two requests. First, as in the standard bilateral

demand game, player i requests some amount di ∈ [v(i), v(I)] of the resource for herself.

Second, player i specifies a list of players Pi ∈ I with whom she is willing to form a coalition.

For notational simplicity, we assume that player i’s list always includes herself. The list of

all resource and partner requests submitted is given by (d, P ), where d = (d1, d2, . . . , dN)

and P = (P1, P2, . . . , PN).

Not every combination of resource and partner requests is feasible. Letting Π(I) denote

the set of all coalition structures (i.e., partitions of I), a particular coalition structure π ∈
Π(I) will be feasible if all of its coalitions are mutually compatible and demand-feasible.

Mutual compatibility requires that for each group S ∈ π, no member j ∈ S is excluded

from the partner list of some other player in that group (i.e., there is no i ∈ S such that

j 6∈ Pi). Demand-feasibility is the simple condition that for each coalition S ∈ π containing

at least two players, the total amount of resource requested,
∑

i∈S di, does not exceed the

Agastya uses two characteristic-function based properties that determine whether or not a demand will be
met. A limited form of coalition selection is permitted by Arnold & Schwalbe (2002), who allow players
to switch only among existing coalitions (hence groups cannot split, and entirely new coalitions cannot be
formed). They restrict the role of interaction by directly assuming that non-core allocations are unstable in
Assumption 3, which says players in blocking coalitions may play randomly.
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total amount of resource available, v(S). Strict demand feasibility of the coalition S means

that
∑

i∈S di < v(S).

Each player has a strictly increasing utility ui : R+ → R over the resource (for ease of

exposition, we assume for now that the amount of resource received is the sole determinant

of utility; in Section 5.1 we consider a class of preferences that permits some preferences for

partners). A player i who remains unpartnered in π receives v(i) regardless of her resource

request. The utility of player i, under the requests (d, P ) and the coalition structure π, is

given by ui(di) if π specifies a nontrivial coalition for i, and ui(v(i)) otherwise. A request di

is individually rational for player i if di ≥ v(i), and strictly individually rational if the strict

inequality holds. There is always a feasible and individually rational coalition structure:

namely, the coalition structure where every player is unpartnered.

When more than one coalition structure is feasible, we assume that mutually compatible

and demand-feasible groups form when possible. Formally, defining the norm ρ : Π(I) →
{1, 2, . . . , N} of a coalition structure to be the number of coalitions formed, we assume that

the coalition structure that forms is chosen according to a fixed probability distribution

with full support, F ∈ ∆Π(I), conditional on the set of feasible coalition structures with

minimal ρ-norm. For example, if N = 4 and Pi = {1, 2, 3} for i = 1, 2 and Pj = {1, 2, 3, 4} for

j = 3, 4, then the coalition structures of minimal ρ-norm are {(1, 2, 3), (4)} and {(1, 2), (3, 4)}.
Assuming these are both demand-feasible, which of these two coalition structure emerges

will depend on the conditional distribution F (· | {{(1, 2, 3), (4)}, {(1, 2), (3, 4)}}). Prior to

knowing which π forms, a player considers her F -expected utility over all feasible coalition

structures of minimal ρ-norm.2

3 Enforceability through exclusion

The core of a cooperative game with characteristic function v, defined over the set of players

I, is the set of self-enforcing allocations Core(v, I) =
{

d |
∑

i∈I di = v(I) and
∑

i∈S′ di ≥
v(S ′) ∀ S ′ ⊂ I

}
. We will be interested in the set of all strictly self-enforcing allocations

(i.e., the interior of the core, obtained by using strict inequalities above), which we denote

2As noted in Hart & Kurz (1983), which considers coalition formation more generally, it is not evident
how to predict which coalition structure forms if, for example, some member leaves a group. The minimal
norm rule is meant to refine the prediction. The notions of coalitional compatibility suggested in Hart &
Kurz (1983) are related to but differ from the definition here.
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Core∗(v, I). The set of such allocations is nonempty: convexity implies that the core is

nonempty, and strict superadditivity implies it has a nonempty interior. In fact, each interior

core allocation corresponds to a strict Nash equilibrium outcome of our demand game.

Theorem 1 (Core equivalence). (d, P ) is a strict Nash equilibrium outcome of the demand

game if and only if d ∈ Core∗(v, I) and Pi = I for all i.

That an interior core allocation and Pi = I must be a strict Nash equilibrium outcome

is clear: any deviation surely yields a player strictly less of the resource. To understand

why being at an interior core allocation is necessary, it is helpful to make the following

observations.

Observation 1. In any strict Nash equilibrium, it must be that Pi = I for all i, that the

grand coalition is not strictly demand-feasible, and that di > v(i) for all i.

Indeed, switching from Pi to any P ′
i with Pi ⊂ P ′

i does at least as well: either the

resulting coalition structure has the same norm (in which case there is a weak increase in

the probability that i will be in a nontrivial coalition), or the norm decreases (in which case

i must have a partner, otherwise that coalition structure would have been feasible before).

Moreover, even though the grand coalition must be mutually compatible, it cannot be strictly

feasible because players would want to increase their resource requests.

Instead of concentrating on demand requests, our proof concentrates on when the players

have disincentives to exclude others, building upon what we call the exclusion principle:

you should never exclude a player who can steal away members of your coalition and leave

you alone. Excluding such a player increases your probability of remaining unpartnered and

receiving only v(i), thereby lowering your expected utility. The following example illustrates.

Example 1. Suppose that I = {1, 2, 3} and that v(i) = 0 for all i ∈ I, v({i, j}) = 1 for all

i 6= j, and v(I) = 3. Then

Core∗(v, I) = {(d1, d2, d3) | di > 0 for all i, di + dj > 1 for all i 6= j, and d1 + d2 + d3 = 3}.

Consider the allocation d = (ε, ε, 3 − 2ε) 6∈ Core∗(v, I) for any ε ≤ 1
2

(although it is in

the core for ε = 1
2
) and note that this is not a strict Nash equilibrium allocation for any

ε ≤ 1
2
: player 1 can deviate by excluding player 3, since the coalition structure ({1}, {2, 3})

is infeasible by the resource constraint.
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The idea of the proof is as follows. If some player i has a feasible subgroup, then players

outside i’s subgroup must be able to steal away some of i’s partners to prevent i from

excluding them. That is, i must have some chance of ending up alone in the resulting

coalition structure in order to ensure that she strictly prefers not to restrict her set of

acceptable partners. But then, the same disincentive to exclude must exist for that other

feasible subgroup, and so and so forth. Continuing in this manner, more and more subgroups

must be feasible until finally, by convexity, the grand coalition will itself be strictly feasible.

However, if the grand coalition is strictly feasible, some player has an incentive to raise her

resource request, which contradicts being at a strict Nash equilibrium.

Proof of Theorem 1. We now show that repeated use of the exclusion principle implies that I

cannot contain any demand-feasible subgroup. This would complete the proof, since being at

a strict Nash equilibrium would then require that
∑

i∈I di = v(I). Suppose by contradiction

that a demand-feasible subgroup does exist. If there is exactly one such subgroup, then

any player i inside it may exclude any player j outside it (i.e., j 6∈ Pi) without affecting

the feasible coalition structures containing i, and therefore without affecting i’s payoff —

a contradiction to being at a strict Nash equilibrium. Therefore, there must be more than

one feasible subgroup under d. Let Î be the collection of players who have some feasible

subgroup. We aim to show that Î is strictly demand-feasible: for if Î = I, then the grand

coalition is strictly feasible, and if Î ⊂ I, then the minimal norm rule ensures that any player

within Î may safely exclude any player outside Î.

Suppose that Î is not feasible and that S1, the largest feasible subgroup of Î, has size s.

To prevent any player i ∈ S1 from excluding any player j 6∈ S1, it must be the case (by the

exclusion principle) that j must have a feasible subgroup S2 containing some of i’s partners

in S1. For it to be possible that i could remain alone in a a feasible coalition structure of

minimal norm if she excludes j, it must be the case that j’s potential coalition S2 also has

size s. To see this, note that no subgroup strictly outside of S1 can be feasible, else the union

of the two would be feasible; and that for i to remain alone, the norm cannot increase when

j steals i’s partners. That is, the minimal norm rule here means that the only way a player

i can steal the partners of another player j is if player i can command a coalition which is

at least as large as j’s. The same exclusion principle holds for players in this next feasible

subgroup S2, and so on and so forth. Let {Sn}1≤n≤N̂ denote the collection of all the feasible

subgroups of size s. This collection must satisfy two properties:
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(1) No player can be in every largest feasible subgroup (i.e.,
⋂

n∈{1,...,N̂} Sn = ∅).
(2) If Sn 6= Sn′ , then Sn ∩ Sn′ is a feasible subgroup.

Property (1) follows from the exclusion principle. Property (2) is a result of the following

simple observation and the fact that s is the size of the largest subgroup.

Observation 2. Suppose that the resource request vector d has only strictly individually

rational requests. If the two subgroups Sn and Sn′ are demand-feasible and Sn ∩ Sn′ is

demand-infeasible or empty, then Sn ∪ Sn′ is strictly demand-feasible.

This observation follows directly from the definition of convexity. Notice that by property

(2), S1 ∩ S2 must be a feasible subgroup, else the subgroup S1 ∪ S2 would be feasible and

of size larger than s. Inductively, for every k ≤ N̂ , ∩k
j=1Sj must be a feasible subgroup,

else Sk ∪
(
∩k−1

j=1 Sj

)
would be feasible and of size larger than s. But then ∩N̂

j=1Sj must be

nonempty, contradicting property (1) and completing the proof.

4 Learning to cooperate from conflict

We now consider the N -player demand bargaining game played over time t = 1, 2, . . .. As in

much of the learning literature, the players can be interpreted as either successive generations

of short-lived players or as a fixed set of myopic players.3 The players respond only to the

list of resource and partner requests (d, P ) submitted in the previous period. Typically (with

probability 1 − ν very close to one, and independently of other players), a player chooses

a myopic best response to the previous period’s demands. When there are multiple best

responses, the player may choose any one of the strategies among which she is indifferent.

With a small probability ν, however, a player is inert: she does not update her request,

leaving the previous period’s demand in effect. Inertia may be interpreted in multiple ways;

these include capturing exogenous constraints on the ability to actively bargain, difficulties

in coordinating the timing of demands, learned behavior in the case of successive generations,

or the manifestation of bounded rationality (e.g., attentional issues, computational costs, or

simply slow updating of suboptimal strategies).

3The arguments also extend immediately to the case of multiple parallel populations that each population
samples or more general matching technologies.
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At each point in time, the previous period’s requests (d, P ) serve as the state of the

game. To ensure existence, player i’s resource requests are restricted to the discretized set

[v(i), v(I)]K of K-place decimal fractions in [v(i), v(I)].4 The evolution of the game then

defines a finite-state Markov chain over the state space of players’ partner and resource

requests. We are interested in how the group learns to play over time.

Theorem 2 (Learning). For sufficiently large K, the bargaining game converges with prob-

ability one to a state where d ∈ Core∗(v, I) and Pi = I for all i.

Clearly, any strict Nash equilibrium corresponds to an absorbing state of the dynamic

process. Therefore, to prove this theorem we need only show that from any other state, the

process can reach an interior core allocation with positive probability.

In particular, we show that there is positive probability that the following sequence of

events will occur, in which eventual cooperation is the byproduct of familiar destructive

behaviors. If players in a group cannot agree on an interior core allocation, then they may

split into factions. Consequently, players may reach a situation where they are partitioned

into mutually exclusive blocs, each of which agrees on an interior core allocation of their

group. If any of these blocs consists of a lone player, then that player is desperate to

receive any strictly individually rational amount and can offer to accept strictly less than

her marginal contribution to some group. If that group takes advantage of her offer, an

interior core allocation of the enlarged group can be created. With only nontrivial blocs

remaining, each agreeing on an interior core allocation, one group S instigates conflict over

resources within another group S ′ by inviting it to join and then rescinding the invitation -

after the invitees have all responded greedily. With the abandoned group S ′ unable to agree

on a feasible allocation, one member is scapegoated and bears the burden of lowering her

request. If this happens repeatedly, the scapegoat eventually leaves the group and can be

picked up by S, creating an interior core allocation of the enlarged group. This process can

then repeat itself until S becomes the grand coalition. On the surface, these events take the

appearance of a “divide and conquer” process, although the players involved are myopic.

We now develop this argument more formally.

Proof of Theorem 2. As a preliminary step in the proof, consider groups which are alienated

from other players. Formally, suppose that the game is at a state (d, P ) where d is not an

4We assume there is K∗ such that the values of v are K∗-place decimal fractions and that K ≥ K∗. It
will be the case that best responses are always in [v(i), v(I)]K .
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interior core allocation and there exists a group of players S ⊆ I such that every member of

S is excluded by every player outside S (Pi ∩ S = ∅ for all i 6∈ S), and vice-versa (Pi ⊆ S

for all i ∈ S). We first show there is a positive probability that either the players in S come

to agree on an allocation in the interior core of their group, or disintegrate into factions. To

state this, we introduce the notation d|S and v|S for the restrictions of the allocation and

characteristic function, respectively, to the group S. The resource allocation dS is in the

interior core of S if d|S ∈ Core∗(v|S, S).

Lemma 1 (Factionization). Suppose dS is not in the interior core of S and S is excluded by

I \ S. Then there is positive probability that the game moves to a state (d′, P ′) where either

the players in S all agree to an allocation in the interior core of S or a faction T ⊂ S has

broken away from S (i.e., P ′
i = T for all i ∈ T ).

The proof of Lemma 1, which is in the appendix, builds on the exclusion technique

developed earlier. If groups which cannot agree on an interior core allocation split into

factions, then iterated application of Lemma 1 implies that from any nonabsorbing state,

the game can transition within finite time to a state (d∗, P ∗) where the coalition structure

is composed of mutually exclusive blocs, each in equilibrium with itself.

Observation 3. It is possible to reach a coalition structure π∗ where every group is alienated

from players outside it and agrees on an allocation in the interior core of their group (i.e.,

for all S ′ ∈ π∗, P ∗
i = S ′ for i ∈ S ′, and if S ′ is nonsingleton, then d∗|S′ ∈ Core∗(v|S′ , S ′))

If this coalition structure π∗ is the trivial one {(1), (2), . . . , (N)}, then an interior core

allocation is only a step away, for the players are indifferent among all requests. If π∗ is a

nontrivial coalition structure then the situation is a bit trickier. However, using the following

result we can assume that every bloc consists of at least two players. Indeed, suppose that

some player j is unpartnered, and therefore willing to accept any amount of resource larger

than v(j). We show that player j can join an existing group S - and create an interior core

allocation for S ∪ {j} - by offering to accept strictly less than her marginal contribution.

Lemma 2 (Enlarging a strictly self-enforcing agreement). For large enough K, the game can

reach a state (d̃, P̃ ) where S and j cooperate on an interior core allocation (i.e., P̃i = S∪{j}
for all i ∈ S ∪ {j} and d̃|S∪{j} ∈ Core∗(v|S∪{j}, S ∪ {j})) and (d̃, P̃ ) is the same as (d∗, P ∗)

for all other individuals.
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The states in Lemma 1 and Lemma 2 correspond to weak Nash equilibria. We now

exhibit a path of play to a strict Nash equilibrium outcome (an interior core allocation)

using destructive group behaviors. Indeed, supposing there exist two distinct blocs S and

S ′ (otherwise the argument is complete), the actions of S can lead to internal strife over

resources within S ′, permitting defectors from S ′ to join S à la Lemma 2.

To see how this may happen, suppose that the members of S and S ′ mutually invite

each other; that is, simultaneously, every i ∈ S ∪ S ′ requests (d̃i, S ∪ S ′). In the next

period, if the players in S are inert, while every player j ∈ S ′ best responds with the request

(d̃j + v(S ∪S ′)− v(S)− v(S ′), S ∪S ′) (i.e., each attempts to grab all the remaining surplus),

then the following result proves that continuing to invite members of S ′ gives no additional

expected utility to members of S. That is, the requests of the members of S ′ have rendered

those players useless to S.

Lemma 3 (Disposability). No member of S ′ may feasibly join a coalition with any member

of S.

Suppose that the members of S abandon the members of S ′, as they are willing to do in

light of Lemma 3. Specifically, suppose each i ∈ S best responds with (d∗i , S) and that the

members of S ′ are inert. Since S ′ had been at an interior core allocation, their members are

unable to form any feasible coalitions with each other. In fact, if there is any player k ∈ S ′

who is unable to obtain a payoff bigger than v(k) by lowering her request, she may as well

exit the coalition by setting Pk = {k} and eventually join S à la Lemma 2.

Otherwise, at least one of the members of S ′ will need to lower her request. Let us

consider what happens when this burden falls on one individual. Fix a scapegoat j ∈ S ′ and

suppose she is the only player in S ′ to lower her request in the next period. Suppose that j

can obtain her best-response payoff by creating a coalition with just a subgroup of S ′; then

she may as well modify her resource request accordingly and set Pj = S ′′, where S ′′ ⊂ S ′ is

the smallest subgroup of S ′ with which j may obtain her best payoff. Note that the resulting

allocation would be in Core∗(v|S′′ , S ′′). This group S ′′ could safely break away in the next

period, and S ′ \ S ′′ could then itself split or reach an interior core allocation as Lemma 1

prescribes.

If the scapegoat j can only obtain a payoff larger than v(j) by creating a coalition with

the entire group S ′, then the resulting allocation will be in Core∗(v|S′ , S ′). But now suppose

the process repeats itself with the same scapegoat: S and S ′ mutually invite each other,
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S ′ responds greedily, S abandons S ′, and j bears the burden of lowering her request. This

need only be repeated a finite number of times before the scapegoat j’s best response is to

break away - at which point she may join S à la Lemma 2. Furthermore, S can repeat this

process against other groups until it grows to become the grand coalition and an interior

core allocation is reached.

5 Discussion

This paper demonstrates how inefficient group behaviors can propel groups toward strictly

self-enforcing cooperative outcomes. In essence, we have shown that the destructive behav-

iors used here to achieve cooperation are too destructive to sustain endless cycles of their

use. We discuss two extensions of the model below.

5.1 Introducing preferences for partners

For ease of exposition, we have assumed that a player’s preferences depend on the resource

only. However, these results easily generalize to a class of preferences that permits players

to be pragmatically “behavioral.” So long as excluding a player does not affect the expected

amount of resource obtained, the probability of a player being willing to exclude any given set

of players could, more realistically, be modeled to depend on the properties of past play; such

as which players have excluded them earlier, whether their request was recently satisfied,

and whether the player is sympathetic to someone who is unpartnered or instead attempts

to “fit in” by excluding a player who has been excluded by others.

More formally, assume that the player may be described by a stochastic process over the

set of all preference relations over I, where every state has positive (but possibly negligible)

probability of being reached from any state, and where the probability of transition may

depend on the play of the game. Each player has a lexicographic preference, where she

cares primarily about the amount of resource obtained, and secondarily about maximizing

her preference over partners in her current state. For example, a vindictive player might,

with high probability, strictly prefer to exclude players who have excluded her earlier –

so long as doing so would not affect her materially. While vindictive behavior evidently

enforces cooperation when players are forward-looking, the hope for cooperation might dim

when players are both myopic and vindictive. On the contrary, both our results and the
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convergent process exhibited carry through in this setting: the decision to include or exclude

a player simply becomes a matter of strict preference.

5.2 Sharper long run prediction

To refine our prediction of interior core convergence further, we may introduce random

perturbations, as in Kandori, Mailath & Rob (1993), to show that as these shocks become

negligible, the outcomes persisting in the long run (i.e., stochastically stable, or in the support

of the limiting stationary distribution) correspond to those allocations within the interior

of the core that minimize the maximum individual wealth.5 This corresponds to a long

run lexicographic social preference for strict enforceability (primarily) and wealth equity

(secondarily).

5See the supplement posted on the author’s website for the proof. Agastya (1999) has a result of the same
spirit for the core rather than the interior core, using a different learning process. Both papers generalize
the two-player result in Young (1993).
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Appendix

Proof of Lemma 1. Throughout, assume without loss that di > v(i), Pi = S for all i ∈ S

unless stated otherwise,
∑

i∈S di ≥ v(S), and S and I \ S mutually exclude each other.

Imagine first that S contains no feasible subgroups. If
∑

j∈S dj = v(S), then condition

(1) of the lemma is satisfied and the proof is complete. If instead
∑

j∈S dj > v(S) and no

subgroups are feasible, then whenever only one individual k best responds and the rest remain

inert, one of three things may happen: (a) the resulting allocation could be in the interior

core of the restricted game (again satisfying condition (1)), (b) the resulting allocation (d, P )

would no longer be strictly individually rational - then Pk = {k} is a best response for k and

Pi = S \ {k} becomes a best response for i ∈ S \ {k} in the subsequent period (satisfying

condition (2) of the lemma), or (c) the resulting allocation is strictly individually rational

for players in S,
∑

j∈S dj ≥ v(S), and some subgroup of S is feasible. Consider the only

nontrivial case, (c). Define the largest group size sd = max{T⊂S:
∑

j∈T dj≤v(T )} |T | and the

collection Td = { T ⊂ S |
∑

i∈T di ≤ v(T ) and |T | = sd }. There are two subcases.

Case (i). There is T ∈ Td such that for all i ∈ T , di is a best response to (d, P ). If a

state satisfying condition (2) cannot be reached, no player j ∈ T may be indifferent between

Pj = T and Pj = S: if j best-responds with (dj, T ) and all others play the same best

response, then (dk, T ) would be a best response for every k ∈ T in the following period and

condition (2) would be satisfied. So (dj, S) must be strictly preferred to (dj, T ) for every

k ∈ T ; this implies that for each j ∈ T , there is a feasible group of size sd containing another

member of T but not j. No player in T can be in every feasible group of size sd that contains

a member of T ; and the intersection of these groups of size sd must be feasible, else a bigger

group is feasible. A contradiction can be found as in the proof of Theorem 1.

Case (ii). For all T ∈ Td, there is i ∈ T such that di is not a best response to (d, P ). For

each (d, P ) we may partition the members of S into the following three groups:

T(d,P ) = {i ∈ S | di is a best response to (d, P ) },

T+
(d,P ) = {i ∈ S \ T(d,P ) | there is a best response d∗i to (d, P ) with d∗i > di}, and

T−
(d,P ) = {i ∈ S \ (T(d,P ) ∪ T+

(d,P )) | there is a best response d∗i to (d, P ) with d∗i < di}.

Beginning at state (d, P ), let all players in T(d,P ) ∪ T−
(d,P ) be inert and let all players in T+

(d,P )

raise their requests. Call the resulting state (d′, P ′). If T+
(d′,P ′) = ∅, stop; otherwise this can

be repeated a finite number of times until T+

(d̃,P̃ )
= ∅ in the resulting state (d̃, P̃ ).
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Suppose that a state satisfying condition (2) cannot be reached. The outcome of every

player in S’s best response to (d̃, P̃ ) must be strictly individually rational, else some k ∈ S

could best respond by setting Pk = {k} and a state satisfying condition (2) might result.

Also, T ∈ Td̃ ⇒ T 6⊆ T(d̃,P̃ ), otherwise one returns to Case (1). Therefore, T−
(d̃,P̃ )

6= ∅.

The first task is to show that under (d̃, P̃ ) and the assumption that condition (2) cannot

be satisfied, S cannot have any feasible subgroups. Suppose that there is at least one feasible

subgroup of S, and again denote by sd̃ the size of the largest such subgroup. T+

(d̃,P̃ )
= ∅ and

T ∈ Td̃ ⇒ T 6⊆ T(d̃,P̃ ), so some i ∈ T−
(d̃,P̃ )

must be both included and excluded from feasible

subgroups of S of size sd̃. If she were never excluded, lowering her request would not be a best

response. Note once more that no player can be in every feasible subgroup of size sd̃ (because

condition (2) cannot be satisfied), and that the intersection of any two such subgroups must

be a feasible subgroup (because no subgroup of size larger than sd̃ is feasible and S is not

strictly feasible). The same argument as in Case (1) leads to the desired contradiction.

Hence, S lacks feasible subgroups under (d̃, P̃ ). Choose some k ∈ T−
(d̃,P̃ )

to best respond

and let all others be inert. The best response of k has d∗k = maxT⊆S,k∈T v(T )−
∑

j∈T\{k} d̃j.

If T ∗ ∈ arg maxT⊆S,k∈T v(T ) −
∑

j∈T\{k} d̃j for some T ∗ 6= S, then (d∗k, T
∗) is optimal for k.

Next period, (d̃j, T
∗) will be a best response for each j ∈ T ∗ \ {k}, a contradiction to the

assumption that condition (2) cannot be satisfied. Therefore, S forms and no subgroups of

S will be feasible, i.e. a state satisfying (1) will be reached.

Proof of Lemma 2. Any request is a best response for j; and those in S are indifferent

about inviting players who exclude them. Fix m ∈ Z+. Suppose that in the same period,

player j requests (v(S∪{j})−v(S)−m ·10−K , S∪{j}) and each i ∈ S requests (di, S∪{j}).
Next period, some k ∈ S requests (dk +m ·10−K , S∪{j}) and players in (S∪{j})\{k} don’t

move. It remains to verify that the resulting allocation d′ has d′|S∪{j} ∈ Core∗(v|S∪{j}).

Clearly
∑

i∈S di = v(S). Define ε∗ = minS∩T=∅ v(S ∪ T )− v(S)− v(T ), which is positive

by strict superadditivity, and assume K is large enough that m ·10−K < ε∗. The assumption

on K guarantees that d′j > v(j) is satisfied. For any S ′ ⊂ S, we must show S ′ ∪ {j} is

infeasible. If k ∈ S ′, this is trivial by convexity and the fact that d|S ∈ Core∗(v|S):∑
i∈S′∪{j}

d′i =
∑
i∈S′

di+v(S∪{j})−v(S) > v(S ′)+v(S∪{j})−v(S) ≥ v(S ′)+v(S ′∪{j})−v(S ′)
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If k 6∈ S ′, then the infeasibility requirement is satisfied when
∑

i∈S′ di > v(S ′) + m · 10−K ;

for then convexity and d′i = di for i ∈ S ′ ensure that v(S ′ ∪ {j}) < d′j +
∑

i∈S′ d′i because

m ·10−K < v(S ′∪{j})−v(S ′)+
∑
i∈S′

di−v(S ′∪{j}) ≤ v(S∪{j})−v(S)+
∑
i∈S′

di−v(S ′∪{j})

A technical issue arises only when Ŝ =
{
S ′ ⊂ S, S ′ 6= ∅ |

∑
i∈S′ di ≤ v(S ′) + m · 10−K

}
is

nonempty and such that ∩S′∈ŜS ′ = ∅. If ∩S′∈ŜS ′ 6= ∅, simply let the best-responding player k

be in ∩S′∈ŜS ′. We will now show that ∃ K∗∗ ∈ Z+ such that ∩S′∈ŜS ′ = ∅ is impossible when-

ever K ≥ max
{
K∗, K∗∗}. Let K∗∗ = [log |Ŝ|(m+1)+m

ε∗
]+1 and suppose that ∩S′∈ŜS ′ = ∅. Con-

vexity necessitates that
∑

i∈S′∩S′′ di ≤ v(S ′∩S ′′)+(2m+1)·10−K , otherwise S ′∪S ′′ is strictly

feasible, a contradiction to d|S ∈ Core∗(v|S). Consider some S ′ ∈ Ŝ and take S ′′ ⊂ S such

that S ′ 6⊆ S ′′ and S ′′ 6⊆ S ′. If
∑

i∈S′′ di = v(S ′′) + r · 10−K for some r ≤ |Ŝ|(m + 1) + m, then

by convexity it must be that
∑

i∈S′∩S′′ di ≤ v(S ′∩S ′′)+(r+m+1) ·10−K to avoid the contra-

diction that S ′∪S ′′ is strictly feasible. Consider two distinct S1, S2 ∈ Ŝ and let T1 = S1∩S2.

T1 6= ∅, else S1∪S2 is strictly feasible. If T1 6= S1, S2 then
∑

i∈T1
di ≤ v(T1)+(2m+1) ·10−K ;

otherwise, if T1 = S1 then
∑

i∈T1
di =

∑
i∈S1

di, and similarly for the case T1 = S2. In either

case,
∑

i∈T1
di ≤ v(T1) + (2m + 1) · 10−K is the upper bound of interest. Inductively define

Tn = Tn−1 ∩ Sn+1 for 2 ≤ n ≤ R = |Ŝ| − 1. If Tn = ∅, one obtains a contradiction. We are

concerned with the case Tn 6= Tn−1, Sn+1 to get the upper bound on
∑

i∈Tn
di, which by con-

vexity is
∑

i∈Tn
di ≤ v(Tn)+[(n+2)m+n+1] ·10−K . The final intersection TR = TR−1∩SR+1

must be empty and a contradiction arises.

Proof of Lemma 3. Define d′ by d′i = d̃i + [v(S ∪ S ′) − v(S) − v(S ′)] · 1i∈S′ , where

1X is the usual indicator function. First, we prove the following intermediate result using

convexity: take nonempty A, A′, B ⊂ I with A ∩ B = ∅ and A′ ⊂ A; and let d be such that

d|A ∈ Core∗(v|A). If A′∪B is a feasible coalition under d, then A∪B is strictly feasible under

d. To see this, note that by convexity, v(A∪B)− v(A) ≥ v(A′∪B)− v(A′). By assumption,

both
∑

i∈A′ di > v(A′) and
∑

i∈A′∪B di ≤ v(A′ ∪ B). Hence v(A ∪ B) − v(A) >
∑

i∈B di.

Noting that
∑

i∈A di = v(A) completes the proof of the claim.
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We claim that for any ∅ 6= S ′′ ⊆ S ′,
∑

i∈S′′ d′i > v(S ∪ S ′′)− v(S). To see this, note that

by convexity, strict superadditivity, and d̃|S′ ∈ Core∗(v|S′),∑
i∈S′′

d̃i + |S ′′|[v(S ∪ S ′)− v(S)− v(S ′)]− v(S ∪ S ′′) + v(S)

≥
∑
i∈S′′

d̃i + |S ′′|[v(S ∪ S ′′)− v(S)− v(S ′′)]− v(S ∪ S ′′) + v(S)

≥ (|S ′′| − 1)[v(S ∪ S ′′)− v(S)− v(S ′′)].

If S ′′ is non-singleton the last term is strictly positive, and if S ′′ is singleton the intermediate

term is strictly positive by strict individual rationality of the request. The lemma then

follows from the contrapositive of the intermediate claim.
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