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Abstract

I use the theories of duality and optimal branchings to find a necessary and suffi-

cient characterization of stochastically stable limit sets (SSLS) that helps improve

the radius - modified coradius test of Ellison (2000). The improved shortcut I

offer may permit the identification of SSLS when Ellison’s radius - modified cora-

dius test fails to identify any, or may be able to pinpoint the true SSLS in cases

where Ellison’s test identifies only a superset. I also demonstrate precisely why

the radius - modified coradius test is not universally applicable and illuminate

the connection between the modified coradius and the Lagrange multipliers of the

optimal branching problem.

Keywords: Evolutionary games; stochastic stability; optimal branchings; ex-

tended radius; extended coradius; modified coradius.

JEL classification: C73.



1 Introduction

Since the seminal works of Foster & Young (1990) and Kandori, Mailath & Rob

(1993), the solution concept of stochastic stability has been a valuable predictor

of long run behavior in evolutionary games, especially since the task of identifying

stochastically stable limit sets was facilitated by the work of Ellison (2000). Elli-

son’s radius - modified coradius condition offers a useful test for checking whether

a limit set is stochastically stable. However, the test will not work in all circum-

stances; that is, Ellison’s condition is sufficient but not necessary.

In this paper I find a necessary and sufficient characterization of stochasti-

cally stable limit sets by using the theories of duality and optimal branchings.

This characterization introduces two new measures, the extended radius and the

extended coradius. Using these measures I demonstrate precisely why the radius

- modified coradius test is not universally applicable, as well as illuminate the

connection between the modified coradius and the Lagrange multipliers of the

optimization problem that is solved to find the stochastically stable limit sets.

Most importantly, the universally applicable characterization I provide allows me

to offer an improved shortcut that may permit the identification of stochastically

stable limit sets when Ellison’s radius - modified coradius test cannot identify

any, or may be able to pinpoint the exact limit set in cases where Ellison’s test

identifies only a superset.

The remainder of this paper is organized as follows. The formal framework and

the solution concept of stochastic stability are discussed in Section 2. I explore the

duality approach in Section 3 and introduce the necessary and sufficient character-

ization using the extended radius and extended coradius (Theorem 3.6). Sections

2 and 3 also discuss some existing methods for finding stochastically stable limit

sets. In Section 4, I use the characterization derived in Theorem 3.6 in two ways.

First, I derive Ellison’s result as a corollary (Theorem 4.1) and explain why the

radius - modified coradius test is not universally applicable. Second, I propose

the improved shortcut for finding stochastically stable limit sets (Theorem 4.2).
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Section 5 concludes.

2 Preliminaries

To encapsulate a wide variety of evolutionary games and dynamics, I employ the

abstract framework of Ellison (2000).

Definition 2.1. A model of evolution with noise (S, M, M(ε)) is a family of

Markov processes indexed by ε ∈ [0, ε̄] and having transition matrices M(ε) on a

finite state space S. The matrices M(ε) are such that

(i) M(ε) is ergodic for each ε > 0.

(ii) M(ε) is continuous in ε and M(0) = M .

(iii) ∃ a cost function cS : S×S → R+∪{∞} s.t. ∀ s, s′ ∈ S, limε→0 Mss′(ε)/ε
cS(s,s′)

exists and is strictly positive when cS(s, s′) < ∞; and Mss′(ε) = 0 for small

ε when cS(s, s′) = ∞.

This framework is sufficiently general to accommodate the various standard

specifications of the underlying evolutionary game and its dynamics. Indeed,

assuming that the population is finite, the state space S may be chosen to represent

any combination of possible characteristics of play observed over a finite number

of periods. Moreover, both the behavioral rules that the players (usually) follow

as well as the stochastic shocks to the populations are absorbed into the transition

matrices M(ε).1

The cost function cS(s, s′) captures how unlikely the transition from state s to

state s′ is when the level of noise ε is small. Though the cost function is not an

explicit element of the model of evolution with noise, we shall see that it is the

most important ingredient.

1This restricts the perturbations to stationary ones.
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2.1 Stochastic stability

It is well known that any Markov process whose transition matrix is irreducible

and aperiodic possesses a unique invariant distribution. Hence for ε > 0, the long

run probability of observing a particular state s ∈ S in the model with ε-noise

is given by µε(s), where µε = limt→∞ m0M
t(ε) and m0 is an arbitrary initial

distribution.

The invariant distribution provides a description of behavior over an extended

amount of time, given a particular level of noise. Rather than directly examine the

invariant distribution for every level of noise, Foster & Young (1990) introduced

the notion of stochastic stability. A stochastically stable set of states is a collection

of states Ŝ ⊆ S to which each invariant distribution µε assigns positive measure

for all ε sufficiently close to zero.

Definition 2.2. A state (or set of states) is stochastically stable if the limiting

distribution µ∗ = limε→0 µε assigns to it positive measure. Such a state (set of

states) may also be referred to as a stochastically stable limit state (set), or an

SSLS.

2.2 The graph-theoretic connection

The task of computing the limiting distribution was simplified by a graph theoretic

result given in Freidlin & Wentzell (1984) (henceforth FW). A directed graph is

given by the pair (V, A), where V is a set of vertices and A ⊆ V × V is a set

directed arcs. If (v1, v2) ∈ A, then the graph contains an arc, or arrow, emanating

from v1 and pointing into v2. I shall now define a type of graph known as a

v-branching.2

2A v-graph is known less formally as a v-graph in the terminology of FW and a v-tree in
Kandori, Mailath & Rob (1993) and Young (1993). Formally speaking, trees require a more
general connectedness condition instead of condition (i), while graphs require neither condition
given. To be very precise, in graph theory a v-branching would have arrows pointing away from
the root v rather than towards it; however the reversal in direction is important for the purpose
of evolutionary games.
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Definition 2.3. For v ∈ V , a v-branching is a directed graph (V, Ã) satisfying

the following two conditions:

(i) (Degree constraint) ∀ v′ ∈ V \{v}, ∃! v′′ ∈ V with v′ 6= v′′ and (v′, v′′) ∈ Ã.

(ii) (No cycles) If {(vi, vi+1)}N
i=1 is a sequence with (vi, vi+1) ∈ Ã ∀ i, then

v1 6= vN+1.

If bv is a v-branching, then I will often refer to v as the root of the branching

bv. While it is not explicitly stated in Definition 2.3, there is at least one arc

entering the root. By condition (i), each node in V \ {v} has a unique outgoing

arc. If none of those arcs enters the root, then there will be a cycle, violating

condition (ii).

Let Bv be the set of all possible v-branchings in the graph (V, A) and associate

a branching b ∈ ∪v∈V Bv with the particular arcs it contains. Moreover, identify

V with S and A with S × S. Then, Lemma 3.1 in Chapter 6 of FW provides a

connection between branchings and invariant distributions:

Lemma 2.4. (FW) Consider an irreducible Markov chain with transition matrix

M(ε) on state space S. Then the invariant distribution is given uniquely by

µε(s) =

∑
b∈Bs

∏
(s′,s′′)∈b Ms′,s′′(ε)∑

s′∈S

∑
b∈Bs′

∏
(s′,s′′)∈b Ms′,s′′(ε)

∀ s ∈ S.

Recall the cost function cS defined in item (iii) of Definition 2.1. In their

Theorem 1, Kandori, Mailath & Rob (1993) use the graph theoretic connection

made by FW to offer the following result.3

Theorem 2.5 (Kandori, Mailath & Rob (1993)). Let C∗
S(s) = minb∈Bs

∑
(s′,s′′)∈b cS(s′, s′′).

The set of stochastically stable states is given by argmins∈S C∗
S(s).

3Their Theorem 1 also contains a formula for the limiting distribution analogous to that of
FW.
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In other words, a state is stochastically stable if and only if it is the root of

a branching of minimal total cost. Young (1993) shows further that one need

only consider branchings on the set of recurrent communication classes R of the

unperturbed Markov process M . A recurrent communication class r is a set of

states such that if s̃ 6∈ r, then Ms,s̃ = 0 ∀ s ∈ r, and if s, s′ ∈ r, then there

exists a finite t ≥ 1 such that M t
s,s′ > 0.4 Young’s result means that rather than

identifying V with the entire state space S, one may simply identify V with the

set of recurrent classes R. To do this it will be necessary to modify the cost to be

a set function ĉR : R×R → R+ ∪ {∞} by defining ĉR(r, r′) = mins∈r,s′∈r′ cS(s, s′)

for r, r′ ∈ R.

2.3 Ellison’s radius - modified coradius

Though often simpler than solving for the limiting distribution directly, the prob-

lem of finding an optimal branchings is complicated by the fact that the number

of possible branchings increases exponentially in the number of recurrent classes.

In an attempt to circumvent the branching problem, Ellison (2000) suggested two

new measures, the radius and modified coradius. While not universally applicable,

in certain cases these measures help find stochastically stable states and bound

the speed of evolutionary change.

Let ρ ∈ P(R) be a union of one or more recurrent classes of the unper-

turbed Markov process M(0).5 Ellison defines the basin of attraction of ρ to

be the set of states from which the unperturbed Markov process will surely con-

verge to ρ. That is, we let the basin of attraction be D(ρ) = {r ∈ R | ∃ s ∈
r s.t. limt→∞ 1{s}M

t1′ρ = 1}.6

Let us define a path from a union of recurrent classes ρ to a union of recurrent

4Clearly, M t
s,s′ refers to the s, s′ element of the t-th power of the matrix M , not the value

Ms,s′ raised to the t-th power.
5P(X) denotes the power set of X, minus the empty set.
61X is an |S|-dimensional row vector with elements equal to 1 for states in X and 0 otherwise.

The “ ’ ” denotes transposition.
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classes ρ′ to be a finite sequence of distinct states (s1, s2, . . . , sN) such that s1 ∈ ρ,

si 6∈ ρ′ for 2 ≤ i < N , and sN ∈ ρ′. We denote the set of all paths from ρ to ρ′ by

P (ρ, ρ′) and the set of all paths by P . Extending the definition of cost to a path

function cP : P → R+∪{∞} by setting cP (s1, s2, . . . , sN) =
∑N−1

i=1 cS(si, si+1), we

may now define the radius and modified coradius.

Definition 2.6. The radius R(ρ) of the basin of attraction of ρ is the minimum

cost of a path from ρ to R \D(ρ), or

R(ρ) = min
(s1,s2,...,sN )∈P (ρ,R\D(ρ))

cP (s1, s2, . . . , sN). (1)

The modified coradius CR∗(ρ) measures the difficulty of entering ρ when the cost

of a path is normalized by the radii of the intermediate recurrent classes through

which the path passes. Namely,

CR∗(ρ) = max
ρ′∈R\ρ

min
(s1,s2,...,sN )∈P (ρ′,ρ)

cP (s1, s2, . . . , sN)−
N ′−1∑
i=2

R(ri), (2)

where (r1, r2, . . . , rN ′) is the sequence of recurrent classes through which the path

(s1, s2, . . . , sN) consecutively passes.7

Ellison’s Theorem 2 then provides a test for stochastic stability as well as a

bound on the speed of evolution.

Theorem 2.7 (Ellison (2000)). Let (S, M, M(ε)) be a model of evolution with

noise and suppose that for some union ρ of recurrent sets of M , R(ρ) > CR∗(ρ).

Then,

(i) The stochastically stable states are contained in ρ.

(ii) The longest expected wait until a state in ρ is reached is O(ε−CR
∗(ρ)) as

ε → 0.8

7A recurrent class may appear more than once in the sequence, but not consecutively.
8O(ε−CR

∗(ρ)) as ε → 0 denotes an upper bound of Cε−CR
∗(ρ) for ε sufficiently small and

some uniform constant C > 0.
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3 An exact characterization

Ellison’s radius - modified coradius method is a useful tool for pinpointing stochas-

tically stable recurrent classes. However, as Ellison notes, the method is not

universally applicable. In this section, I use results from the theory of optimal

branchings to offer a necessary and sufficient characterization of stochastically

stable sets from which Ellison’s radius - modified coradius theorem follows as a

corollary. The characterization I obtain, which follows from the dual of the opti-

mal branching program, demonstrates precisely why the radius - modified coradius

measure is not universally applicable. As will be seen in a later section, the char-

acterization paves the way towards an improved shortcut that may work when

the radius - modified coradius test cannot.

3.1 Edmonds’ branching algorithm

I begin the analysis by considering Edmonds’ algorithm for finding optimal branch-

ings. This algorithm is discussed in fuller detail in Korte & Vygen (2002) and

Magnanti & Wolsey (1995), to which I will henceforth refer as KV and MW,

respectively. To illustrate this algorithm, consider the following example.

Let V = {A, B, C,D} and select D as the root for the branching. Suppose

that
c(A, B) = 1 c(A, C) = 10 c(A, D) = ∞,

c(B, A) = ∞ c(B, C) = 2 c(B, D) = 3,

c(C, A) = 2 c(C, B) = 6 c(C, D) = 4.

We shall want to choose the arcs of minimal cost emanating from each of A, B,

and C. The arcs selected will not change if we reduce the costs of all the arcs

emanating from each of A, B, and C by λ∗(A) = 1, λ∗(B) = 2, and λ∗(C) = 2,

respectively. These values are exactly the minimal cost of exiting A, B, and C,

respectively. It will be useful for later to note that if we were to identify V with

the set of recurrent classes of M in a model (S, M, M(ε)) of evolution with noise,
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then these values would be radii. Now, let us create the arcs (A, B) (which has

reduced cost 1 − 1 = 0), (B, C) (which has reduced cost 2 − 2 = 0), and (C, A)

(which has reduced cost 2 − 2 = 0). This forms the cycle ABC, which we shall

call a pseudo node.

Definition 3.1. If C is a cycle formed between nodes v1, v2, . . . , vN ∈ V , then

the pseudo node vC ∈ P(V ) is the set of nodes {v1, v2, . . . , vN}.

What arcs may be formed from the pseudo node ABC? Originally, both B and

C could form arcs to D. The reduced costs of those arcs would be 3− 2 = 1 and

4− 2 = 2 respectively. Therefore, we may consider the arc to D emanating from

ABC to be of cost 1 (and having B as its origin). Let us then say that λ∗(ABC) =

1 is the (reduced) cost of the cycle ABC. In order to form a D-branching on the

graph composed of the nodes ABC and D, we must choose this arc (ABC, D).

Since the arc originally emanates from B, and each node in a branching may have

only one outgoing arc, let us remove the previous arc emanating from B, which

was (B, C). This leaves us with the branching C → A → B → D. The reader

may easily check that this is the D-branching of minimal cost. Observe that this

procedure defines a function λ∗ : P(V ) → R which measures a reduced cost of

exiting cycles that are created in the process.

The procedure used in this example is known more formally as Edmonds’

branching algorithm and is fully described in the appendix. It is useful to explore

the duality theory approach taken by MW in their proof of the validity of this

algorithm. Using such an approach, I will be able to obtain an exact characteriza-

tion of stochastically stable states, as well as derive Ellison’s result as a corollary.

Troeger (2002) builds on this algorithm to find SSLS, and Hasker (2004) implicity

uses this type of algorithm to help provide a characterization of SSLS, as well as

tests to pinpoint SSLS. Unlike those papers, we will take a duality theory approach

to the problem of finding SSLS.9

9Further connections between those works and my own will be explored in future versions of
this paper.
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As is well known, the problem of finding the cheapest vr-branching in (V, A)

is given by the following linear program:

min
b∈R|A|

∑
(v,v′)∈A

c(v, v′) b(v,v′) (3)

subject to

∑
(v,v′)∈A

b(v,v′) = 1 ∀ v ∈ V \ vr (4)

∑
(v,v′)∈A,v∈V̂ ,v′ 6∈V̂

b(v,v′) ≥ 1 ∀ V̂ ∈ P(V \ vr) (5)

b ≥ 0 and integer. (6)

The constraints of the problem force any feasible vector b to be a vector of 1’s

(corresponding to edges in the branching) and 0’s (corresponding to the rest).

Recall from the theory of linear programming that if min{ya : yH ≥ d, y ≥
0} is the primal problem, then the dual problem is given by max{dx : Hx ≤
a, x ≥ 0}.10 Take H to be an |A| × |P(V \ vr)|-dimensional matrix with entries

H(v′,v′′),V̂ = 1{v′∈V̂ ,v′′ 6∈V̂ }; and take d to be an |P(V \ vr)|-dimensional row vector

of 1’s and a to be an |A|-dimensional column vector with entries c(v, v′) for each

(v, v′) ∈ A. Dropping just the integrality constraint in (6), it is easy to see that

the dual of the primal program (3)-(6) is

max
λ∈R|P(V \vr)|

∑
V̂ ∈P(V \vr)

λV̂ (7)

subject to

∑
V̂ ∈P(V \vr)

λV̂ 1v∈V̂ ,v′ 6∈V̂ ≤ c(v, v′) ∀ (v, v′) ∈ A. (8)

10The reader may refer to KV for an overview of linear programming.
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A solution of (7)-(8) is precisely a vector of Lagrange multipliers corresponding

to the constraints of the primal problem. Moreover, the classic Duality Theorem

posits an important relationship between the optimal values of the primal and

dual programs.

Theorem 3.2 (Duality Theorem). A feasible vector y solves the primal problem

min{ya : yH ≥ d, y ≥ 0} if and only if there exists a vector x, feasible for the dual

problem max{dx : Hx ≤ a, x ≥ 0}, for which the objective functions have equal

value.

Consider the function λ∗(·), whose values are determined in the execution of

Edmonds’ algorithm, and set λ∗
V̂

= λ∗(V̂ ) for all V̂ ∈ P(V \ vr). One may check

that λ∗ is a feasible vector for the dual problem, and that both λ∗ and the vector

b representing the arcs selected by Edmond’s algorithm lead to the same objective

value. Therefore, the branching b must be optimal by the Duality Theorem. The

Duality Theorem not only reinforces the validity of Edmonds’ algorithm, but also

motivates my ensuing analysis.

3.2 Extended radii

We will now consider the graph (R,R × R) equipped with the cost set function

cR. As a convention throughout, we ignore the “arcs” on the diagonal of the

product set R × R, that is, we do not permit arcs of the form (r, r) for r ∈ R.

Recall that one may arbitrarily resolve multiplicities arising in steps 2 and 3 of

Edmonds’ branching algorithm. Let us formalize this by supposing that when a

single arc must be chosen amongst multiple arcs of minimal cost, a choice function

τ : P(R) × P(P(R)) → P(R) is used as a tie-breaking rule. That is, presented

with a node (or set of nodes, corresponding to a pseudo node), an arc will form

between this (pseudo) node and the (pseudo) node chosen by τ . Moreover, we

denote by Cr(τ, k; (R,R × R)) the pseudo nodes formed in the k-th iteration of

Edmonds’ algorithm when the optimal r-branching in (R,R×R) is sought; I will

suppress the last argument when the graph in question is unambiguous. If the
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algorithm has reached step 4 by the k-th iteration, then Cr(τ, k
′) = ∅ for every

k′ ≥ k. Finally, I will write Cr(τ) = ∪1≤k<∞ Cr(τ, k).

Definition 3.3. Let λ∗ and λ′∗ be the solutions of the dual problems (7)-(8)

corresponding to rooting at r1 and r2, respectively. For any choice rules τ , τ and

recurrent classes r1, r2 ∈ R, let the extended radius from r1 to r2 be given by

ER(r1, r2) = R(r1) +
∑

C∈Cr2 (τ)\Cr1 (τ)

λ
′∗
C . (9)

Define the extended coradius of r1 by

ECR(r1) = max
r2∈R\r1

{
R(r2) +

∑
C∈Cr1 (τ)\Cr2 (τ)

λ∗C −
∑

C∈Cr2 (τ)\Cr1 (τ)

λ′∗C
}
. (10)

Given a choice rule τ ,
∑

C∈Cr2 (τ)\Cr1 (τ) λ∗C is the sum of the Lagrange multipliers

corresponding to the set of cycles that are formed when rooting at r2, but are

not formed when rooting at r1. Observe that while the set of cycles formed in

the execution of the algorithm may depend on the choice rule employed, the

appellations “extended radius” and “extended coradius” offer no such hint of

dependence. To assuage any concerns of ambiguity, I prove that the values of the

extended radii and coradii are independent of the choice rule. The proof will use

the following lemma, which I prove in the appendix.

Lemma 3.4. Let (V, A) be a graph with cost and choice functions c and τ , and

take v1, v2 ∈ V . Construct an artificial node z, and set V ′ = V \ {v1, v2} ∪ z

and A′ = V ′ × V ′. Let the auxiliary graph (V ′, A′) have cost and choice functions

c′ : A′ → R+ ∪∞ and τ ′ : P(V ′)× P(P(V ′)) → P(V ′) defined by

c′(v, v′) =


c(v, v′) if v, v′ ∈ V ′ \ {z}
mink∈{v1,v2} c(k, v′) if v = z and v′ ∈ V ′ \ {z}
mink∈{v1,v2} c(v, k) if v ∈ V ′ \ {z} and v′ = z

(11)

11



and

τ ′(X,Y ) =

{
τ(X, Y ) if τ(X, Y ) 6∈ {{v1}, {v2}}
{z} otherwise.

(12)

Then, ∀ k ≥ 1, {C ∈ Cv1(τ, k; (V, A)) | v2 6∈ C} = Cz(τ, k; (V ′, A′)); and the

respective dual solutions λ∗ and λ′∗ agree on the cycles in Cz(τ, k; (V ′, A′)).

Proposition 3.5. For all choice rules τ, τ ′ and recurrent classes r1, r2 ∈ R,

∑
C∈Cr1 (τ)\Cr2 (τ)

λ∗C =
∑

C′∈Cr1 (τ ′)\Cr2 (τ ′)

λ∗C′ . (13)

Proof. Applying the values λ∗ found by executing Edmonds’ algorithm using a

choice rule τ and root node r1, it is clear that the optimal value of the dual problem

(7)-(8) is
∑

r∈R\{r1}R(r)+
∑

C∈Cr1 (τ) λ∗C . Since the optimal value is independent of

τ , so must be
∑

C∈Cr1 (τ) λ∗C . Because Cr1(τ) =
(
Cr1(τ)\Cr2(τ)

)
∪

(
Cr1(τ)∩Cr2(τ)

)
,

it remains to show that
∑

C∈Cr1 (τ)∩Cr2 (τ) λ∗C is independent of τ .

To prove this, I construct an auxiliary graph where the nodes r1 and r2 are

united into a larger limit set ρ. An application of Lemma 3.4 to the graph (R,R×
R) using v1 = r1 and v2 = r2 shows that the cycles formed in each stage of the

algorithm when finding the optimal ρ-branching in the auxiliary graph (R′, R′×R′)

are the same as those cycles not containing r2 that are formed in each stage

when finding the optimal r1-branching in the original graph. In addition, the

corresponding coefficients in the optimal vector λ′∗ are the same as those in λ∗.

As
∑

r∈R′\{ρ}R(r)+
∑

C′∈Cρ(τ ′;(R′,R′×R′)) λ′∗C′ is the optimal cost of a ρ-branching,

we know
∑

C′∈Cρ(τ ′;(R′,R′×R′)) λ′∗C′ must be independent of τ ′. By Lemma 3.4,∑
C′∈Cρ(τ ′;(R′,R′×R′)) λ′∗C′ =

∑
C∈Cr1 (τ,k;(R,R×R)),r2 6∈C λ∗C , so the right-hand side is also

independent of τ , from which τ ′ is defined. Moreover, the symmetry in Lemma

3.4 implies that

{C ∈ Cr1(τ, k; (R,R×R)) | r2 6∈ C} = Cρ(τ
′, k; (R′, R′×R′)) = {C ∈ Cr2(τ, k; (R,R×R)) | r1 6∈ C}.

12



Taking unions over all k ≥ 1, we obtain the chain of equalities

{C ∈ Cr1(τ ; (R,R×R)) | r2 6∈ C} = Cρ(τ
′; (R′, R′×R′)) = {C ∈ Cr2(τ ; (R,R×R)) | r1 6∈ C}.

Hence Cr1(τ ; (R,R×R))∩Cr2(τ ; (R,R×R)) = {C ∈ Cr1(τ ; (R, R×R)) | r2 6∈ C}.
This observation completes the proof, since then

∑
C∈Cr1 (τ)∩Cr2 (τ) λ∗C is independent

of τ .

One may consider the extended radius from the recurrent class r to the class

r′ to be a measure of the cost reduction incurred by rooting an optimal branching

at r rather than at r′. The formulation of the extended coradius of r is intended

to emulate Ellison’s modified coradius, and provides a worst case measure of the

cost incurred by rooting at r. The following theorem uses these measures to offer

a precise characterization of stochastically stable classes.

Theorem 3.6. Let (S, M, M(ε)) be a model of evolution with noise and let r ∈ R.

Then, the following two conditions are equivalent:

(i) R(r) ≥ ECR(r)

(ii) ER(r, r′) ≥ ER(r′, r) ∀ r′ ∈ R \ {r};

and either condition holds if and only if r is stochastically stable. Moreover, r is

the unique stochastically stable recurrent class if the inequality holds strictly.

Proof. The equivalence between (i) and (ii) is self-evident. Using Theorem 2.5

(KMR, 1993) in conjunction with Young’s restriction to recurrent classes, r is

stochastically stable if and only if it is the root of a branching of minimal cR cost

on (R,R×R). Let τ be a choice rule and r′ an arbitrary recurrent class in R\{r}.
Also let λ∗ and λ′∗ be the solutions of the dual problems (7)-(8) corresponding to

rooting at r and r′, respectively. By the duality theorem, the cost of an optimal

branching rooted at r is
∑

r∈R\{r}R(r) +
∑

C∈Cr(τ) λ∗C , and analogously for r′.

13



Hence r is stochastically stable if and only if

∑
r̃∈R\{r}

R(r̃) +
∑

C∈Cr(τ)

λ∗C ≤
∑

r̃∈R\{r′}

R(r̃) +
∑

C∈Cr′ (τ)

λ′∗C ,

or equivalently,

R(r) ≥ R(r′) +
∑

C∈Cr(τ)

λ∗C −
∑

C∈Cr′ (τ)

λ′∗C .

By Lemma 3.4 and the ensuing analysis in the proof of Proposition 3.5,

∑
C∈Cr(τ)∩Cr′ (τ)

λ∗C =
∑

C∈Cr(τ)∩Cr′ (τ)

λ′∗C .

Due to the decomposition Cr(τ) =
(
Cr(τ)\Cr′(τ)

)
∪

(
Cr(τ)∩Cr′(τ)

)
, r is stochas-

tically stable if and only if R(r) ≥ ECR(r), as claimed. Following this line of

argument with strict inequality yields the additional claim on uniqueness.

The following corollary may offer a useful test for ruling out stochastic stability

of a particular recurrent class.

Corollary 3.7. Consider a recurrent class r ∈ R. If ∃ r′ ∈ R \ {r} such that

every cycle containing r also contains r′ and R(r′) > R(r), then r cannot be

stochastically stable.

It is important to note that to find the dual solution for each potential root

node, one need not execute Edmonds’ algorithm |R| times. While Edmonds’

algorithm finds the optimal branching given a particular root, it is well known

that the problems of finding an optimal rooted branching and finding an optimal

branching are mathematically equivalent (KV, Proposition 6.6). In fact, a minor

transformation of the graph permits Edmonds’ algorithm to find the optimal root

for a branching. Simply construct an anchoring node a and let R′ = R∪{a}. Equip

the graph (R′, R′×R′) with an augmented cost function cR′ : R′×R′ → R+∪{∞},
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which agrees with cR on R×R and has

cR′(r, a) = |R| max
r1,r2∈R, c(r1,r2)<∞

c(r1, r2) ∀ r ∈ R.11 (14)

Applying Edmonds’ algorithm to find the optimal a-branching in (R′, R′ × R′),

it is clear that due to the sizeable cost of each arc to a, only one node r∗ will

ultimately be connected to the root. Moreover, because the last pseudo node

formed is the entire set R, the node r∗ selected to connect to the anchor a will be

the one that minimizes

cR′(r, a)− [ R(r) +
∑

C∈Ca(τ)\{R},r∈C

λ∗C ],

where τ is the choice rule used and λ∗ is the dual solution found from the execution

of the algorithm when rooting at a. Because the cost of an arc to a is constant, this

is equivalent to choosing the node r∗ that maximizes R(r) +
∑

C∈Ca(τ)\{R},r∈C λ∗C .

Moreover, the optimality of the a-branching implies that the sub-branching rooted

at r∗ must also be of minimal cost, making r∗ stochastically stable. The follow-

ing proposition shows we may indeed use this alternative setup to provide an

equivalent definition of the extended and modified coradii.

Proposition 3.8. Let r1, r2 ∈ R and (R′, R′ × R′) be defined as above with dual

solution λ∗ when rooting at a under the choice rule τ . The formulation given in

Definition 3.3 is equivalent to

ER(r1, r2) = R(r1) +
∑

C∈Ca(τ),r1∈C,r2 6∈C

λ∗C (15)

and

ECR(r1) = max
r2∈R\r1

{
R(r2) +

∑
C∈Ca(τ),r2∈C,r1 6∈C

λ∗C −
∑

C∈Ca(τ),r1∈C,r2 6∈C

λ∗C
}
. (16)

11The value of cR′(a, r) for each r ∈ R will be irrelevant.
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Proof. An application of Lemma 3.4 with v1 = a and v2 = r2 obtains the auxiliary

graph (R̃, R̃×R̃) satisfying ∀ k ≥ 1, {C ∈ Ca(τ, k) | r2 6∈ C} = C{a,r2}(τ
′, k; (R̃, R̃×

R̃)); moreover the respective dual solutions λ∗ and λ̃∗ agree on the identical cy-

cles. Because of the enormous cost of an arc to a, it is clear that ∀ k ≥ 1,

C{a,r2}(τ
′, k; (R̃, R̃× R̃)) = Cr2(τ, k; (R,R×R));12 and that once again, the respec-

tive dual solutions λ̃∗ and λ2∗ agree on the identical cycles. Similarly, if we apply

Lemma 3.4 again with v1 = a and v2 = r1 and take into consideration the cost of

an arc to a, we obtain that ∀ k ≥ 1, {C ∈ Ca(τ, k) | r1 6∈ C} = Cr1(τ, k; (R,R×R)).

Combining these results, we have that ∀ k ≥ 1,

Cr2(τ, k) \ Cr1(τ, k) = {C ∈ Ca(τ, k) | r2 6∈ C} \ {C ∈ Ca(τ, k) | r1 6∈ C}
= {C ∈ Ca(τ, k) | r1 ∈ C, r2 6∈ C},

and λ2∗ and λ∗ agree on the identical cycles. The proposition immediately follows.

4 An improved shortcut

In this section I offer a shortcut which improves on the radius - modified coradius

test in Ellison (2000). While neither my shortcut nor the radius - modified coradius

test is universally applicable, the improved shortcut may permit the identification

of SSLS when Ellison’s radius - modified coradius test fails to identify any, or

may be able to pinpoint the true SSLS in cases where Ellison’s test identifies

only a superset. My improved test builds upon the radius - extended coradius

characterization presented in Theorem 3.6 as well as Ellison’s test itself. Theorem

4.1 demonstrates precisely why Ellison’s test follows as a corollary of Theorem 3.6.

This information turns out to be useful in constructing the improved shortcut. The

content of Theorem 4.1 is therefore not an alternate derivation of Ellison’s result

(it is already known that the result may be proved using tree arguments, as Ellison

12Because R ⊂ R′, the same choice rule τ may apply.
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himself demonstrated in the appendix of (2000)); rather, the content of Theorem

4.1 is its role as a building block for the improved shortcut and an explanation of

why the radius - modified coradius test is not universally applicable.

Theorem 4.1. Part (i) of Ellison’s result in Theorem 2.7 is a corollary of Theo-

rem 3.6. In particular, this follows for each r ∈ R because maxr′∈R\{r} ER(r′, r) ≤
CR∗(r), hence ECR(r) ≤ CR∗(r). It follows for a union ρ of recurrent classes

because R(ρ) > CR∗(ρ) implies that for each r′ 6∈ ρ there is some r∗r′ ∈ ρ such

that ER(r∗r′ , r
′) > ER(r′, r∗r′).

Proof. The proof is relegated to the appendix.

To gain some intuition for the proof of Theorem 4.1, note that Ellison’s mod-

ified coradius is derived from a shortest path problem. Finding a shortest path

and finding an optimal branching are distinct mathematical problems; and while

both problems may be solved by a greedy algorithm (Edmonds’ in the case of

branchings, and Dijkstra’s, for example, in the case of a shortest path), the op-

timality criteria in the greedy steps differ. The branching algorithm myopically

chooses arcs of minimal cost, while the shortest path algorithms take into account

both the cost to an intermediate node and the cost of the shortest path from the

intermediate node to the destination. As a result of these differing optimality

criteria, the modified coradius ends up overcompensating as a measure of the cost

of rooting at a particular node.

Why is this? Recall that the extended radius and coradius are composed of

sums of Lagrange multipliers, each having the form of the cost of a transition

minus the radii of certain recurrent classes; this bears some resemblance to the

modified coradius. Because of the particular greedy criterion used in the branching

algorithm, the Lagrange multipliers will be smaller than similar terms present in

the modified coradius. In fact, Theorem 4.1 shows that the modified coradius

always overestimates the extended coradius when the object in question is a single

recurrent class. CR∗(r) disregards the negative term in the extended coradius that
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corresponds to the benefit of rooting at r. Secondly, the shortest path calculation

overestimates the positive term in the modified coradius, which measures the

persistence of r relative to another recurrent class r′. Moreover, for a union ρ of

recurrent classes, it shows that the force behind Ellison’s conditionR(ρ) > CR∗(ρ)

is that each recurrent class not in ρ is “dominated” in the sense of the extended

radius by some recurrent class in ρ. All that is going on behind Ellison’s statement

on unions of recurrent classes is that when ρ satisfies R(ρ) > CR∗(ρ), then for

each r′ 6∈ ρ there is some r∗r′ ∈ ρ such that ER(r∗r′ , r
′) > ER(r′, r∗r′).

This permits the construction of the following test for stochastic stability. As

usual, we identify a cycle with the union of the recurrent classes that it contains.

We say that a first-phase cycle is one created in the first pass of Edmond’s algo-

rithm. This includes singleton “cycles.” Essentially, the set of first-phase cycles

is the set of nodes used at the beginning of the second phase of the algorithm.

Finally, we say that Ellison’s test selects some set of recurrent classes ρ ⊂ R when

R(ρ) > CR∗(ρ).

Theorem 4.2. Let C be a first-phase cycle. Set rC ∈ arg minr∈C [c(r, R\D(C))−
R(r)] and C∗ = arg maxr∈C R(r). Then,

(i) A recurrent class r ∈ C∗ is a SSLS whenever it satisfies

R(r) + c(rC , R \ D(C))−R(rC) ≥ CR∗(r), (17)

and is the unique SSLS if the inequality is satisfied strictly.

(ii) If C∗ is non-singleton and Ellison’s test cannot select C∗, then every element

of C∗ is a SSLS if it satisfies

R(C∗) + c(rC , R \ D(C))−R(rC) = CR∗(C∗). (18)

Moreover, C∗ satisfies (18) iff every r ∈ C∗ satisfies (17) with equality.

Note from Corollary 3.7 that if r ∈ C\C∗ then r cannot be a SSLS. Before prov-
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ing Theorem 4.2, let us discuss condition (17). Note that c(rC , R\D(C)) ≥ R(C)

and that R(C∗) − R(rC) ≥ 0 because rC is an element of the cycle. Therefore,

the LHS of (17) is at least as large as the LHS of Ellison’s condition given in

part (i) of Theorem 2.7, while the RHS in both conditions is the same. This indi-

cates that condition (17) could hold for a particular first-phase cycle even when

R(C) ≤ CR∗(C), i.e., it may hold even when Ellison’s condition would not be able

to identify C as containing the SSLS. Moreover, because C is a first-phase cycle

rather than an arbitrary union of recurrent classes ρ, we can pinpoint precisely

the subset of SSLS in C: the elements of maximal radius within C. That is, even

if Ellison’s condition would identify C as a superset of the SSLS, this condition

could sharpen the prediction.

Theorem 4.2 follows from the dual-based representation in Theorem 3.6, the

result that CR∗(r) ≥ ECR(r) from Theorem 4.1, and the following lemma, which

is proved in the appendix.

Lemma 4.3. Let C be a first-phase cycle and C∗ = arg maxr∈C R(r) a non-

singleton set. Then exactly one of the following holds:

(i) R(C∗) > CR∗(C∗), so Ellison’s test selects C∗;

(ii) CR∗(r) = CR∗(C∗) for all r ∈ C∗.

The proof of this lemma is rather simple.

Proof. We prove that if CR∗(r) > CR∗(C∗) for some r ∈ C∗ then Ellison’s test

can be used to prove that C∗ contains all the SSLS. Because the maximum is

taken over a larger set, it is clear that CR∗(r) ≥ CR∗(C∗) for every r. In fact,

because C∗ is a first-phase cycle and transitions between the elements of the cycle

occur at radial cost,

CR∗(r) = max{CR∗(C∗), max
r′∈C∗\{r}

R(r′)}.
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Therefore, if CR∗(r) > CR∗(C∗) for some r then there is some r′ ∈ C∗ \ {r} such

that R(r′) > CR∗(C∗). But by construction of C∗, R(r′) = R(C∗), implying that

Ellison’s test selects C∗.

5 Discussion

In this paper I have taken a duality-based approach to the problem of calculating

SSLS in the analysis of evolutionary games. In doing so, I have found a necessary

and sufficient characterization of SSLS which illuminates the connection between

the modified coradius of Ellison (2000) and the Lagrange multipliers of the optimal

branching problem, and reveals why the radius - modified coradius test is not

universally applicable. Using my characterization I have proposed an alternate

test that may be able to either identify the SSLS when Ellison’s radius - modified

coradius cannot or pinpoint the true SSLS in cases where Ellison’s test identifies

only a superset.
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Appendix

Edmond’s Branching Algorithm

Consider a digraph (V, A) equipped with a cost function c : V × V → R+ ∪ {∞}
and fix a root node vr ∈ V .

Step 0: Initialize. Define λ∗ : P(V ) → R+∪{∞} by setting λ∗(v) = minv′∈V \v c(v, v′)

for each v ∈ V \ vr and zero otherwise. Define c′ : P(V ) × P(V ) → R+ ∪ {∞},
setting c′(v, v′) = c(v, v′) − λ∗(v) for every v, v′ ∈ V \ vr and c′ equal to infinity

otherwise. Go directly to Step 2, letting ((Ṽ , Ã), c̃) be ((V, A), c′).

Step 1: Reduce costs. For each new pseudo node13 vC ∈ Ṽ , let λ∗(vC) = minv′∈Ṽ \vC
c̃(vC , v′)

and c′(vC , v′) = c̃(vC , v′)−λ∗(vC) for every v′ ∈ Ṽ \ vC . Proceed to Step 2, letting

((Ṽ , Ã), c̃) be ((Ṽ , Ã), c′).

Step 2: Find the node greedy solution. For each v ∈ Ṽ \ vr, choose one v′v ∈
argminv′∈Ṽ \v c̃(v, v′) and let A′ =

⋃
v∈Ṽ \vr{v, v′v}. Proceed to Step 3, letting

((Ṽ , Ã), c̃) be ((Ṽ , A′, c̃).

Step 3: Contract. Let C(Ṽ , Ã) be the set of directed cycles in (Ṽ , Ã). If C(Ṽ , Ã) =

∅, then skip directly to Step 4, using this same (Ṽ , Ã), and ignore the rest of this

step. Otherwise, if C(Ṽ , Ã) 6= ∅, then replace each C ∈ C(Ṽ , Ã) with a pseudo

node vC to obtain V ′. To obtain A′ and c′, let arcs in Ã incident to v ∈ Ṽ remain

arcs (of the same c̃ cost) incident14 to the pseudo node vC containing v; for parallel

arcs,15 allow only a single arc of minimal c̃ cost. Go to Step 1, letting ((Ṽ , Ã), c̃)

be ((V ′, A′), c′).

Step 4: Expand. To obtain A′, for each pseudo node vC in Ṽ and arc (vC , v′) ∈ Ã,

remove the arc in C that emanates from the source (pseudo) node of arc (vC , v′).

To obtain V ′, replace the pseudo node vC with the (pseudo) nodes constituting

13That is, a pseudo node which did not exist in the previous iteration of the algorithm.
14An arc is incident to v if it has the form (v, v′) or (v′, v) for some v′ ∈ V
15Arcs (v, v′) and (v′′, v′′′) are parallel if v, v′′ are contained in the same pseudo node and

v′, v′′′ are contained in the same pseudo node; it could also be that exactly one of the origin or
destination is a node rather than a pseudo node, so for example v′ = v′′′ and v′ is not contained
in a pseudo node.
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the cycle C. Repeat Step 4, letting (Ṽ , Ã) be (V ′, A′), until V ′ = V .

Proof of Lemma 3.4

By strong induction on k. The statement is clearly true when k = 1, since c′ and

τ ′ have been defined so that in the first pass of the algorithm, if v, v′ ∈ V \{v1, v2},
then arc (v, v′) is selected in (V, A) if and only if arc (v, v′) is selected in (V ′, A′).

The dual solutions corresponding to pseudo nodes formed when k = 1 are clearly

identical. Now assuming the result is true up through some general k, I prove it

for k + 1. There are three major cases to examine.

(i) Cv1(τ, k; (V, A)) = ∅. By the induction hypothesis, Cz(τ
′, k; (V ′, A′)) = ∅ too.

The algorithm in both graphs is complete, hence so is the proof.

(ii) {C ∈ Cv1(τ, k; (V, A)) | v2 6∈ C} = ∅, but a pseudo node containing v2

is formed. By the induction hypothesis, Cz(τ
′, k; (V ′, A′)) = ∅. Since any

new cycles formed in the (k + 1)-st pass for the graph (V, A) would have to

contain v2, the claim is also valid for k + 1.

(iii) {C ∈ Cv1(τ, k; (V, A)) | v2 6∈ C} 6= ∅. By the induction hypothesis, {C ∈
Cv1(τ, k; (V, A)) | v2 6∈ C} = Cz(τ

′, k; (V ′, A′)). Take C ∈ Cz(τ
′, k; (V ′, A′)).

Three subcases arise in the (k + 1)-st iteration of the algorithm in (V ′, A′).

(a) At outgoing arc is formed from C to a single node v ∈ V ′ \ {z} such

that an arc exists from v to a node in C. This creates a larger pseudo

node C ∪ {v}. By the case k = 1, r is also a singleton node in (V, A).

Due to the corresponding definitions of c and c′ and τ and τ ′, C ∪ {v}
must also form in (V, A).

(b) At outgoing arc is formed from C to a node v ∈ V ′ \ {z} such that

there does not exist an arc from v to a node in C. This does not create

a new pseudo node in (V ′, A′). If v is not in a pseudo node containing

v2 in (V, A), no cycle forms there either; but if v is in a pseudo node
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containing v2 and if a cycle forms, that cycle contains v2. In either case

the statement is valid for k + 1.

(c) At outgoing arc is formed from C to another pseudo node C ′ not con-

taining v2. If a cycle is formed, C ′ is also present in (V, A) and the

same cycle forms due to the corresponding definitions of c and c′ and

τ and τ ′.

It is clear by the strong inductive step and the definitions of c and c′ that the

dual solutions again agree on the corresponding cycles. This completes the proof

of the lemma.

Proof of Theorem 4.1

For each r′ ∈ R, fix the shortest path and let (r1, r2, . . . , rNr′−1, rNr′
) be the

sequence of recurrent classes through which the shortest path from r′ = r1 to

r = rNr′
consecutively passes. I shall also fix the choice rule τ and keep it in

mind implicitly in what follows. Let k̄ be the final iteration of the algorithm when

rooting at a, and for each r′ ∈ R and 1 ≤ k ≤ k̄, let C(r′, k) be the new pseudo

node containing r′ that forms in the k-th iteration of Edmonds’ algorithm; if no

such pseudo node forms, then C(r′, k) = ∅. Recall from the steps of the algorithm

that λ∗C(r′,k) = 0 if C(r′, k) = ∅. For the sake of notational simplicity, I will also

write Ca(r
′, r) = {C ∈ Ca | r′ ∈ C, r 6∈ C}, and in a slight abuse of notation, will

let r′ ∈ Ca(r
′, r) mean that ∃ C ∈ Ca(r

′, r) such that r′ ∈ C. Finally, for each

r′ ∈ R, let kr′ = min1≤k≤k̄,C(r′,k)∈Ca(r′,r) k if {1 ≤ k ≤ k̄, C(r′, k) ∈ Ca(r
′, r)} 6= ∅,

and kr′ = k̄ otherwise.

Recall the equivalent formulation of the extended coradius offered in Propo-

sition 15. To prove the theorem, I will in fact prove something stronger, that ∀
r, r′ ∈ R and an arbitrary fixed choice rule τ ,

∑
C∈Ca(τ),r′∈C,r 6∈C

λ∗C ≤ min
(s1,s2,...,sN )∈P (r′,r)

cP (s1, s2, . . . , sN)−
Nr′−1∑

i=1

R(ri), (19)
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where λ∗ is the dual solution obtained when rooting at the anchor a. Step 1 proves

Equation (19). Given Equation (19), one may show that maxr′∈R\{r} ER(r′, r) ≤
CR∗(r) simply by adding R(r′) = R(r1) to both sides and taking the maximum

over all r′ ∈ R\{r} on both sides of (19). Since
∑

C∈Ca(τ),r∈C,r′ 6∈C λ∗C is nonnegative,

it is clear that maxr′∈R\{r} ER(r′, r) ≥ ECR(r). The extension to the case when

ρ is a union of two or more recurrent classes is dealt with in Step 2.

Step 1: Let us assume that Ca(r
′, r) 6= ∅, else Equation (19) holds trivially.

Consider the first transition (r1, r2) in the shortest path. Clearly r1 = r ∈ Ca(r
′, r).

If r2 6∈ Ca(r
′, r), then the proof is complete. To see this, note that by the definition

of λ∗, cR(r′, r2)−R(r′)−
∑k−1

j=1 λ∗C(r′,j) ≥ λ∗C(r′,k) ∀ 1 ≤ k ≤ k̄−1 (since new cycles

are not formed in the k̄-th iteration). In general, consider the transition (ri, ri+1)

for 1 ≤ i ≤ N − 1 and recall that kri
= k̄ if ri 6∈ Ca(r

′, r). If ri ∈ Ca(r
′, r), then

the definition of λ∗ implies the relation

cR(ri, ri+1)−R(ri)−
kri−1∑
j=1

λ∗C(ri,j)
−

k̂ri−1∑
j=kri

λ∗C(r′,j) ≥ λ∗
C(r′,k̂ri )

∀ kri
≤ k̂ri

≤ kri+1
−1.

Drop the first (nonnegative) summation in the above equation and rearrange to

obtain

cR(ri, ri+1)−R(ri) ≥
k̂ri∑

j=kri

λ∗C(r′,j) ∀ kri
≤ k̂ri

≤ kri+1
− 1. (20)

Denote I = {1 ≤ i < Nr′ | kri
< kri+1

}. I will need to construct a few

sequences as follows. Initialize j1 = maxi∈I,ri∈Ca(r′,r),ri+1 6∈Ca(r′,r) i and k̂rj1
= k̄. For

each l ≥ 1 until krjl
= 1, I inductively define jl = maxi∈I,i<jl−1,kri≤krjl−1

≤kri+1
i and

k̂rjl
= krjl−1

− 1. Since kr′ = 1, the sequence will eventually terminate at some

l̄. For each 1 ≤ l ≤ l̄, apply the values krjl
and k̂rjl

in the inequality in (20).

Summing the resulting inequalities yields (19), as desired.

Step 2: Now take ρ to be a union of two or more recurrent classes and
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ρ′ ⊆ R \ ρ. Note that if r ∈ ρ and r′ ∈ ρ′, then P (r′, r) ⊇ {(s1, . . . , sN) ∈
P (ρ′, ρ) | s1 ∈ r′, sN ∈ r}. This means

min
P (r′,r)

cP (s1, . . . , sN)−
Nr′−1∑

i=1

R(ri) ≤ min
P (ρ′,ρ),s1∈r′,sN∈r

cP (s1, . . . , sN)−
Nr′−1∑

i=1

R(ri).

Therefore, using (19)

∑
C∈Ca(τ),r′∈C,r 6∈C

λ∗C ≤ min
(s1,s2,...,sN )∈P (ρ′,ρ),s1∈r′,sN∈r

cP (s1, s2, . . . , sN)−
Nr′−1∑

i=1

R(ri).

(21)

Bounding the LHS below by adding the negative term −
∑

C∈Ca(τ),r∈C,r′ 6∈C λ∗C and

taking the minimum over all r ∈ ρ on both sides of (21) gives

min
r∈ρ

∑
C∈Ca(τ),r′∈C,r 6∈C

λ∗C −
∑

C∈Ca(τ),r∈C,r′ 6∈C

λ∗C

≤
[
min
r∈ρ

min
(s1,s2,...,sN )∈P (ρ′,ρ),s1∈r′,sN∈r

cP (s1, s2, . . . , sN)−
Nr′−1∑

i=2

R(ri)
]
−R(r′).

(22)

Clearly, minr∈ρ min(s1,s2,...,sN )∈P (ρ′,ρ),s1∈r′,sN∈r cP (s1, s2, . . . , sN) −
∑Nr′−1

i=2 R(ri) is

bounded above by

max
ρ′⊆R\ρ

max
r′∈ρ′

min
r∈ρ

min
(s1,s2,...,sN )∈P (ρ′,ρ),s1∈r′,sN∈r

cP (s1, s2, . . . , sN)−
Nr′−1∑

i=2

R(ri), (23)

and a moment’s reflection shows that the object in (23) is none other than CR∗(ρ).

Ellison’s hypothesis is that CR∗(ρ) < R(ρ). By definition, R(ρ) ≤ R(r) ∀ r ∈ ρ.

Therefore, for any r ∈ ρ, R(r) offers a strict upper bound for the bracketed term

in (22). For each r′ ∈ ρ′, let r∗r′ be the minimizer of the LHS of (22). Coupling

25



(22) with this upper bound for the bracketed term gives

∑
C∈Ca(τ),r′∈C,r∗

r′ 6∈C

λ∗C −
∑

C∈Ca(τ),r∗
r′∈C,r′ 6∈C

λ∗C < R(r∗r′)−R(r′). (24)

With a slight rearrangement, Equation (24) says that ER(r∗r′ , r
′) > ER(r′, r∗r′),

thereby violating the necessary and sufficient condition for the stochastic stability

of r′. Since r′ was an arbitrary element of R \ ρ, the stochastically stable classes

must be contained in ρ.
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