
Developing an Exchange Network Simulator
Author(s): Barry Markovsky
Source: Sociological Perspectives, Vol. 38, No. 4, Computer Simulations and Sociological Theory
(Winter, 1995), pp. 519-545
Published by: University of California Press
Stable URL: http://www.jstor.org/stable/1389271
Accessed: 10/12/2010 21:41

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ucal.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

University of California Press is collaborating with JSTOR to digitize, preserve and extend access to
Sociological Perspectives.

http://www.jstor.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6519204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstor.org/action/showPublisher?publisherCode=ucal
http://www.jstor.org/stable/1389271?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ucal

Sociological Perspectives Vol. 38, No. 4, pp. 519-545
Copyright 01995 Pacific Sociological Association ISSN 0731-1214

DEVELOPING AN EXCHANGE
NETWORK SIMULATOR

BARRY MARKOVSKY*
University of Iowa

ABSTRACT: 'X-Net" is a computer simulation that I developed in
conjunction with Network Exchange Theory. Users of X-Net can explore the
effects of different network structures, rules of exchange, and negotiators'
strategies on the dynamics and outcomes of resource exchanges in social
networks. This article recounts the process of X-Net's development, in addition
to key substantive, theoretical, and design issues that motivated its form and
content. It concludes with a discussion of the relationship between theory,
simulation, and empirical tests.

INTRODUCTION

Most social scientists who are exposed to computer simulations only see the end
results of long developmental phases. In general, investigators report on the
behavior of a simulated process under various configurations of modeling
assumptions and parameters. This is the science of computer simulation. In the
course of developing the simulation, however, the author invariably proceeds in
an evolutionary fashion, building layer upon program layer in a progressive, albeit
trial-and-error-laden, series of operations. This is the art of simulation.

My purposes here are to review both the evolution and present form of X-Net,'
a simulation that has become a useful adjunct to a particular program of theory-
driven research. Although I also discuss briefly some substantive findings, these
are not the focus. Instead, I review how the program of theory and empirical
research helped to spawn the simulation and how the simulation, in turn, has been
able to promote theory development and empirical testing. The discussion is
primarily aimed at: (1) those who have not written a simulation, but also (2) those
who have done so but may not have considered its connections to the theory-
building process, and even (3) those who may have a particular interest in social
exchange network simulations. The framework for my discussion is chronological

* Direct all correspondence to: Barry Markovsky, Department of Sociology, University of Iowa, Iowa City, IA 52242.
e-mai: barry-markovsky@uiowa.edu

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

highlighting the recent intellectual history of "network exchange theory" and X-
Net, the simulation.

BACKGROUND

For over a decade I have been intrigued by social exchange processes-particularly,
how network restrictions on those processes alter behaviors and exchange
outcomes. I was first inspired by a prominent article by Cook, Emerson, Gillmore,
and Yamagishi (1983). Arguing from the perspective of Richard Emerson's (1972)
"power-dependence" (P-D) framework, the authors presented results for several
laboratory experiments and computer simulations, finally offering an explicit,
mathematical formula (called the "vulnerability" model) for calculating network
exchange outcomes. Although the computer simulation program was little
discussed, its key features were described briefly in a footnote.

The research findings were fascinating. They clearly demonstrated that
experimental subjects in off-center positions in a variety of networks fared much
better in their exchanges than centrally located subjects. For example, in a network
configured as A-B-C-D-E, positions B and D obtained significantly higher
profits than A, C, and E, and C's profits were approximately equal to those of A
and E. It is important to note, however, that what we now call a "one exchange
rule" was in force: Every subject was restricted to making just one exchange per
round of negotiation, even if connected to more than one potential exchange
partner. It can be seen that under such conditions, A, C, and E all risk being excluded
from exchanging in a given round, whereas B and D will always have at least one
willing and available partner. Although not discussed in such terms by Cook et
al., it seems that a position's proneness to exclusion may be the determining factor
regarding its occupant's ability to extract advantageous exchange outcomes:
Minimum excludability imparts maximum power.

Despite the interesting findings, Wilier (1986) noted and published a discussion
of even more serious problems in the Cook et al. (1983) article. He demonstrated
that "applying vulnerability leads to logically and empirically impossible inferences
in a wide variety of applications." At the time, he offered no theoretical alternative
to vulnerability for predicting power in social exchange networks. Soon thereafter,
he and I began collaborating on alternative models, thus embarking on a long-
term program of theory development and research.

The more we worked on our own theory, the more nagging questions seemed
to emerge with respect to Cook et al.'s approach. For instance, although their
laboratory experiments were straightforward enough, reasons for certain design
features were not always apparent, and their larger purpose vis-a-vis the power-
dependence program was not so clear. Did the experiments really test the P-D
"framework"? The authors provided a set of explicit hypotheses for the experiments,
ostensibly obtained from P-D. Yet there were no propositions from which
predictions could have been logically derived. The hypotheses were ad hoc. Did
the experiments really test the vulnerability model? The data were consistent with

520

Developing an Exchange Network Simulator

vulnerability predictions, but the model was only given post hoc. There was no
claim that vulnerability was used to generate the hypotheses. Why the one-
exchange rule? Nothing in P-D mentions such a restriction, yet it seemed absolutely
essential to generate the experimental results. Finally, what was the purpose of the
computer simulations? Were the experiments intended to test them? Although the
experimental results roughly conformed to the simulations, the authors did not
claim or imply that the experiments provided support for the conclusions drawn
from the simulations. In fact, the simulation results were treated as having the status
of empirical data, which in turn were treated as providing even further corroboration
for the P-D theory. These researchers are not alone in their failure to realize that
computer simulation output and human behavioral data are not substitutable for
one another. As trivial as it may sound, it is apparently necessary to emphasize
that theories of human social behavior can be neither corroborated nor refuted by
computer simulations because simulation output is not human social behavior.

To better understand how computer simulations could be put to more legitimate
use in the study of exchange networks, I began developing my own network
exchange simulator. Writing in the Microsoft QuickBASIC programming language
and taking clues from the relevant Cook et al. (1983) footnote, I found it remarkably
easy to reproduce their findings. I then began to explore alternative specifications
for key elements in the program. The theoretical payoff was almost immediate.
My little simulations made it eminently clear that power was not a result of network
structural patterns alone, but also depended on assumptions made about the actors
in the network.

For instance, consider a network consisting of three people linked via two
relations: A-B-C. Each relation represents a channel through which negotiations
may take place and, thus, the locus of a potential resource exchange. These early
simulations revealed that, depending upon how actors' negotiation strategies were
programmed, any actor's profits could exceed those of any other actor. Thus, under
some conditions the "intuitive" finding holds: A = C < B. Under other conditions,
however, other orderings occurred, for example, A = B = C, A > C > B, and so
forth. Contrarily, all network theories of which I knew asserted unconditionally
that B's centrality should accord that position an advantage over the others
(Markovsky 1987).

These simulations clearly showed that much was being left implicit in network
exchange theories. In a sense, the simulations said more than those theories that
try to predict exchange outcomes based on network structure: The theories make
assumptions about the decisions and behaviors of the actors in the network. In
another sense, they say less: They make no assumptions about structural factors-
the very phenomena that motivated exchange network theories to begin with! The
simulated actors were not programmed to somehow take account of the larger
social network in which they were embedded. The differential resource
distributions emerged from the process of interaction.

The theoretical status of computer simulations became most apparent to me
while simultaneously working with David Wilier on a mathematical model of

521

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

power in exchange networks. The mathematical model and the computer simulation was
each the heart of a different theory. Ironically, and apparently without realizing it, Cook
et al.'s (1983) footnote on their simulation algorithm offered a rigorous alternative
to their informal, subjective, and inteipietive PD framework. That is, their
simulation "results" were logical derivations from a set of programmed
assumptions, and these provided ready-made but untapped derivations that, when
operationalized, could have served as hypotheses for their experiments. The
experimental results in fact provided empirical corroboration for their simulation
qua theory!

The simulations differed in at least one very significant way from Cook et al.'s
vulnerability model and the "graph-theoretical power index" (GPI) that we later
published (Markovsky, Wilier, and Patton 1988): The vulnerability model and GPI
used an analytic approach to predicting exchange outcomes, whereas the
simulations took an iterative approach. In general, analytic approaches are more
mathematically elegant, allowing derivations to be calculated simply by assigning
any needed initial conditions and/or parameter values. In contrast, the iterative
approach requires a series of calculations that frequently correspond to the
temporal unfolding of a process. Calculations for a given iteration of the model
depend upon results from the previous iteration. The iterative approach has the
potential to more easily model more "realistic" aspects of a process-for example,
its complex dynamics-and to accommodate more factors without creating
mathematical intractability. Each approach has its benefits and costs, and each
emphasizes different properties of the phenomena it models. To further highlight
this contrast, the following sections review the network exchange theory in greater
detail, followed by a discussion of the development of the X-Net simulation.

NETWORK EXCHANGE THEORY

Network exchange theory (NET) has developed incrementally over a number of
years, rooted in the "elementary theory" and research of Willer and his colleagues
(Willer and Anderson 1981; Willer and Markovsky 1993). The first version of NET
(Markovsky et al. 1988) was an attempt to correct problems in Cook et al.'s (1983)
vulnerability model and to develop a more explicit and general formulation. It
resolved the logical problems noted by Wilier (1986), was consistent with virtually
all of the results of both old and new network exchange research, and predicted
new classes of phenomena that were not addressed by other theories-for example,
power reversals and the emergence of sub-networks when the "one-exchange rule"
is relaxed. Later versions have built from this core formulation and now include
a variety of further refinements and insights (Markovsky et al. 1993; Skvoretz and
Willer 1993; Lovaglia, Skvoretz, Wilier, and Markovsky in press).

The Network Exchange Theory is fully explicated in the Appendix. The heart
of the theory consists of the Graph-theoretic Power Index (GPI, or Axiom 1) and
three associated axioms. The GPI serves to generate a numerical value for the
structural power of a given position relative to that of other positions to which

522

Developing an Exchange Network Simulator

it is connected. It is based on the idea that a position gains power from having
more relations; a position loses power when those relations have other relations;
the position gains power from those relations' relations that have other relations,
and so on. The GPI for every position in the network can thus be calculated based
on simple path-counting rules.

Having thus calculated power indices, the second axiom specifies when actors will
be interested in exchanging-that is, when two actors represent one another's most
profitable (or least costly) alternatives. Axiom 3 allows us to predict breaks in the
network that result when the structure of relations makes some of them unprofitable.
Finally, the last axiom relates relative power to relative exchange outcomes.

In general, GPI is sensitive to very robust power differences. For example, assume
that actors in each relation of the Bi-A-B2 network are engaged in a series of
negotiations over the division of a pool of 24 resource units. An exchange occurs
for a given period when A reaches agreement with one of the Bs as to who gets
how much of the pool. On the next round, the pool is replenished. However, one
of the Bs was excluded from the prior exchange and will try to re-enter by making
better offers to A. Over time, a bidding war between the two Bs results in profit
divisions that approach 23-1 favoring A.

Recently, my colleagues and I published an extension of this theory that
generates finer-grained predictions for a class of networks in which some power
differences are predicted to be much weaker (for supportive tests, see the Appendix,
part 2; Markovsky et al. 1993). The idea is that in some networks, ongoing exchanges
produce temporary changes in the number of an actor's available exchange
partners. As a result, power can shift temporarily, creating small power differences
between actors who are otherwise equal in structural power.

Most recently, extensions to the theory provide methods for predicting actual
profits for each position-not just profit orderings (see Appendix, part 3; Skvoretz
and Wilier 1993; Lovaglia et al. in press). These have also been supported through
experimental tests. Current research involves further refining, expanding, and
testing the network exchange theory, paying greater attention to dynamics of
negotiations and the properties of individual negotiators (Lovaglia, Skvoretz,
Markovsky, and Wilier 1995).

X-NET SIMULATIONS

In 1988 I received a grant to further develop the simple program I had published
the previous year (Markovsky 1987). Thus, almost from the beginning of my
collaborative work on the analytic model I was also exploring the simulation
approach. In fact, the plan was to use NET's experimental setting and scope
conditions as my guide for designing X-Net.

Starting Up

My previous experiences in computer programming were rather limited. I took
a course in PASCAL while in graduate school, but I never became a regular user

523

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

nor owned a PC version of that powerful language. Apart from the simulations
noted above, I had only written some small programs in Microsoft BASIC, mostly
for controlling the presentation of instructions and collection of data from subjects
in experiments. I decided to use QuickBASIC (QB), another Microsoft product.
Alternatives included high-level languages favored by serious programmers such
as Pascal and C, or others such as SimScript that were specially designed for
simulation programming. QB's advantages included: (1) It developed from the older
BASIC with which I was already familiar and thus shared much of its command
language and syntax. (2) It greatly enhanced BASIC by incorporating powerful new
language elements that permitted more highly structured programs. Structured
programming permits larger and better organized programs to be built or
"chunked" from a number of smaller semi-isolated subprograms, where each
subprogram performs a simpler subtask. With this expansion in capabilities, even
some "serious" programmers began to adopt QB. (3) QB was part of a wave of
very similar BASICs that were becoming increasingly popular (e.g., TrueBASIC and
TurboBASIC), making programs written in QB relatively transportable. (4) Its
grammar and syntax were quite intuitive, relatively easy to learn and teach.
Students and colleagues with little or no programming experience can look at QB
code and get a pretty good sense of how a program works. If a program is well-
structured and internally documented with comments and instructions, users with
minimal training can even explore the effects of program modifications. I have
never regretted settling on QB. The C language and its variants are certainly
speedier and more powerful, and still hold sway among programmers. However,
the ease of developing and modifying X-Net, along with its comprehensibility to
students and colleagues, more than compensate for the relatively small sacrifice
in execution speed.2

Having chosen my language, I can remember very well sitting at the computer
ready to begin work on the project. It was at this point that I decided to call the
program "X-Net," short for eXchange-NETworks. The fact that I named the
program before writing any of it hints at the anxiety I felt over possibly having
bitten off more than I could chew. So my first task became staving off something
akin to writer's block. That first day, I accomplished little more than writing the
code for a big, silly, graphic display designed to flash "X-Net" on the screen at
the start of the program. Although I soon discarded that part of the program, at
the time it served both to remove the sense of facing a tabula rasa and to familiarize
me with some of QB's graphics capabilities. It also got me thinking about X-Net
from the user's point of view. As I further developed the program, I was motivated
to make X-Net a user's program, as opposed to a programmer's program. I spent
almost as much time developing a simple, informative, and visually clean interface
as I did the substantive algorithms. Later on, this paid dividends in that a number
of people who may otherwise not have done so have used the program and
provided feedback.

The first truly substantial programming involved writing routines to handle the
networks themselves. These capitalized on the fact that network configurations

524

Developing an Exchange Network Simulator

A B- C

D

E

A B C D E

A

B

C

D

E

0

1

0

0

0

(a)

1 0 0 0

0 1 1 0

1 ..0 0 0

1 0 ,.0 1

0 0 1 ,0

(b)

1

0 1 0 0 1 0

0 0 0 1

(C)

1010100001

(d)

Figure 1
Representing a Network

can be readily stored as matrices of Is and Os. The five-actor network in part a
of Figure 1, for example, can be fully described via the connection matrix in part
b. The Is indicate relations; the Os nonrelations. When relations are mutual-for
example, A is related to B whenever B is related to A-then matrices such as shown
in part b contain redundant information. In fact, the network can be completely
reconstructed based only on the nonredundant information below the dashed line,

525

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

as shown in part c of Figure 1. Finally, reading across the successive rows of part
c, all necessary information on the structure of the network can be reduced to the
single line shown in part d. In general, all networks with symmetric relations can
be so represented using exactly N(N-1)/2 digits, where Nis the number of positions
in the network.

With network configurations reducible to mere strings of numbers, the first
routine was a subprogram for reading these numbers from "network information
files." I thought that it would be nice to have a second routine that would allow
users to easily create such a file from a back-of-the-envelope drawing of the desired
network. This routine grew into a completely separate, interactive program,
NETMAKE, that lets the user describe and store a network simply by naming it,
declaring the number of positions, and answering a series of N(N-1)/2 yes-or-no
queries concerning which positions are connected to which others. Later, I
incorporated another subprogram (described below) into NETMAKE that
graphically displays the completed network. The user is then asked to either verify
the network, start the process again, or exit NETMAKE without storing the
network.

While at this stage of the project, I made an interesting discovery about my own
capacities for doing this work that others have since confirmed applies to them
as well: I could work longer and with greater efficiency when I switched back and
forth between the serious, nitty-gritty, programming on the one hand and the more
visually stimulating user-interface on the other hand. It is quite common to "get
stuck" when programming-to not be able to locate a bug or to not be able to
muster sufficient concentration, for example. At such times, it is usually best to
set aside the problem for a while and go on to other things. When "other things"
include a different set of programming tasks, which was the case with the program's
graphic displays, other parts of the program continue to be developed during the
"break" and time is thus used more efficiently. For me, the user interface displays
were generally easier to program than the network exchange processes, and they
provided the added benefit of immediate gratification. As a result of this strategy,
the user interface evolved in step with the more technical components.

Program Structures and Functions

The programming described thus far was very straightforward. It was not long,
however, before I had to begin developing routines for negotiations and exchanges
among actors in the networks. This meant devising a simulated world that satisfied
the scope conditions of the Network Exchange Theory (Appendix, part 1). The
laboratory experiments provided a useful model. In these experiments, actors
negotiate and exchange within each of a series of rounds. A single experiment
involving the same group of actors could consist of, say, 10 rounds. Multiple
experiments conducted with multiple groups of subjects would then be repeated
and the results aggregated to permit more powerful inferences regarding effects
of positions and other variables.

526

Developing an Exchange Network Simulator

According to the theory's first scope condition (SC1), all actors must use the same
strategy. This was certainly a handy simplification for purposes of programming.
Any differential exchange outcomes that emerged in simulations would then have
to be the result of structural differences among the positions that actors occupied
and not due to idiosyncratic behaviors of those actors. SC2 asserted that every
position must be related to, and seek exchange with, one or more other positions.
The network description routines did not prevent the user from describing an
isolate. However, that isolate would obviously never engage in negotiations or
exchanges, so this condition posed no special problem. SC6 was satisfied by
providing a fixed resource pool for each relation, with 24 units by default (because
most experiments used 24 units per pool).

The remaining scope conditions were trickier in that they delimited various
aspects of the exchange settings and processes to which NET was deemed
applicable, but without actually specifying any concrete features. That is fine for
scope conditions but not as useful for writing a simulation. We return to this
problem below.

At this point, I had a set of actors, network relations, and resource pools. The
next problem was how to breath life into this system and have the actors negotiate
over and divide up those resources. The theory provided no solution to this
problem. After all, the theory sought to use structures to predict exchange
outcomes; it did not set out to model negotiation processes. Thus, whereas the
theory had essentially determined the program up to this point, from here on the
program was underdetermined vis-a-vis the theory. For instance, the theory did
not say how actors should decide with whom to negotiate, how much to offer,
how to evaluate offers received, when to accept another's offer, or how to adjust
their offers in view of past outcomes.

The need to fill in missing details forced me out of the theory and into an
exploratory mode. I embarked on a series of trial-and-error attempts to make the
simulation do something that seemed interesting. One of the first features to develop
during this phase was the overall program structure, thanks to the laboratory
experiments that served as a template. There are plainly multiple nested "levels"
of activity in network exchange research, as illustrated in Figure 2. Level 1, or the
"top" level, consists of the Experiment. This corresponds to an entire network
exchange experiment involving multiple groups of subjects run in the same
network configuration, but at different times. The results of these different groups
can be described via aggregated variables-that is, average profits per exchange
across all subjects occupying a given network position. For instance, we might say
that "after running five different groups of subjects in the Bi-A-B2 network,
position A averaged 20 points."

Level 2 consists of Sessions. One experiment contains multiple sessions, where
each session involves a group of subjects (or simulated actors) engaging in a series
of negotiations and exchanges.

Level 3 then consists of the Rounds that comprise a session. Within a session,
subjects are usually restricted as to the number of deals they can make within

527

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

Experiments 1

Sessions 1 I I2 1 3
Rounds | 1 2 13 14 ... I 1 2 13 14 |... 1 2 13 14 ...

Figure 2
X-Net Program Levels

a given round, although they are often free to negotiate with multiple partners,
making offers and counteroffers to each.

Prior to developing X-Net, these were the only program levels that seemed
essential, with the exception of a "bottom" Actions level in which actors make offers
and counteroffers. Each of the three levels would perform a few chores such as
initializing variables (i.e., resetting to zero or one certain variables used the last
time the program entered the particular level) and running a program loop that
moves through tasks at the next lower level.

The specific subprograms developed as follows. At the Experiment level, a
subprogram called MainMenu displays a set of selectable options for the user (see
Figure 3)-that is, receive "General information" on the program, "Make or delete
a network" from the list of stored networks, "Run a simulation," or "Exit the
program." Choosing the first option results in a series of informational screens. The
second choice "chains" to the NETMAKE program. Choosing the third option
causes a menu of networks to appear (see Figure 4). After a network is chosen,
the Simulations menu is displayed (see Figure 5). Here, the user may run the
simulation with default parameter values, or change parameters prior to running
the simulation. Parameters subject to manipulation include the size of the resource

pool in all relations or in each relation (default = 24); the number of deals permitted
all positions or particular positions (default = 1); the number of rounds per session
(default = 25); the number of sessions (default = 10); and which of several available
strategies would be employed by the actors. (Because actors are simulated,
distinctions between the concepts of "strategy" and "tactic" are not crucial here.)
After implementing any parameter changes, users are permitted to either run the
simulation, make further parameter changes, or exit the program.

Figure 6, which illustrates the entire program structure, shows the MainMenu
contained within the Experiment level, sitting atop all of the other levels of the
program. When the user chooses to "Run a simulation," X-Net continues through
the Experiment level and runs the SessionReady routine. This subprogram reads
in the information on the chosen network, establishes which relations exist, sets
up a graphical display for the user, and initializes several session-level variables.
The graphical display, reproduced in Figure 7, places all network positions around
an ellipse, draws lines to connect positions related in the network, labels position

528

General infornat:

[O Make or delete a

EExit the progran

z

cn

ion

network

I

U- U -7 I n- -

Figure 3
X-Net's Main Menu

ul
(J

I l

rii

8 .1 Run Simulation II

jj Select a network f ron the list ||

4-line 13-line 3-branch 4-branch
5-branch 5-T 7-T 10-T
6-bug 7-bug 2-house 4-stem
5-ring 5-2-stem 3-house 4-4-all
2-line 12-line 4i21l 20-line
6-ring 6-ring-is-diag 3-line rose-net
pentagram tess-net moe-net pearl-net
2-1-0-tristem

_- __ _ - _ I

Figure 4
Network Selection Menu

()
0
Q
0
r? 0
C)

nri rn

U,

2 9
44

tif
At

Developing an Exchange Network Simulator

H

a
a4

C
"b

;4 C

a
IE3 c o

H ?4 4

E] C Pu C

U $

531

C
0

*rl
41

Co
orl
*H3

0

is C4 C

a,

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

Program Level Routines Level Number

Figure 6
X-Net Program Structure

#1, shows the sequence numbers of the current session and round as the program
executes, and displays the name assigned to the network. When the SessionLoop
routine is entered, the program "pushes" down to Level 2, as shown in Figure 6.

At Level 2, Sessions, RoundReady simply initializes several data storage variables
and actors' initial offers for the session (half of the resource pool size, by default)
and then enters the RoundLoop which pushes the program down to Level 3. Here
is where I found it necessary to make a variety of assumptions about negotiation
and exchange processes, and these developed gradually, through trial and error.
At some point, I settled on an approach that introduced one more logical
programming level. Within each round, a given actor may go through a number
of cycles of offers to others-that is, as if pulling each (and every) potential partner's
name out of hat and checking to see if the other's offer is reasonable. Hence, I
adopted the name Cycles for the fourth level. The Rounds level first prepares for

532

Developing an Exchange Network Simulator

Session: 1 Round: 25 bot ie-sten

#1

Figure 7
Early in a Simulation

these cycles with the CycleReady routine. Its procedures turned out to be
somewhat elaborate. It "activates" actors who may have made early exchanges
in the early cycles of a previous round and, thus, been "dormant" for later cycles.
It also initializes variables that pertain to whether (1) a given other is sought for
exchange, (2) another who is sought also seeks the given actor, and (3) a given
strategy has been selected by the user. Then, the program enters the CycleLoop
and pushes down to Level 4.

The Cycles level consists of three subprograms, starting with SeekExchange. This
routine immediately enters the lowest level of the program, Actions, in which actors
make judgments that depend upon their strategy as selected by the user. For

example, one strategy flags those among an actor's alternative partners who have
made acceptable offers, then notes (or "seeks exchange" with) a number of those
others corresponding to the number of exchanges the actor is permitted in each
round. By another strategy, compromises are calculated and then exchange is

sought with the other(s) making the most profitable offer(s). After making this

provisional selection of exchange partners, the program then "pops" up to the Cycle
level (although we continue moving down in Figure 6), this time to run two more

533

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

Round: 25 bowtie-sten

/

/
a/ .\

X \@"1~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Press space bar
to continue

Figure 8
End of a Simulation

routines. CheckRecip moves through the network and flags relations in which both
actors have chosen one another in the SeekExchange routine. When such mutual
exchange-seeks are found, exchanges are declared to have occurred in those
relations. Then the Pull routine temporarily "pulls" from the network those actors
who have completed exchanges. The cycle continues to execute until all possible
exchanges have occurred. This happens relatively quickly, for when a pair of actors
has exchanged and been pulled from the network, those who remain no longer
try to deal with them, thus speeding the process of searching for a viable partner
in that round.

When no more exchanges can take place, the cycling has ended and, therefore,
so does the round. The program pops back up to the Rounds level and stores the
results of the last set of exchanges via the RoundData routine. Then the process
enters the NewOffers routine in which actors decide how much they will offer
in the next round of negotiations in light of what happened in the negotiations
just completed.

Having decided upon NewOffers for the next round, the program loops back
to CycleReady and CycleLoop, following the same process just described. When

Session: 18

534

Developing an Exchange Network Simulator

the designated number of rounds has been completed, the program pops up to
the Sessions level where it stores data for the now completed session and updates
the graphical image on the screen. This consists of increasing the sizes of the
network positions in proportion to the relative quantities of resources accumulated
by each over its last five exchanges. When all of an experiment's sessions have
been run, the program pops back up to the top Experiment level. There,
DisplayFinalNet shows a final graphic display (Figure 8, for example) with results
accumulated across all of the sessions, thereby providing an accurate depiction
of average resource differentials by network position. It also redraws the network
connections to indicate the frequencies of exchanges occurring in each relation:
heavier lines indicate higher frequencies. Finally, if the user chose to do so earlier,
WriteData stores numerical results to a disk file. The simulation run concludes with
the opening "Main Menu" again displayed.

Developing the Graphical Display
Within a few weeks of starting to work on the program, I agreed to discuss it

at a seminar. The seminar was to be on a Monday. The Friday before my talk, I
realized that it would be nice to be able to demonstrate the simulation by showing
networks on the screen and providing some type of dynamic image of resource
accumulations. In my rush to have something on time, I stumbled on a nice display
algorithm that is no doubt unoriginal, but works well for X-Net. The program uses
trigonometric functions to evenly distribute the network positions-tiny circles,
actually-around an imaginary ellipse on the screen. As shown in Figure 7, solid
lines are added to indicate pairs of positions deemed to be in a relation. After each
experiment, if a position earned resources, the size of the circle representing that
position is increased. Actually, another circle is drawn around the previous circle,
with the radius of the new circle proportional to the resources per exchange earned
during the last five rounds of each session. At the conclusion of an Experiment,
the solidity of the lines connecting actors is reduced according to the relative
frequencies of exchanges between actors; the more frequently a relation is used,
the more solid the line. There are sixteen gradations of line density, and these are
normalized so that the most frequently used relation always has a solid line and
the least often used relation is only sparsely dotted. The result of this DisplayNet
routine is a representation that is easily interpretable for relatively small networks
while still portraying a great deal of information. Because of this, I rarely opt to
store numerical output.

Crucial Routines

Of the routines described above, SeekExchange and NewOffers are most crucial for
determining the ultimate results from the simulations. SeekExchange controls the
partner-selection process, whereas NewOffers controls offer-revision strategies. As
one indication of their importance, these routines comprise less than 4% of the
program code, but they took at least as long to write as the remaining 96%.

535

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

Moreover, these two routines were the sites for the new assumptions that were
needed to compensate for the theory's inability to fully determine the program.

SeekExchange marks the beginning of every negotiation cycle. At the instant the
program engages this routine, each actor already knows its outgoing and incoming
offers for all of its relations. The problem at this point is to instruct actors how
to deal with their information. I had anticipated having many choices when it came
to programming concession strategies-that is, how actors modify their offers from
round to round. As obvious at it now seems in retrospect, it did not occur to me
that I would also have to devote a significant amount of time to devising another
algorithm for having actors arbitrate multiple offers.

One simplification assumes that actors cannot change any of their offers during
a round, even if there are multiple cycles within the round. A second checks to
see whether mutual offers add up to the number of available units in the pool.
Given a 24-unit pool, if actor A offers 12 units to B, and actor B offers to relinquish
only 10, we find that 10 + 12 = 22, two less than the 24 units available. A and
B thus cannot complete a deal this round. In contrast, when offers sum to or exceed
the pool, they are said to be complementary.

In every round, for each actor, SeekExchange determines and tallies a list of others
with whom an actor's offers are complimentary. Next, it sends that list to a routine
that returns it shuffled. Finally, given that M is the maximum number of deals
an actor can make in a given round, each actor designates the first M others on
its list as "others with which I will seek to exchange." Control then moves to the
CheckRecip routine. Here, the network is scanned to find pairs of related actors who
explicitly sought exchange from each other. Note that SeekExchange guarantees that
no actor will have more than M reciprocations, and so every reciprocated exchange-
seek is declared a completed deal. The number of resource units received by each
actor is noted.

SeekExchange and CheckRecip do not guarantee that all actors who can make deals
actually do so. For instance, consider the line of four actors A-B-C-D, each of
whom can make one deal per round. In the first round, suppose each actor offers
12-12 pool divisions with those to whom it is related. All offers are thus
complimentary. A has no choice but to seek exchange from B, and D from C.
However, suppose that when B's shuffled list comes back, A is at the top, and when
C's comes back, B is at the top. A and B complete a deal, but despite D's availability,
C is left hanging. This is where the cycling process enters. The Pull routine will
remove A and B from the list of active negotiators and determine that C and D
are still active in this round. The program loops back to SeekExchange and CheckRecip,
C and D make their deal, and Pull removes them from the active list. With the
active list now empty, the round is over.

This algorithm emerged from a trial-and-error process. There are probably
alternatives, and I recall my intuition telling me that some of them should have
been able to accomplish the same tasks in a simpler way. However, each alternative
that I tried ended up either introducing biases in actors' partner choices, being
at least as complex as the method described above, or operating less efficiently.

536

Developing an Exchange Network Simulator

D C B A1

A2

Figure 9
C May Exchange Twice

NewOffers modifies actors offers to others. It is enacted at the end of every
exchange round, after all deals have been made. Once again, there are many
possibilities for negotiation algorithms. After its initial development, some of my
work with X-Net involved exploring the effects of different strategies when enacted

by those in various network positions (e.g., Markovsky et al. 1993). In the early
stages, however, I wanted to introduce the simplest possible strategy that would

permit replication of laboratory experiments (Markovsky 1992). Generally, this
meant specifying a minimal strategy that would allow actors in advantageous
positions to profit from their structural advantages and that would prevent those
in disadvantageous positions from giving up and withdrawing.

The first thing I tried was to simply have actors raise their offers to others by
one unit if they were excluded from exchange on a previous round, and lower
their offers by a unit if they were not excluded. This method was used in simulations

reported by Cook et al. (1983). Although it is indeed simple, the strategy only works
if actors are permitted at most one exchange per round. For example, in Figure
9, if actor C is permitted two exchanges but only completes one deal with D and
cannot complete any with B, then C would have to be designated as excluded
from exchange. In the next round, C would then have to make a better offer to
D, despite having just successfully completed an exchange with D. Experiments
with human subjects show that positions like C are members of two domains
(Markovsky et al. 1988; the Appendix provides criteria for identifying domains).
In this case, C has equal power in the domain shared with D, and low power in
the domain shared with B and the As. Unless C is "intelligent" enough to somehow
make these distinctions, it will suffer not only in exchanges with B but in those
with D as well.

After exploring a variety of possibilities, I could devise only one algorithm that
was both useful and extremely simple: (1) If an actor makes all of the deals it seeks,
then it decreases all of its offers in the next round; (2) if the actor fails to make
all the deals it seeks, then the actor (a) decreases its offers to those with whom
it completed a deal and (b) increases its offers to those with whom it did not.
NewOffers thus satisfies two more of NET's scope conditions: SC2 and SC3 require
that inclusion in exchange leads to decreased offers, and exclusion leads to
increases. SC4 (accept best offer, randomly choose among ties) is not always

537

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

satisfied by X-Net decision strategy options. In the default strategy, for example,
actors select randomly among not only tied offers but any offers that complement
their own. They satisfice rather than maximize. Other user-selectable strategies do
fully satisfy SC4. In many cases, having a fairly large number of rounds
compensates for inefficiencies in the first strategy, and so long-run outcomes are
not differentially affected by these alternative partner-selection strategies. This is
not true in general, however. One of the major findings to emerge from X-Net is
that the sensitivity of exchange outcomes to the strategic behaviors of actors is
highly variable depending on structural features of the network.

With the addition of several "housekeeping" facilities, the completion of these
crucial routines resulted in a workable program. I then spent some time smoothing
out the user interface, developing the menu-generating routine, cleaning up the
program code, and inserting more descriptive comments for people who may wish
to read the program itself. I also created 20 or so starter networks that would appear
on the Select a Network menu, wrote some external documentation, and wrote
routines for calling up an online program description and for storing the numerical
simulation results in formatted data files.

Starting with a later version of the program, X-Net reads a list of program
parameter defaults from a separate text file. Thus, following editing instructions
given in this "XNET.PAR" file, the user may establish his or her own program
defaults. At the same time, I added the menuing system whereby, with the program
running, the user can change the value of any relation's resource pool, the
maximum exchanges per round for any position, and the number of rounds and
experiments. Further, I provided user-selectable alternative decision strategies for
actors. For example, rather than satisficing-that is, selecting randomly among
complementary offers regardless of their values-actors may instead first reach a
compromise in all of their relations by splitting the difference (making equal
compromises) when offers are initially noncomplementary. Then, depending on
the strategy chosen, actors either select randomly among their relations for explicit
exchange-seeks or rank the offers they receive and only seek exchange from others
offering the most. The effects of these relatively minor strategic changes have
proven to be nil in some networks but rather profound in others. Again, the
program is superb for illustrating the conclusion, carried forward from the first
BASIC exchange simulations, that neither structure nor strategy alone is sufficient
to predict exchange outcomes.

CONCLUSIONS: LINKING THEORY, SIMULATION, AND REALITY

While having a good deal of fun with this project, I have also been struggling with
deeper questions: What is X-Net's relevance to NET or vice versa, and what is its
connection to reality? It is a relatively simple matter to slap together a set of routines
and produce a dynamic system. Toward what ends such activities are useful (aside
from having fun) is another matter entirely.

538

Developing an Exchange Network Simulator

Mathematics provides a variety of analytic approaches for generating outcomes
("solutions") for models of systems. For social exchange networks, too, there are
alternatives to GPI (e.g., Bienenstock and Bonacich 1992; Friedkin 1992; Marsden
1983; Cook and Yamagishi 1992). Each provides a model that generates predictions
for resource distributions based on explicit assumptions or axioms. Simulations,
it may be argued, prove especially useful when such solutions cannot be achieved
or do not exist. Ironically, an analytic solution may be unavailable because our
knowledge about the phenomenon is poor or because our knowledge is so rich.
In the first case, the lack of knowledge prevents explication of a model. In the second
case, we want the model to be so complex that mathematical analysis is prohibited.

Traditionally, simulations attempt to model the essential components of a real-
world system, to illustrate the workings of the system over time, and to generate
summary information about the system and the behavior of its elements. To the
extent that the relevant variables and relationships among them have been
represented accurately, the simulation should generate outcomes that approximate
those of the system it models. When one or more of those connections is
probabilistic, then for a given set of starting conditions, over many runs the
simulation should yield correct predictions for the relative likelihoods of the various
possible outcomes.

This is, perhaps, the most common view of simulations, but it reveals only half
the picture. Instead of operating on elements and connections that represent
components of some real-world system, simulations may also operate on
components taken from one or more theoretical systems (Hanneman 1988; Fararo
and Hummon 1994). This need not be as divorced from reality as it sounds, for
the theories that are being simulated are themselves presumably interpretable for
empirical phenomena. What this amounts to is not so much a different type of
simulation as a different way of regarding simulations. Rather than a method for
examining empirical events and processes, simulations become a method for doing
theoretical analysis.

The distinction between theoretical analysis and empirical analysis was made
eminently clear by Jasso (1988). Whereas the latter involves primarily the
examination of empirical data, theoretical analysis includes, among other activities,
deriving logically implied consequences from a minimal set of premises. According
to Jasso, this is the activity of longest duration and comprises most of what a
mathematical theorist does. It is also a task that I believe may be greatly facilitated
by the use of computer simulations. I would even argue that as our theories become
more cumulative and sophisticated, simulations will become essential for exploring
their logical consequences prior to empirical testing-just as in a number of
branches of the physical sciences. In fact, as theoretical complexity increases and
the likelihood of devising analytic solutions diminishes, simulation becomes the
only tenable method for deriving testable theoretical consequences.

For me, the network exchange simulations illustrated ways that even a small-
scale simulation project can yield payoffs. First, I developed a deeper appreciation
of the beauty of simple and clear models that generate rich and varied

539

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

consequences. Sociology already has plenty of complex and nonparsimonious
models for explaining phenomena. To generate a broad range of predictions from
small, carefully selected sets of assumptions is an alternative with greater potential
for generality and cumulation (Markovsky 1994). Simulations thus provide a means
for exploring the range of a theory's explanations and predictions.

Additionally, translating even a relatively simple theory into a series of program
steps imposes a strict form of honesty and integrity upon the theory. For the same
reason that it is much easier to claim that your theory logically explains something
than it is to prove it, it is far easier to imagine a simulation than it is to construct one
that does something interesting. One is constantly forced to question theoretical
assumptions when fitting together the pieces of the simulation. To varying degrees,
we are probably all guilty of overstating the explanatory power of our favorite
theories. Simulations-as-translated-theories do only what they do, and nothing
more. Of course, nothing prevents an author from overgeneralizing his or her
simulation. The added rigor imposed by the logic of a structured programming
language should, however, ease the skeptic's task. The burden of proof is on the
theorist to show how real-world elements manifest elements of the simulation. If
the theory motivating the simulation is vague, such proof will not be possible.

Third, X-Net has led to insights that, in turn, have led to a broadening of the
scope and refinement of the predictions of Network Exchange Theory. For example,
several years ago, my colleague Michael Lovaglia was playing around with X-Net.
He noticed a phenomenon that I had also found in a variety of types of networks:
in certain networks whose positions were predicted by NET (the 1988 version) to
be equal in power, some network positions would consistently have small but
noticeable advantages over others. Whereas I had ignored those small differences
under the assumption they were artifacts or program bugs, Lovaglia believed that
the effect was real-that is, theoretically and empirically relevant. As it turned out,
we later discovered the structural basis for those "weak power" effects (see
Appendix, part 2) and went on to develop an analytic model and experimental
tests that indeed verified the weak-power predictions (Markovsky 1992;
Markovsky et al. 1993). Furthermore, predictions from the new analytic model
converged precisely on X-Net outcomes.

Finally, and perhaps most controversially, one use of simulations can be to help
us think less concretely about the world; to adopt a more abstracting and
generalizing mode as opposed to a more journalistic and interpretive one. Each
mode has its own interesting and useful products. My sense is, however, that
sociology-and certainly the world outside of sociology-already appreciate the
work of those who, for example, describe public opinions and beliefs. Less
appreciated, and arguably far more beneficial are the fruits of theoretical labor in
the social sciences-theories that explain the emergence of opinion and belief
systems, for example, rather than just describing them. We can learn much from
piecing together an artificial social process from scratch (Webster and Kervin 1971).
Some of what we learn may be useful for explaining American social phenomena,
social phenomena in other nations, or perhaps even phenomena in nations not

540

Developing an Exchange Network Simulator

yet existing or nations on other worlds. It is also quite a revelation to find that
emergent and multilevel phenomena need not be mystical constructs. We can
easily build our own, and these constructions teach us about emergent and
multilevel phenomena in vivo.

APPENDIX

Network Exchange Theory

Part 1: Graph-theoretic Power Index (gpi)

Definitions of Key Terms

actor: an entity with the capacity to observe conditions, make judgments,
and act upon them

position: a location that may be occupied by an actor
relation: an exchange potential between a pair of positions
networkE a set of positions, their relations, and the actors in positions
exchange: a mutually agreed-upon distribution of valued resources between

actors.
power: a structurally determined potential for obtaining relatively favorable

resource levels

Scope Conditions

(1) all actors use identical strategies in negotiating exchanges
(2) actors consistently excluded from exchanges raise their offers
(3) those consistently included in exchanges lower their offers
(4) actors accept the best offer they receive and choose randomly in deciding

among tied best offers
(5) each position is related to, and seeks exchange with, one or more other

positions
(6) exchange rounds begin with equal pools of positively valued resource units

in every relation
(7) two positions receive resources from their common pool if and only if they

exchange

Terms in GPI Calculations

i: position in the network
e: number of others with which an actor may exchange (once each) in an

exchange round
d: domain in the network. To calculate domain memberships, let i and j

indicate two positions, and an e+ position is one having more than e
relations. Given the set V of all positions on a path between i and j, i and
j are in the same domain if and only if there exists a path such that either
(1) V = {0}, or (2) all members of V are e* positions.

kc length of a path. For example, k = 3 for the path from A to D in network
A-B-C-D-E. Two paths from a position are nonintersecting when they

541

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4,1995

have only that position in common. Thus, C has two nonintersecting paths
of length 2: C-B-A and C-D-E.

h: the longest non-intersecting path from a position
midk: the number of nonintersecting paths of length k in domain d from posi-

tion i,
pid power index for position i in domain d.

Axioms

Axiom 1: pid(ed) =(1e) = (-l 1)(k-lmidk

Axiom 2: i seeks exchange with j if and only if pi > pj or if (pi - p) > (pi
-

pk)
for all k related to i.

Axiom 3: i and j can exchange only if each seeks exchange with the other.
Axiom 4: if i and j exchange, then i receives more resources than j if and only

if pi> pj.

Part 2: Likelihood of Incusion and "Weak Power"

This extension of NET builds on the GPI to generate refined predictions for weak
power differentials. Ongoing exchanges can produce temporary changes in the
number of an actor's available exchange partners, in the number of the partners'
partners, and so on, and this formulation is able to take into account temporary
power shifts that arise as some actors exchange in a given time period and leave
behind altered substructures.

Step 1: Apply Axiom 1 to calculate initial GPI values for each position.
Step 2: Apply Axiom 2 to determine which positions seek exchange with which

others.
Step 3: Apply Axiom 3 to identify and remove relations with nonmutual

exchange-seeks.
Step 4: Apply Axiom 1 to the resulting substructures.
Step 5: Repeat Steps 1-4 until the GPI values stabilize.
If GPI # 1 for any positions in the network (or a given substructure), then

resource distributions in the network (or substructure) will be ordered by GPI and
approach maximum differentiation.

If GPI = 1 for all positions in the network (or a given substructure), then resource
distributions in the network (or substructure) will be ordered by the likelihood
of i's inclusion in exchange.

The likelihood of inclusion, 14 is calculated as follows:
Under an equiprobability assumption, determine the probability that the
actor in position i and actors in each of its relations will mutually seek
exchange (where actors are allocated e exchange-seeks). L is then the sum
of these probabilities across i's relations.

Part 3: Exact Predictions for Weak Power Networks

This recent extension provides supplementary theoretical assumptions that
build on the weak power formulation. An alternative formulation has also been

542

Developing an Exchange Network Simulator

published by Skvoretz and Willer (1993); however, this version provides more
accurate predictions. With this extension, we can derive exact predictions for
exchange outcomes. It employs a modified resistance model for predicting
negotiation outcomes. Then, modifications to the resistance model account for the
assumed effects of (1) inclusion likelihoods, using the Resistance-Likelihood
Assumption, and (2) relative degree-the number of an actors' direct relations
relative to another's-using the Resistance-Degree Assumption. The Profit Theorems are
used to generate the actual predictions for exchange outcomes at each network
position.

P: total points available in resource pool
Pi: i's profit from exchange

Mi: i's maximum expectation or "best hope" for exchange profit
Ci: i's worst fear or "conflict outcome" for exchange profit
Ri: i's resistance to a given exchange profit Pi
ti: i's number of network ties

di: i's relative degree in the i-j relation:

Resistance Assumption: M,= - P
Pi -Ci

Equiresistance Assumption: In equilibrated i-j exchanges, Pj = P - P4 and Pi is
obtained by solving:

Mi-P M -Pj
Pi- Ci Pi - C

Resistance-Likelihood Assumption:

(a) Ci= li

P
(b) Mi= p(l +1)

Resistance-Degree Assumption:

ci= P2

Profit Theorems: From the Equiresistance and Resistance-Likelihood Assump-
tions, we derive:

P= (P + CQ- C) / 2

P,i = P- P,

Acknowledgment: Some of this research was facilitated by National Science
Foundation Grants SES 88-08289 and 90-22935. Most essential were the intellectual
contributions of Michael Lovaglia (who also provided comments on an earlier
draft), David Willer, and John Skvoretz.

543

SOCIOLOGICAL PERSPECTIVES Volume 38, Number 4, 1995

NOTES

1. The X-Net program described herein is available upon request at no charge.
2. After a series of rapid upgrades leading to version 4.5, Microsoft ceased improving on

QuickBASIC around 1988. Over the following two years, it was eclipsed by the more
powerful and expensive BASIC Professional Development System, a superset of
QuickBASIC with an identical interface. Shortly thereafter, BASIC PDS upgrades
stopped and the price of the last version (7.1) was greatly reduced, apparently to make
way for VisualBasic, designed to work in conjunction with Microsoft Windows.

REFERENCES

Bienenstock, Elisa Jayne, and Phillip Bonacich. 1992. "The Core as a Solution to Exclusionary
Networks." Social Networks 14: 231-243.

Cook, Karen S., Richard M. Emerson, Mary R. Gillmore, and Toshio Yamagishi 1983. "The
Distribution of Power in Exchange Networks: Theory and Experimental Results."
American Journal of Sociology 89: 275-305.

Cook, Karen S., and Toshio Yamagishi. 1992. "Power in Exchange Networks: A Power-
Dependence Formulation." Social Networks 14: 245-265.

Emerson, Richard. 1972. "Exchange Theory, Part II: Exchange Relations and Network
Structures." Pp. 58-87 in Sociological Theories in Progress, Volume 2, edited by Joseph
Berger, Morris Zelditch, Jr., and Bo Anderson. New York: Houghton-Mifflin.

Fararo, Thomas J., and Norman P. Hummon. 1994. "Discrete Event Simulation and
Theoretical Models in Sociology." Pp. 25-66 in Advances in Group Processes, Volume 11,
edited by Barry Markovsky, Karen Heimer, and Jodi O'Brien. Greenwich, CT: JAI Press.

Friedkin, Noah. 1992. "An Expected Value Model of Social Power: Predictions for Selected
Exchange Networks." Social Networks 14: 213-229.

Hanneman, Robert. 1988. Computer-assisted Theory Building. Newbury Park, CA: Sage.
Jasso, Guillermina. 1988. "Principles of Theoretical Analysis." Sociological Theory 6: 1-20.
Lovaglia, Michael, John Skvoretz, David Willer, and Barry Markovsky. In press. "Negotiated

Exchanges in Social Networks." Social Forces.
Lovaglia, Michael J., John Skvoretz, Barry Markovsky, and David Willer. 1995. "Assessing

Fundamental Power Differences in Exchange Networks: Iterative GPI." Current Research
in Social Psychology 1(2): 8-16, http://www.uiowa.edu/-~grpproc.

Markovsky, Barry. 1987. "Toward Multilevel Sociological Theories: Simulations of Actor and
Network Effects." Sociological Theory 5: 100-115.

Markovsky, Barry. 1992. "Network Exchange Outcomes: Limits of Predictability." Social
Networks 14: 267-286.

Markovsky, Barry. 1994. "The Structure of Theories." Pp. 3-24 in Group Processes: Sociological
Analyses, edited by Martha Foschi and Edward J. Lawler. Chicago: Nelson-Hall.

Markovsky, Barry, David Willer and Travis Patton. 1988. 'Tower in Exchange Networks."
American Sociological Review 53: 220-236.

Markovsky, B., J. Skvoretz, D. Willer, M. Lovaglia, and J. Erger. 1993. 'The Seeds of Weak
Power: An Extension of Network Exchange Theory." American Sociological Review 58:
197-209.

Marsden, Peter V. 1983. "Restricted Access in Networks and Models of Power." American
Journal of Sociology 88: 686-717.

544

Developing an Exchange Network Simulator 545

Skvoretz, John, and David Willer. 1993. "Exclusion and Power: A Test of Four Theories of
Power in Exchange Networks." American Sociological Review 58: 801-818.

Webster, Murray, Jr., and John B. Kervin. 1971. "Artificiality in Experimental Sociology."
Canadian Review of Sociology and Anthropology 8: 263-272.

Wilier, David. 1986. "Vulnerability and the Location of Power Positions." American Journal
of Sociology 92: 441-448.

Wilier, David, and Bo Anderson. 1981. Networks, Exchange and Coercion: The Elementary Theory
and its Applications. New York: Elsevier.

Wilier, David, and B. Markovsky. 1993. "Elementary Theory: Its Development and Research
Program." Pp. 323-363 in Theoretical Research Programs: Studies in the Growth of Theory,
edited by J. Berge. Stanford, CA: Stanford University Press.

	Article Contents
	p. [519]
	p. 520
	p. 521
	p. 522
	p. 523
	p. 524
	p. 525
	p. 526
	p. 527
	p. 528
	p. 529
	p. 530
	p. 531
	p. 532
	p. 533
	p. 534
	p. 535
	p. 536
	p. 537
	p. 538
	p. 539
	p. 540
	p. 541
	p. 542
	p. 543
	p. 544
	p. 545

	Issue Table of Contents
	Sociological Perspectives, Vol. 38, No. 4, Computer Simulations and Sociological Theory (Winter, 1995), pp. 457-579
	Volume Information [pp. 575 - 579]
	Front Matter
	Simulation Modeling and Theoretical Analysis in Sociology [pp. 457 - 462]
	Computer Simulation for Exploring Theories: Models of Interpersonal Cooperation and Competition [pp. 463 - 482]
	Neural Network Models of Religious Belief [pp. 483 - 495]
	The Dynamic Simulation of Control and Compliance Processes in Material Organizations [pp. 497 - 518]
	Developing an Exchange Network Simulator [pp. 519 - 545]
	Communication Technologies and Their Effect on Cultural Homogeneity, Consensus, and the Diffusion of New Ideas [pp. 547 - 571]
	Back Matter [pp. 573 - 574]

