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1 Introduction

Since Rogoff�s (1996) observation on the volatile yet extremely persistent real exchange rate,

the mean reversion to long-run purchasing power parity (PPP) has attracted considerable attention

from researchers. To measure persistence, the half-life of deviations from PPP has been frequently

employed as a quantity of interest. Summarizing the empirical evidence provided by Frankel (1986),

Diebold et al. (1991), and Lothian and Taylor (1996), Rogoff claimed the consensus of three- to

Þve-year half-lives of deviations. However, as recently pointed out by Taylor (2001), nonlinearity

might possibly be a source of large half-life estimates, since it could cause an upward bias if a linear

model were incorrectly employed in the estimation.

As emphasized by Obstfeld and Rogoff (2000), trade costs most likely play a central role in

the persistence of international price differentials, as well as in many other empirical puzzles in

international macroeconomics. With the inspiration of the trade cost models, estimating nonlinear

time series models has become a very popular approach among the recent empirical studies on the

real exchange rates dynamics (e.g., Michael et al., 1997; Obstfeld and Taylor, 1997; O�Connell, 1998;

Sarantis, 1999; Taylor and Peel, 2000; Baum et al., 2001; and Taylor et al., 2001). One difficulty

regarding the new approach is that, unlike the traditional linear approach, the interpretation of

results in terms of the persistence of PPP deviations is not straightforward, since the trade cost

models generally predict a slower rate of adjustment for smaller deviations from the steady state

level. One may report the exact half-life based on the nonlinear impulse response functions (IRFs)

to investigate the difference between linear and nonlinear results. However, since the nonlinear

IRFs depend on the history of the time series and the size of the shocks, such a half-life cannot be
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uniquely determined. In practice, summarizing all the information of many different half-lives is not

an easy task since evaluation of each nonlinear IRF usually requires computer-intensive simulation

method.

The purpose of this paper is to propose a simple persistence measure of PPP deviations based on

the largest Lyapunov exponent of the nonlinear time series. While this summary measure is certainly

not a unique measure of persistence, there seems to be several advantages in PPP applications. First,

the measure is simple in computation and does not rely on computer-intensive nonlinear IRFs. The

evaluation of estimation uncertainty can also be easily incorporated into the analysis. Second, it

is similar to a conventional linear half-life measure in the sense that it can be interpreted as the

half-lives of the locally linearized nonlinear processes. By deÞnition, it corresponds to the exact

half-life concept if the true process is linear. This measure is therefore convenient for assessing the

effect of nonlinearity in comparison with the previous results of linear half-lives of PPP deviations

available in the literature. Third, the measure is well-deÞned even in the case of a simple trade cost

model that predicts no price adjustment for some range of values. Fourth, the measure is estimated

using the nonparametric regression technique without specifying the parametric functional form.

In consequence, the method is robust to very general nonlinearity in the adjustment process.

The remainder of the paper is organized as follows: Section 2 reviews the half-life as a summary

persistence measure of PPP deviations for both linear and nonlinear models. Section 3 proposes a

nonparametric convergence measure based on the Lyapunov exponent. The Þnite sample properties

of the proposed measure are also investigated by a Monte Carlo simulation. In Section 4, the

proposed measure is applied to two different data sets, the annual historical exchange rate series
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originally constructed by Lee (1976), and the quarterly series during the current ßoat. Comparison

with the results from the conventional linear half-life measure and from the half-life based on

nonlinear IRFs is also provided. Some concluding remarks are presented in Section 5.

2 Half-Life of PPP Deviations

2.1 Linear Model

Let qt be the (log of the) real exchange rate series deÞned by

qt = st + p
∗
t − pt (1)

where st, p∗t , and pt are the (log of the) nominal exchange rate, the (log of the) foreign price level,

and the (log of the) domestic price level, respectively. Researchers are interested in investigating the

adjustment process of qt toward its long-run level q provided that the PPP holds in the long run.

The conventional approach is to employ a simple linear time series model, such as an autoregressive

(AR) model of order one,

qt = µ+ ρqt−1 + εt (2)

where 0 < |ρ| < 1, µ = (1− ρ)q and εt is a white noise. While the constant term is included in the

model, we can let µ = 0 by assuming the long-run level q = 0 without loss of generality.1 There are

1For absolute prices, long-run PPP (or the law of one price) implies that the mean of the process is zero. However,
for price indexes, a non-zero constant term is usually included in practice to allow for the heterogeneous base years.
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several different measures that characterize the mean reverting structure of the model. The most

informative strategy is to show the entire shape of the IRF of qt to a shock of size δ. For the AR(1)

example provided above, n steps ahead IRF is simply ρnδ. Alternatively, one can report a summary

measure of persistence, such as the cumulated IRFs, the sum of AR coefficients, and the half-life

of deviations. Since the half-lives are the most frequently used summary measure of persistence in

the literature of PPP, we will mainly focus on this type of measure in this paper.

The half-life of deviations is the number of years (for annual data) required for the deviation at

an initial level q0 to dissipate by half. Using the IRF of the AR(1) model above, ρhδ = δ/2 implies

the half-life of h = ln(1/2)/ ln ρ for ρ > 0. For the AR model of higher order, or other linear models,

with monotonic decreasing IRFs, the half-life is the value of h that satisÞes IRFh(δ) = δ/2 where

IRFh(δ) is the h steps ahead IRF of qt to the shock of size δ. It should be noted that the IRF

of a linear model does not depend on the initial level q0, and is a homogeneous function of order

one, IRFh(δ) = δIRFh(1). Therefore, the condition can be also rewritten as IRFh(1) = 1/2. This

independence of half-lives to q0 and δ is a very convenient feature of the linear time series model.

When the linear models have nonmonotonically decreasing IRFs, such as the hump-shaped

curve or oscillation, the notion of half-lives becomes somewhat ambiguous. A practically relevant

deÞnition would be the time required for IRFh(1) to be permanently below 0.5, or the smallest h

that satisÞes IRFn(1) < 1/2 for all n > h. There is a convenient approximation formula for the

AR(1) model above that allows for an oscillation with negative ρ. By using the absolute value of the

condition, |ρ|h = 1/2, yields the half-life of h = ln(1/2)/ ln |ρ|.2 Since the denominator ln |ρ| can be

2In PPP applications, the estimated AR(1) coefficients are almost always positive, suggesting no need for this
absolute value transformation.
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interpreted as the speed of adjustment (in absolute value), h becomes greater than unity only if the

speed of adjustment is slower than that of the AR(1) model with |ρ| = 0.5. As |ρ| approaches unity,

the speed of adjustment ln |ρ| approaches zero from the left, and half-life h approaches inÞnity,

implying the absence of convergence toward PPP. In practice, this half-life can be estimated by

bh = ln(1/2)

ln |bρ| (3)

where bρ is an OLS estimator of ρ in (2).
2.2 Nonlinear Model

The idea of nonlinear adjustment of deviations from PPP is mainly justiÞed by the presence

of trading costs, including transportation costs, insurance costs, information costs, tariffs, and

nontariff barriers. Theoretical models of exchange rates with trade costs have been developed by

many researchers, including Dumas (1992); Sercu et al. (1995); Betts and Kehoe (1999); and Sercu

and Uppal (2003), among others. These models generally predict the slower speed of adjustment

when the deviation from PPP is smaller. Recall that the speed of adjustment for a linear model (as

well as its half-life) is constant and does not depend on the initial level q0, or the size of shock δ.

The nonlinear model of PPP adjustment, in contrast, implies that the time needed for the initial

deviation δ to become δ/2 is shorter than the time for δ/2 to become δ/4, and both lengths now

depend on q0 and δ. This is the main reason why it causes some difficulties in using half-lives as a
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measure of persistence in the nonlinear model.3

To see this point more in detail, let us consider a following variation of smooth transition

autoregressive (STAR) models,

qt =


µ+ ρqt−1 + εt qt−1 > c

qt−1 − qt−1F (qt−1) + εt −c ≤ qt−1 ≤ c

−µ+ ρqt−1 + εt qt−1 < −c.

(4)

where F (qt−1) = 1− exp(−q2t−1), 0 < ρ < 1 and εt ∼iid N(0, σ2). c(> 0) is a threshold value that

satisÞes G0(c) = ρ where G(qt−1) = qt−1 − qt−1F (qt−1) = qt−1 − qt−1{1 − exp(−q2t−1)}. The linear

AR structure outside the (−c, c) band is introduced here to ensure that the speed of adjustment is

always positive. The intercept for the outside regime is selected as µ = G(c)−ρc. The inner regime

has a simple STAR structure with the speed of adjustment becoming slower as qt−1 approaches

the steady state level q = 0. The class of STAR models has been popularly employed in recent

studies on PPP, including Michael et al. (1997); Sarantis (1999); Taylor and Peel (2000); Baum et

al. (2001); and Taylor et al. (2001). To consider the half-life of (4), we Þrst need to deÞne the IRF

of a nonlinear model.

The notion of nonlinear IRFs is developed by Gallant et al. (1993); Potter (1995, 2000); and

Koop et al. (1996). In this paper, we focus on the IRFs of the class of nonlinear AR(1) model that

3Assumption of a constant speed of adjustment is still appropriate in many other applications. For example, in
nuclear physics, half-life is often used to characterize radioactive materials. Since the probability of decay of an atom
is constant, the proportion of survived nuclei in a Þxed period of time is constant. Therefore the half-life does not
depend on the total number of initial nuclei.
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can be written as

qt = m(qt−1) + εt (5)

where m(qt−1) is a nonlinear conditional mean function E(qt|qt−1). The n steps ahead conditional

mean function will be further denoted by mn(qt−1) = E(qt+n−1|qt−1). Then, the most frequently

used deÞnition of the nonlinear IRF is given by

IRFn(q0, δ) = mn(q0 + δ)−mn(q0). (6)

By analogy to the linear model, one can compute the exact half-life by obtaining h that satisÞes

IRFh(q0, δ) = δ/2 for a monotonic IRF, and by obtaining the smallest h that satisÞes IRFn(q0, δ) =

δ/2 for all n > h for a non-monotonic IRF. However, since the nonlinear IRF depends on the initial

value q0 (or past history) and the size of shock δ, the system does not have a unique value of half-life.

Table 1 shows the exact half-lives of the STAR model (4) with ρ = 0.5, σ = 0.1 and various com-

bination of q0 and δ. The threshold value under this speciÞcation is computed as c = 0.4426. Con-

ditional expectation required for the nonlinear IRF is obtained based on simulation using 100,000

iteration. Note that only the case with positive δ is reported in the table because of the symmetric

structure of our STAR model. In general, however, nonlinear IRF and the half-life depend on the

sign of the shock as well as its size. The table clearly shows the tendency of the shorter half-lives

when the shocks are the smaller and when the initial value is closer to the long-run level q = 0.

For a Þxed value of δ = σ, the half-life varies from 1 year with q0 = 0.5 to 9.2 years with q0 = 0
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reßecting the difference in the speed of adjustment of inner and outer regimes.

The variation of half-lives becomes even larger if we consider discrete transition rather than

smooth transition between the regimes. By setting F (qt−1) = 0 (and thus µ = G(c)−ρc = (1−ρ)c),

(4) becomes a threshold autoregressive (TAR) model which may be appropriate to describe the price

adjustment of a single traded good. The threshold parameter c in such a case can be interpreted as

the transaction cost in a simple �iceberg� model (e.g., see Sercu et al., 1995), and the model implies

the random walk (no price adjustment) inside the band.4 Table 2 shows the half-lives of the TAR

model using the same parameter values of ρ, σ, c, q0 and δ as in Table 1. For the shock of δ = σ,

the half-life now varies from 1 year to 23.4 years when initial value approaches from 0.5, a value in

the outer regime, to 0, a value in the inner regime.

The examples in Tables 1 and 2 show the inconvenient feature of the half-lives of the nonlinear

time series model, namely, the sensitivity of half-lives to the initial conditions and shocks. This

issue is closely related to the difficulty in summarizing the information contained in the nonlinear

IRFs produced by all the possible different histories and shocks, pointed out by Gallant et al.

(1993) and Potter (1995). One possibility is to report a table of half-lives similar to Tables 1 and 2.

For example, Taylor et al. (2001) reported tables of half-lives of their estimated STAR model for

several different δ�s and q0�s. However, reporting the full table may not be suitable for the purpose

of comparison of persistence in PPP deviations among different countries or different time periods.

Furthermore, each entry in table requires simulation and thus incorporating the effect of sampling

variability or estimation error becomes even more difficult. Another possibility is to report some

4This TAR model has been estimated by Obstfeld and Taylor (1997) and O�Connell (1998) and has been used in
Taylor (2001) to illustrate the problem of misspeciÞcation with the linear half-life measure.
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summary measures that can be use for direct comparisons. For example, Potter (2000) proposed

using a stochastic dominance of cumulated nonlinear IRFs to measure the persistence. In what

follows, we also use the latter approach and construct a summary measure of persistence suitable

for nonlinear PPP applications. In particular, we consider an alternative summary measure of

persistence based on the largest Lyapunov exponent of the time series.5 The notable feature of our

measure is that it is closely related to the notion of half-life reviewed in this section. This feature

seems to be advantageous for the comparison with the half-lives of linear model which were often

reported in the previous studies on PPP.

3 An Alternative Persistence Measure of PPP Deviations

3.1 Lyapunov Exponent of Nonlinear Time Series

One possibility of constructing a nonlinear summary measure analogous to the linear half-lives

is to evaluate the exact half-lives of the nonlinear model using the distribution of all possible

shocks and initial conditions (or history). While such a measure is certainly feasible, it requires

the evaluation of many nonlinear IRFs and thus is not appealing from the computational point of

view. Our goal is to construct a summary measure of a nonlinear model while maintaining the

simplicity in computation as in the case of the half-life of a linear model. To achieve this goal, let

us Þrst note that ρ in the deÞnition of linear half-life h = ln(1/2)/ ln |ρ| can be considered as the

Þrst derivative of the conditional mean function in (2). Furthermore, note that the Þrst derivative

5Potter (2000, footnote 10) also mentioned the possiblity of using the largest Lyapunov exponent as an alternative
to his summary measure based on nonlinear IRFs.
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of the conditional mean function m(qt−1) in (5) is proportional to the one step ahead nonlinear IRF

for small δ since

Dm(q0) = lim
δ→0

m(q0 + δ)−m(q0)
δ

= lim
δ→0

IRF1(q0, δ)

δ
.

By combining the two facts, we can introduce the notion of a local half-life at q0 deÞned by

h(q0) =
ln(1/2)

ln |Dm(q0)| . (7)

This is nothing but the half-life of a linear model from the linearization of (5) around the initial level

q0, and thus it corresponds to the linear half-life h under the linearity assumption Dm(q0) = ρ. A

summary measure of persistence may then be constructed by averaging the local half-life using the

distribution of the initial condition, or E[h(qt−1)]. Unfortunately, this average local half-life turns

out to be inappropriate for PPP applications. The Þnal columns of Tables 1 and 2 show the local

half-life h(q0) with various q0 using the same speciÞcation of STAR and TAR models considered

in the previous section. The local half-life is inÞnity with q0 = 0 for the STAR model and with

q0 ∈ (−c, c) for the TAR model. This outcome follows from the fact that half-life becomes inÞnity

under the absence of convergence with ρ = 1 in linear model, a situation causing some difficulties

in averaging the local half-lives. In the TAR example with ρ = 0.5, h(qt−1) = 1 if |qt−1| > c and

h(qt−1) = ∞ if |qt−1| ≤ c. Let 1{|qt−1|≤c} be an indicator function which takes one, if |qt−1| ≤ c,

and zero, otherwise. When E[1{|qt−1|≤c}] > 0 the average half-life is always inÞnity regardless of

the size of c and E[1{|qt−1|≤c}]. For a Þxed size of c, a preferable summary measure seems to be
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the one that associates higher persistence with a larger value of E[1{|qt−1|≤c}].
6 For this reason,

instead of using average of local half-lives, we use the average local speed of convergence to deÞne

the half-life-like measure of persistence. As will be seen below, our measure is closely related to the

Lyapunov exponent of time series.

The largest Lyapunov exponent is a measure of stability of a dynamic system in terms of the

sensitive dependence on initial conditions. For the nonlinear AR(1) model (5), the Lyapunov

exponent is deÞned by

λ ≡ lim
T→∞

T−1
TX
t=1

ln |Dm(qt−1)|. (8)

For stationary ergodic time series, λ is known to be unique and independent of the initial value q0

and can be replaced by E[ln |Dm(qt−1)|]. It should be noted that it can be deÞned not only for

the mean-reverting process but also for the non-mean-reverting case. Suppose two different initial

conditions q0 and q00 with small difference δ (q
0
0 = q0 + δ). Then, λ is the average growth rate of

difference between two trajectories {qt}∞t=0 and {q0t}∞t=0. The Lyapunov exponent is often used to

deÞne a chaotic system because two trajectories diverge for such a system. On the other hand, for

a stable system with a steady state, the Lyapunov exponent can be interpreted as an average rate

of convergence.

Recall that the both denominators in the linear half-life h and the local half-life h(q0) can be

interpreted as the speed of convergence ln |ρ| or ln |Dm(q0)|. By analogy, we may construct a

6Such a requirement for the persistence meausure may not be shared by others. For example, Taylor (2001)
deÞnes a half-life of the TAR model by using the half-life of the linear AR model in the outer regime, regardless of
the size of c or the time spent in the inner regime.
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measure of persistence by replacing the denominator with the average speed of convergence for a

stable nonlinear system, namely λ,

h∗ =
ln(1/2)

λ
. (9)

As in the case of the average local half-life, h∗ is identical to h under the linearity assumption, since

Dm(qt−1) = ρ for all t and λ = ln |ρ|. However, unlike the average local half-life, this measure is

well-deÞned even if there is a segment of no adjustment in the model, and thus is more useful in

PPP applications. As an example, let us again consider the TAR model with ρ = 0.5. Since the

model implies Dm(qt−1) = ρ = 0.5 outside the band and Dm(qt−1) = 1 inside the band, λ is the

average of ln(1/2) and 0(= ln 1) weighted by E[1{|qt−1|>c}] and E[1{|qt−1|≤c}] (which depends on c and

σ). Then the persistence measure become h∗ = 1/E[1{|qt−1|>c}] = 1/{1− E[1{|qt−1|≤c}]}. Therefore,

this measure implies higher persistence when qt spends more time in the no-adjustment regime.

3.2 Nonparametric Estimation of the New Persistence Measure

Let us now consider the estimation of h∗. If the speciÞcation of the system is completely known,

as in the case of the STAR model (4), a parametric approach such as the one employed by Bask

and de Luna (2002) should yield an efficient estimator of λ and thus h∗. In general, however, the

nonlinear AR model (5) can be estimated by using the nonparametric regression technique without

the speciÞcation of the functional form. To estimate λ from data, Nychka et al. (1992) have

proposed a sample analogue estimator based on the nonparametric method. Following this idea, we
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estimate h∗ by

bh∗ = ln(1/2)

T−1
PT

t=1 ln
¯̄̄dDm(qt−1)¯̄̄ (10)

where dDm(qt−1) is a nonparametric estimator of the Þrst derivative of m(qt−1) in (5) and T is the
sample size. With a choice of a nonparametric estimator that provides a consistent estimator of

λ, bh∗becomes a consistent estimator of h∗. Recall that h∗ is not an exact half-life for a certain δ
and q0. However, bh∗ converges to a well-deÞned, half-life-like measure of persistence and to a exact
half-life h when it is applied to the data generated from a linear model.

In principle, any nonparametric estimator that satisÞes the property above can be used for

the derivative estimation. In this paper, we employ a class of kernel-type regression estimators

called the local polynomial regression estimator. There are several advantages of local polynomial

regression over the simple Nadaraya-Watson regression estimator. First, it reduces the bias of the

Nadaraya-Watson estimator. Second, it adapts automatically to the boundary of design points and

no boundary modiÞcation is therefore needed. Third, and most importantly for our purpose, it is

superior to the Nadaraya-Watson estimator in the context of derivative estimation. In particular,

the local polynomial of order two, or local quadratic smoother, is preferable for the same reasons

for Þrst derivative estimation (see Fan and Gijbels, 1996, p.77).

It is now common practice to report the conÞdence intervals for bh in the linear model to consider
sampling variability. For example, to evaluate the precision of the half-life, Cheung and Lai (2000)

reported both asymptotic and bootstrap conÞdence intervals for bh while Kilian and Zha (2002) used
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Bayesian conÞdence intervals.7 In the empirical section, we also report the conÞdence interval for

the nonparametric measure bh∗ based on the asymptotic distribution of the local quadratic estimator
of the Lyapunov exponent derived in Shintani and Linton (2003). In Murray and Papell�s (2002)

study, they employed a median-unbiased estimator of ρ and reported that conÞdence intervals of

bh included inÞnity in many cases, which implies some possibilities of a unit root. For a unit root
process, the linear measure bh is consistent in the sense that half-life estimates diverge to inÞnity as
the sample size increases. In Shintani and Linton (2003), it is shown that the Lyapunov exponent

based on the local quadratic regression converges to zero when the true process is a random walk,

or m(qt−1) = qt−1 with an iid error in (5). This implies that bh∗ is also consistent in the sense that
it diverges to inÞnity for a unit root case.

Finally, we report the result of a small-scale Monte Carlo simulation designed to evaluate the

Þnite sample performance of the nonparametric estimator bh∗. We generate the artiÞcial data from
(4) with ρ = 0.5 and with the sample sizes T = 100 and 200. The true measure of persistence of

the model, h∗, is controlled by varying the dispersion parameter σ from 0.1 to 10.0. When σ is

as large as 10.0, the probability of being in the outer regime is 97%. Therefore, our half-life like

measure is 1.02 years, which is very close to the exact half-life of 1 year with a linear AR model

with ρ = 0.5. In contrast, when σ is as small as 0.1, the probability of being in the inner regime

becomes 97%. In such a case, because of the smooth transition within the inner regime, h∗ becomes

4.4 years implying, the higher persistence.

Table 3 shows the mean, median, and standard deviation of bh∗ using a local quadratic estimator
7ConÞdence intervals of half-lives of nearly integrated real exchange rates were also recently considered by Rossi

(2004).
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with the Gaussian kernel function based on 10,000 replications.8 In addition to the nonparametric

estimator bh∗, we also report the result with the conventional linear half-life bh based on the OLS
estimator bρ. Apparently, misspeciÞcation of a linear model generally implies inconsistency of bh as an
estimator of h∗. Nevertheless, there may be some cases in which bh works well as an approximation.
The results from the simulation can be summarized as follows.

First, the nonparametric estimator bh∗ performs well for various values of σ. While the distribu-
tion is somewhat skewed for the case of T = 100, both mean and median become very close to the

true h∗ for the case of T = 200 with a smaller standard deviation. Second, the linear estimator bh
performs better than bh∗ when σ is 10.0. This is expected as the model becomes almost linear and
h∗ is very close to h of a linear AR model. However, bh is biased upward as an estimator of h∗ when
the role of nonlinear adjustment becomes more important with smaller σ�s. This upward bias of

bh becomes even larger when the sample size increases from 100 to 200. This observation supports

Taylor�s (2001) claim that inappropriate linear speciÞcation may result in larger half-life estimates

if there is nonlinearity in the adjustment process. In the next section, we apply the nonparametric

measure to the data and reexamine the persistence of PPP deviations.

4 Empirical Results

Two different data sets are used for the analysis of persistence of PPP deviations that allows

for nonlinear adjustment. The Þrst data set is the long-horizon annual real exchange rate series

8We computed results with several different choices of the smoothing parameter for the nonparametric regression.
The one reported in table uses 0.45 times the range.

15



originally constructed by Lee (1976) and later extended by Murray and Papell (2002), using the

sample period 1900 to 1996. Countries under consideration are Canada, France, Italy, Japan, the

Netherlands, and the U.K. All the series are WPI-based real exchange rates with the U.S. dollar

used as the numeraire currency. The well-known caveat of using the long-horizon data is that it

includes both Þxed and ßoat exchange rate periods. The second data set we consider consists of the

real exchange rates under the current ßoat period, and it presumably suffers less from the effect of

the regime shift. We utilize the data used in Murray and Papell (2002) which consists of quarterly

CPI-based real exchange rates of twenty countries from 1973:1 to 1998:2.

Before computing the nonparametric measure of persistence, we Þrst apply a unit root test and a

nonlinear speciÞcation test to the two sets of real exchange rate series. When the standard Dickey-

Fuller test with a trend is used for each of six annual series, the unit root hypothesis is rejected

for three countries at the 5% signiÞcance level and for Þve countries at the 10% level. In contrast,

when the same test is applied to the quarterly series, a unit root is not rejected for all countries.

This Þnding is consistent with previous studies (e.g., Lothian and Taylor, 1996) that found that

longer span real exchange rate data reject the unit root hypothesis more frequently possibly because

of the higher power compared to the case with short period data.9 As another possibility of the

failure of rejecting the unit root, Taylor et al. (2001) reported the lack of power of univariate unit

root test when it is applied to the nonlinear mean-reverting processes. We then conduct Ramsey�s

(1969) regression speciÞcation error test (RESET) using a polynomial of order three to investigate

9Similar results are also obtained by applying Phillips and Perron�s (1988) semiparametric unit root test that
includes a trend using the QS kernel with the lag length selected by Andrews� (1991) procedure. For the annual
series, a unit root is rejected for four countries at the 5% level and for Þve countries at the 10% level. For the
quarterly series, a unit root can not be rejected for all countries.

16



the presence of nonlinearity in real exchange rates. When RESET is applied to the U.K., the only

country that failed to reject the unit root for annual data, the null hypothesis of linear speciÞcation

is rejected at the 5% level. For quarterly data, linearity is rejected for three countries at the 5%

signiÞcance level and for six countries at the 10% level. While the evidence is not very strong, there

are some possibilities that nonlinearity is playing a role in the adjustment of the real exchange

rates.10

Let us now turn to the nonparametric estimation of the half-life-like measure of convergence

using the real exchange rates. As in the previous section, the local quadratic regression with

the Gaussian kernel is employed to obtain the Þrst derivatives required for bh∗. The smoothing
parameter is selected by minimizing the residual squares criterion (RSC) given in Fan and Gijbels

(1996, p.118), which is known to be an optimal selection method for the local polynomial regression.

For the heteroskedasticity and autocorrelation consistent (HAC) variance estimation required for

the construction of the conÞdence band, we employ the QS kernel with a lag window parameter

selected by the optimal selection method of Andrews (1991). For the purpose of comparison, we

also compute two other measures of persistence, the conventional linear half-life based on OLS,

bh, and the exact half-life estimates based on the nonlinear IRFs with some particular values of
q0 and δ which is denoted by bh(q0, δ). The nonlinear IRFs required for the latter measure are
nonparametrically estimated without specifying the nonlinear functional form, as in the case for bh∗.
10Taylor et al. (2001) also suggest using the multivariate unit root test or cointegrating rank test for the purpose

of increasing the power of the test under the alternative of nonlinear model. When the cointegrating rank test of
Johansen (1991) with the null hypothesis of one unit root is applied to our real exchange rate data, test statistics are
2.40 for annual data and 4.27 for quarterly data, both of which are less than the 5% critical value of 9.24. In addition
to Johansen�s parametric test, we also employ a nonparametric cointegrating rank test proposed by Shintani (2001).
However, the test statstics are 13.56 for annual data and 0.80 for quarterly data, with the 5% critical value of 27.51,
again implying the failure of rejecting the unit root under the multivariate framework.
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To be more speciÞc, we use the local polynomial regression of order one, or local linear smoother,

to estimate two conditional mean functions in the deÞnition of nonlinear IRF (6).11 Then bh(q0, δ)
is obtained as the smallest h that satisÞes dIRF n(q0, δ) = δ/2 for all n > h where dIRFn(q0, δ) is
the nonparametric estimator of nonlinear IRF. For the starting value q0, we simply use the sample

average q. For the size of shock δ, we consider two cases, namely, a large shock 2σ and a small

shock 0.1σ with σ obtained from the residual of the nonparametric regression of (5). It should be

noted that all three measures considered here converge to h∗(= h) when the true process is linear.

For the annual data set, the estimated results of nonparametric persistence measure bh∗, the
linear half-life measure bh and the half-life measure bh(q0, δ) based on nonparametric nonlinear IRFs
are provided in Table 4. The 95 percent conÞdence intervals are also provided for both bh∗ and bh.12
On the whole, our nonparametric estimates of persistence do not differ much from the linear half-

lives except for the U.K. On one hand, quite similar values between the two measures are obtained

for Canada, France, and Italy. On the other hand, somewhat shorter half-lives are obtained with a

nonparametric measure for Japan and the Netherlands. It is interesting that the largest reduction

is observed in the case of the U.K. The half-life based on the conventional linear measure is 4.84

years. This number is indeed very close to the 4.6 years of half-life implied by Frankel�s (1986) study

of the long-horizon dollar/pound real exchange rates (see Rogoff, 1996, p. 656). By employing the

nonparametric measure, the number is reduced to 2.64 years with a substantially smaller conÞdence

11See Tschernig and Yang (2000), for example, on the nonparametric estimation of nonlinear IRFs. They employed
the local linear regression method to estimate IRFs of the nonlinear time series process that is more general than
the one considered in our paper.
12We compute the conÞdence intervals of bh∗ using the symmetric conÞdence interval in terms of Lyapunov exponent

obtained by Shintani and Linton (2003). Thus, we report a comparable conÞdence interval for the linear measure bh
based on the limit distribution of the rate of convergence ln |bρ| instead of that of AR parameter bρ.

18



interval.

Even if there is only a moderate difference between the bh∗ and bh in Table 4, it does not imply
that the adjustment process is well-approximated by the linear process. This point becomes clearer

if we look further at the shape of the local speed of adjustment, ln |dDm(qt−1)|, and the exact half-
lives based on nonlinear IRFs, bh(q0, δ). Figure 1 shows the estimated local speed of adjustment for
six countries. Evidently, none of them are ßat. More importantly, it shows faster adjustment when

the deviations from the long-run level are large. The notable fact is that we have not imposed any

parametric restriction to obtain a structure such as the STAR model. In addition, Table 3 shows

that four out of six countries have shorter half-lives with larger shocks based on nonparametrically

estimated nonlinear IRFs. These two results on faster convergence with larger deviations support

the view that the presence of trade costs plays an important role as a source of nonlinearity.

The results for the quarterly data set are reported in Table 5. For the conventional linear

measures, slightly shorter half-lives are obtained than those based on the long-horizon data. The

only exception is Canada with fairly long half-life point estimates. The median half-life based on

the linear measure is 2.52 years compared to 3.01 years obtained from the long-horizon annual

data. At the same time, the wide conÞdence intervals of linear measure show the uncertainty of the

point estimates. Indeed, inÞnity is included for seventeen out of twenty countries, which implies

the difficulties of excluding the possibility of a unit root. These observations are consistent with

the former Þndings in the literature as well as with the result of the unit root test in this paper.

Similar to the result with a linear measure, somewhat less persistent results compared to those

based on the long-horizon data are also observed with the nonparametric measure. However, the
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most notable Þnding is that the nonparametric method provides less persistent estimates than the

corresponding linear estimates for all the countries except Canada. The median of the nonparamet-

ric half-life-like measure is 1.44 years and the median of the difference between the nonparametric

and linear measure is 0.99 years (the average values and difference become 1.53 and 1.08 years,

respectively, when Canada is excluded). On average, about a 40 percent reduction in persistence

is observed by introducing nonlinearity into the adjustment process. With respect to the precision

of the point estimates, the conÞdence intervals of nonparametric measures are considerably shorter

than those for the linear half-lives. In some cases, 95 percent upper bounds for the nonparametric

measures are indeed lower than corresponding point estimates based on the linear measure. In con-

trast to the linear measure, inÞnity is excluded from all the conÞdence intervals of nonparametric

measure, again with the exception of Canada. The considerable difference between the bh∗ and bh
with quarterly data can be interpreted as an indication of the signiÞcant role of nonlinearity in the

persistence of deviation from PPP. This conjecture is also supported by bh(q0, δ) reported in the
same table, that shows the shorter half-lives with larger shocks for seventeen countries among the

total of twenty countries.

5 Conclusion

This paper introduced a nonparametric persistence measure of PPP deviations which allows for

general nonlinear real exchange rate adjustment. The measure utilizes the notion of the Lyapunov

exponent of the nonlinear time series and is simple in computation with no requirement of estimat-

ing the nonlinear IRFs. It can be interpreted as a half-life of locally linearized process, which is
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convenient for comparison with the linear half-life measure of persistence often used in the PPP lit-

erature. If the nonlinearity in the adjustment process is a possible pitfall in understanding the PPP

puzzle as discussed in Taylor (2001), our nonparametric measure seems to be a useful alternative

for evaluating the speed of adjustment.

The Þnite sample properties of our measure is found to be satisfactory, while the results are

based on a very limited experiment. An interesting empirical Þnding is obtained when the proposed

measure is applied to two different real exchange rates data sets. When the annual historical data

is used, the nonparametric method yields more than two years of reduction in the persistence of

U.K./U.S. real exchange rates compared to the linear half-life estimate of 4.84 years. When the

current ßoat data is used, a one-year reduction from the linear estimates is observed on average

in twenty countries. On the whole, the empirical results suggest a faster speed of mean-reversion

compared to the Þndings in previous studies that used linear assumption. Furthermore, the non-

parametric measure yields a shorter conÞdence interval than that of linear measure. In case of the

former, inÞnite half-lives are excluded from the intervals for almost all cases. The lower persistence

results obtained in this paper compared to the previous studies in the PPP literature may lessen the

problem of the PPP puzzle to some degree. While our nonparametric methods are not capable of

identifying the source of nonlinearity, the presence of trade costs seems to be a reasonable candidate.

We would like to conclude the paper by pointing out two possible directions of further analysis.

First, developing a similar nonlinear measure that can be applied to the panel analysis seems to

be useful since recent PPP studies often utilize the panel data (e.g., Frankel and Rose, 1996).

Second, instead of using the aggregated price index, applying the nonlinear persistence measure to
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the good-by-good international price differentials would be interesting given the fact several micro

studies reveal faster convergence at the individual price level (e.g., Crucini and Shintani, 2002, and

Goldberg and Verboven, 2004).
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Table 1
Half-Lives of the STAR Model Using
Nonlinear Impulse Response Functions

δ = kσ
σ = 0.1 σ → 0

k =5.0 4.0 3.0 2.0 1.0 0.5 0.1 k =1.0
q0 =0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.4 1.0 1.0 1.0 1.0 1.1 1.2 1.4 1.3
0.3 1.2 1.2 1.3 1.5 1.9 2.3 2.6 2.4
0.2 1.5 1.7 2.0 2.8 3.9 4.7 5.3 5.6
0.1 2.3 2.9 4.0 5.5 7.1 7.8 8.3 23.0
0 4.1 5.4 6.8 8.2 9.2 9.5 9.6 ∞

-0.1 6.2 7.5 8.5 9.2 9.2 8.9 8.6 23.0
-0.2 7.4 8.2 8.5 8.2 7.1 6.3 5.7 5.6
-0.3 7.4 7.5 6.8 5.5 3.9 3.2 2.8 2.4
-0.4 6.2 5.4 4.0 2.8 1.9 1.7 1.5 1.3
-0.5 4.1 2.9 2.0 1.5 1.1 1.0 1.0 1.0

Note: q0 is the initial value. δ is the size of a shock. c = 0.4426.
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Table 2
Half-Lives of the TAR Model Using
Nonlinear Impulse Response Functions

δ = kσ
σ = 0.1 σ → 0

k =5.0 4.0 3.0 2.0 1.0 0.5 0.1 k =1.0
q0 =0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.4 1.2 1.3 1.4 1.6 2.4 4.4 6.0 ∞
0.3 1.8 2.2 3.0 5.1 9.6 11.6 13.2 ∞
0.2 3.5 5.2 8.5 13.3 16.9 18.3 19.3 ∞
0.1 8.1 11.9 16.2 19.2 21.3 22.1 22.6 ∞
0 14.6 18.2 20.7 22.4 23.4 23.7 23.7 ∞

-0.1 19.3 21.4 22.7 23.4 23.4 23.2 22.8 ∞
-0.2 21.4 22.4 22.7 22.4 21.3 20.5 19.7 ∞
-0.3 21.4 21.4 20.7 19.2 16.9 15.3 13.9 ∞
-0.4 19.3 18.2 16.2 13.3 9.6 7.8 6.5 ∞
-0.5 14.6 11.9 8.5 5.1 2.4 1.0 1.0 1.0

Note: q0 is the initial value. δ is the size of a shock. c = 0.4426.
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Table 3
Finite Sample Performance of Persistence Estimators

of the STAR Model

σ 10.00 1.00 0.50 0.30 0.25 0.20 0.15 0.10
E
h
1{qt−1>|c|}

i
0.97 0.72 0.52 0.34 0.27 0.20 0.11 0.03

h∗ 1.02 1.24 1.51 1.91 2.12 2.45 3.04 4.40

(1) T = 100
Nonparametric Mean 0.92 1.14 1.40 1.77 1.96 2.26 2.76 3.74
Persistence Median 0.89 1.11 1.36 1.73 1.91 2.20 2.69 3.62
Measure (bh∗) Std. 0.25 0.31 0.37 0.47 0.53 0.62 0.80 1.23

Half-life Using Mean 1.00 1.27 1.61 2.13 2.41 2.85 3.60 5.11
Linear AR Model Median 0.97 1.23 1.57 2.07 2.34 2.76 3.48 4.89

(bh) Std. 0.25 0.32 0.40 0.54 0.63 0.78 1.09 1.89

(2) T = 200
Nonparametric Mean 0.97 1.21 1.51 1.93 2.16 2.51 3.12 4.38
Persistence Median 0.96 1.20 1.49 1.91 2.14 2.48 3.09 4.33
Measure (bh∗) Std. 0.18 0.22 0.27 0.34 0.38 0.45 0.59 0.93

Half-life Using Mean 1.01 1.29 1.66 2.21 2.51 2.99 3.83 5.60
Linear AR Model Median 1.00 1.28 1.63 2.18 2.47 2.94 3.78 5.50

(bh) Std. 0.18 0.22 0.28 0.38 0.44 0.55 0.76 1.32

Note: The smoothing parameter for the nonparametric estimator is 0.45×range.
10,000 replications.
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Table 4
Persistence of PPP Deviations
(Annual Data: 1900-1996)

Country Nonparametric Half-life Using Half-life Using
Persistence Measure Linear AR Model Nonlinear IRFs

(bh∗) (bh) (bh(q, δ))
95% CI 95% CI δ = 2σ 0.1σ

1. Canada 3.10 [2.09, 5.98] 3.03 [1.81, 9.37] 1.80 0.81
2. France 1.41 [1.08, 2.05] 1.36 [0.89, 2.87] 0.78 0.95
3. Italy 2.53 [1.53, 7.40] 2.47 [1.52, 6.61] 3.96 6.30
4. Japan 6.14 [3.78, 16.28] 6.50 [3.28, 426.50] 9.75 35.57
5. Netherlands 2.21 [1.50, 4.18] 2.99 [1.77, 9.62] 1.87 2.66
6. United Kingdom 2.64 [1.88, 4.40] 4.84 [2.58, 39.47] 2.67 1.95

Note: QS kernel with optimal lag window (Andrews,1991) is used to construct con-
Þdence intervals for the nonparametric measure.
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Table 5
Persistence of PPP Deviations under the Current Float

(Quarterly Data: 1973:1-1998:2)

Country Nonparametric Half-life Using Half-life Using
Persistence Measure Linear AR Model Nonlinear IRFs

(bh∗) (bh) (bh(q, δ))
95% CI 95% CI δ = 2σ 0.1σ

1. Australia 2.64 [1.52, 9.74] 3.42 [1.38, ∞] 2.53 0.13
2. Austria 1.19 [0.80, 2.29] 2.35 [1.16, ∞] 1.67 2.55
3. Belgium 2.16 [1.31, 6.03] 3.12 [1.40, ∞] 1.58 1.86
4. Canada 32.22 [5.99, ∞] 20.00 [3.16, ∞] 2.09 0.08
5. Denmark 0.98 [0.70, 1.61] 2.59 [1.23, ∞] 1.45 2.44
6. Finland 2.27 [1.33, 7.64] 2.84 [1.30, ∞] 1.11 1.22
7. France 0.94 [0.67, 1.54] 2.47 [1.17, ∞] 0.94 2.32
8. Germany 1.08 [0.70, 2.32] 2.36 [1.13, ∞] 1.52 1.95
9. Greece 1.28 [0.90, 2.16] 2.56 [1.22, ∞] 2.37 2.98
10. Ireland 0.91 [0.64, 1.61] 1.60 [0.85, 13.61] 1.23 2.30
11. Italy 1.75 [1.08, 4.57] 2.37 [1.14, ∞] 1.63 2.02
12. Japan 2.76 [1.78, 6.12] 3.78 [1.73, ∞] 2.55 3.48
13. Netherlands 1.53 [0.93, 4.45] 2.22 [1.09, ∞] 1.42 1.87
14. New Zealand 2.09 [1.34, 4.78] 2.25 [1.09, ∞] 1.11 0.37
15. Norway 0.44 [0.30, 0.83] 1.87 [0.95, 89.15] 0.91 2.78
16. Portugal 2.25 [1.42, 5.37] 3.85 [1.65, ∞] 3.07 3.54
17. Spain 2.54 [1.58, 6.41] 3.65 [1.63, ∞] 1.53 2.12
18. Sweden 0.43 [0.26, 1.21] 3.27 [1.43, ∞] 1.78 4.14
19. Switzerland 0.63 [0.47, 0.92] 1.19 [0.67, 4.94] 1.00 1.92
20. United Kingdom 1.35 [0.87, 3.00] 2.06 [1.02, ∞] 1.21 1.99

Note: See note of Table 4.
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 Figure 1. Local Speed of Convergence
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Note: Estimated local speed of convergence (ln|Dm(qt-1)|) versus the level of real exchange rate (qt-1). 


