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Abstract

A social choice function is robustly implemented if every equilibrium on every type space achieves

outcomes consistent with it. We identify a robust monotonicity condition that is necessary and

(with mild extra assumptions) su¢ cient for robust implementation.

Robust monotonicity is strictly stronger than both Maskin monotonicity (necessary and

almost su¢ cient for complete information implementation) and ex post monotonicity (necessary

and almost su¢ cient for ex post implementation). It is equivalent to Bayesian monotonicity on

all type spaces.
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1 Introduction

The objective of mechanism design is to construct mechanisms (or game forms) such that privately

informed agents have an incentive to reveal their information to a principal who seeks to realize a

social choice function. The revelation principle establishes that if any mechanism can induce the

agents to report their information, then the agents will also have an incentive to report truthfully

in the direct mechanism. Given the beliefs of the agents, the truthtelling constraints then reduce,

in the direct mechanism,- to the Bayesian incentive compatibility conditions.

There are two important limitations of Bayesian incentive compatibility analysis. First, the

analysis typically assumes a commonly known common prior over the agents�types. This assump-

tion may be too stringent in practice. In the spirit of the �Wilson doctrine�(Wilson (1987)), we

would like implementation results that are robust to di¤erent assumptions about what agents do

or do not know about other agents�types. Second, the revelation principle only establishes that

the direct mechanism has an equilibrium that achieves the social choice function. In general, there

may be other equilibria that deliver undesirable outcomes. We would like to achieve full imple-

mentation, i.e., show the existence of a mechanism all of whose equilibria deliver the social choice

function. We studied the �rst �robustness� problem in an earlier work, Bergemann and Morris

(2005b). The second �full implementation�problem has been the subject of a large literature. In

the incomplete information context, key full implementation references are Postlewaite and Schmei-

dler (1986), Palfrey and Srivastava (1989) and Jackson (1991). In this paper, we study �robust

implementation�where we require robustness and full implementation simultaneously.

Interim implementation on all type spaces is possible if and only if it is possible to implement

the social choice function using an iterative deletion procedure. We refer to the resulting notion as

rationalizable implementation. We �x a mechanism and iteratively delete messages for each payo¤

type that are strictly dominated by another message for each payo¤ type pro�le and message pro�le

that has survived the procedure. This observation about iterative deletion illustrates a general point

well-known from the literature on epistemic foundations of game theory (e.g., Brandenburger and

Dekel (1987), Battigalli and Siniscalchi (2003)): equilibrium solution concepts only have bite if we

make strong assumptions about type spaces, i.e., we assume small type spaces where the common

prior assumption holds.

We exploit this equivalence between robust and rationalizable implementation to obtain nec-

essary and su¢ cient conditions for robust implementation in general environments. Our necessity

argument is conceptually novel, exploiting the iterative characterization. The necessary conditions

for robust implementation are ex post incentive compatibility of the social choice function and a

condition - robust monotonicity - that is equivalent to requiring Bayesian monotonicity on every
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type space. Suppose that we �x a �deception�specifying, for each payo¤ type �i of each agent, a

set of types that he might misreport himself to be. We require that for some agent i and a type

misreport of agent i under the deception, for every misreport �0�i that the other agents might make

under the deception, there exists an outcome y which is strictly preferred by agent i to the outcome

he would receive under the social choice function for every possible payo¤ type pro�le that might

misreport �0�i; where this outcome y satis�es the extra restriction that no payo¤ type of agent

i prefers outcome y to the social choice function if the other agents were really types �0�i. This

condition - while a little convoluted - is easier to interpret than the interim (Bayesian) monotonicity

conditions.

The su¢ ciency argument requires only a modest strengthening of the necessary condition by

guaranteeing that the preference pro�le of each agent satis�es a (conditional) no total indi¤erence

property. Under this no total indi¤erence property, we show that the necessary conditions are also

su¢ cient for robust implementation. The su¢ cient conditions guarantee robust implementation in

pure, but more generally also in mixed strategies. Our robust analysis thus removes the frequent

gap between pure and mixed strategy implementation in the literature.

In this paper, we follow the classic implementation literature in allowing for arbitrary mecha-

nisms, including modulo and integer games. By allowing for these mechanisms, we are able to make

tight connections with the existing implementation literature. Allowing for these badly behaved

mechanisms does complicate our analysis: for example, we must allow for trans�nite iterated dele-

tion of best responses in our de�nition of rationalizable implementation. Given the complications

arising from in�nite mechanisms, we report new necessary conditions for robust implementation in

the context of �nite mechanisms. We also report how our earlier research can be used to show that

these necessary conditions are su¢ cient conditions for �nite mechanisms either in well-behaved,

but restricted, environments (Bergemann and Morris (2007)) or under a virtual rather than exact

implementation requirement (Bergemann and Morris (2008c)).

Our results extend the classic literature on Bayesian implementation due to Postlewaite and

Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991). We focus in this paper on

an indirect approach to extending these results. We �rst note the equivalence between robust

implementation and rationalizable implementation. We then exploit the equivalence to report a

direct argument showing that robust monotonicity is a necessary and almost su¢ cient condition for

rationalizable implementation. But in the light of the classic literature, we know that a necessary

and almost su¢ cient condition for robust implementation must be Bayesian monotonicity on all

type spaces. We con�rm and clarify our results by directly checking that robust monotonicity

is equivalent to Bayesian (or interim) monotonicity on all type spaces. Figure 1 gives a stylized

account of the connection between these alternative approaches.
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Robust

Implementation

Corollaries 1 and 2

()
Rationalizable

Implementation

Jackson (1991) m m Theorem 1

Bayesian Monotonicity

on All Types Spaces
()

Theorem 2

Robust

Monotonicity

Figure 1: Relationship between Bayesian and Robust Implementation / Monotonicity

In the implementation literature, it is a standard practice to obtain the su¢ ciency results

with augmented mechanisms. By augmenting the direct mechanism with additional messages, the

designer may elicit additional information about undesirable equilibrium play by the agents. Yet,

in many applied economic settings, single crossing or supermodular preference assumptions allow

direct implementation. In a companion paper, Bergemann and Morris (2007), we provide necessary

and su¢ cient conditions for robust implementation in the direct mechanism. The main results of

this paper apply to environments where each agent�s type pro�le can be aggregated into a one

dimensional su¢ cient statistic for each player and where the preferences are single crossing with

respect to this statistic. These restrictions incorporate many economic models with interdependence

in the literature. We show that besides an incentive compatibility condition, in this case the strict

ex post incentive compatibility condition, a contraction property which requires that there is not

too much interdependence in agents�types, together present necessary and su¢ cient conditions for

robust implementation in direct mechanisms.

The robust monotonicity condition is stronger than both the Maskin and the Bayesian monotonic-

ity conditions. In the context of robust implementation, it is then natural to ask whether a relax-

ation from the exact to the virtual implementation condition may lead to more permissive results.

In Bergemann and Morris (2008c) we characterize the necessary and su¢ cient conditions for ro-

bust virtual implementation. There we show that a social choice function can be robustly virtually

implemented if and only if the social choice function is ex post incentive compatible and robust

measurable. In this contribution, we note that robust measurability remains a necessary condition

for robust (exact) implementation, but it is not su¢ cient anymore.

The results in this paper concern full implementation. An earlier paper of ours, Bergemann and
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Morris (2005b), addresses the analogous questions of robustness to rich type spaces, but looking at

the question of partial implementation, i.e., does there exist a mechanism such that some equilib-

rium implements the social choice function. We showed that ex post (partial) implementation of

the social choice function is a necessary and su¢ cient condition for partial implementation on all

type spaces.1 This paper establishes that an analogous result does not hold for full implementation.

In a related paper, Bergemann and Morris (2008a), we therefore investigate the notion of ex

post implementation. The necessary and su¢ cient conditions there straddle the implementation

conditions for Nash and Bayesian-Nash respectively, as an ex post equilibrium is a Nash equilib-

rium at every incomplete information (Bayesian) type pro�le. However in contrast to the iterative

argument pursued here, the basic reasoning in Bergemann and Morris (2008a) invokes more tradi-

tional equilibrium arguments. By comparing the conditions for ex post and robust implementation,

it becomes apparent that robust implementation typically imposes additional constraints on the

allocation problem. In Bergemann and Morris (2008a), we showed that in single crossing environ-

ments, the same single crossing conditions which guarantee incentive compatibility also guarantee

full implementation. In contrast, in the aggregation environment discussed above, we show that

robust implementation imposes a strict bound on the interdependence of the preferences, which is

not required by the truthtelling conditions. A contraction mapping behind the iterative argument

directly points to the source of the restriction of the interaction term.

The remainder of the paper is organized as follows. Section 2 describes the formal environment

and solution concepts. Section 3 establishes necessary conditions for robust implementation in �nite

mechanisms. In addition, we present restrictions on the environment and weaker implementation

notions under which the necessary conditions are also su¢ cient conditions. Section 4 establishes

the relation between rationalizable and robust implementation in in�nite mechanisms. Section

5 reports our main result on the necessary and su¢ cient conditions for robust implementation.

Section 6 discusses extensions and variations of our implementation results, examining the role of

lotteries and pure strategies and the relationship with Nash equilibrium and ex post equilibrium

implementation. The appendix contains some additional examples.

1This result does not extend to social choice correspondences.
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2 Setup

2.1 The Payo¤ Environment

We consider a �nite set of agents, 1; 2; :::; I. Agent i�s payo¤ type is �i 2 �i. We write � 2 � =

�1 � � � � ��I . There is a set of outcomes Z. We assume that each �i and Z are countable.2 Each
individual has a von Neumann Morgenstern utility function ui : Z � � ! R. Thus we are in the
world of interdependent types, where an agent�s utility depends on other agents�payo¤ types. We

allow for lotteries over deterministic outcomes.3 Let Y , �(Z) and extend ui to the domain Y ��
in the usual way:

ui (y; �) ,
X
z2Z

y (z)ui (z; �) .

A social choice function is a mapping f : � ! Y . If the true payo¤ type pro�le is �, the planner

would like the outcome to be f (�). In this paper, we restrict our analysis to the implementation

of a social choice function rather than a social choice correspondence or set.4

2.2 Type Spaces

We are interested in analyzing behavior in a variety of type spaces, many of them with a richer

set of types than payo¤ types. For this purpose, we shall refer to agent i�s type as ti 2 Ti, where
Ti is a countable set. A type of agent i must include a description of his payo¤ type. Thus there

is a function b�i : Ti ! �i with b�i (ti) being agent i�s payo¤ type when his type is ti. A type of

agent i must also include a description of his beliefs about the types of the other agents; thus there

is a function b�i : Ti ! �(T�i) with b�i (ti) being agent i�s belief type when his type is ti. Thusb�i (t�i) [ti] is the probability that type ti of agent i assigns to other agents having types t�i. A type
space is a collection:

T =
�
Ti;b�i; b�i�I

i=1
.

2.3 Mechanisms

A planner must choose a game form or mechanism for the agents to play in order to determine the

social outcome. Let Mi be the countably in�nite set of messages available to agent i. We denote

2The countable types restriction clari�es the relation to the existing literature. We postpone until Section 6.3 a

discussion of what happens if we allow for uncountable payo¤ types, types and pure outcomes.
3The role of the lottery assumption and what happens when we drop it are discussed in Section 6.1.
4One reason why the extension to social choice correspondences is not straightforward is that, with social choice

correspondences, the incentive compatibility conditions that arise from requiring partial implementation are typically

weaker than ex post incentive compatibility, as shown by examples in Bergemann and Morris (2005b).
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the generic message by mi 2 Mi and let m 2 M = M1 � � � � �MI . Let g (m) be the distribution

over outcomes if action pro�le m is chosen. Thus a mechanism is a collection

M = (M1; :::;MI ; g (�)) ;

where g :M ! Y .

2.4 Solution Concepts

Now holding �xed the payo¤ environment, we can combine a type space T with a mechanismM to

get an incomplete information game (T ;M). The payo¤ of agent i if message pro�le m is chosen

and type pro�le t is realized is then given by

ui

�
g (m) ;b� (t)� .

A pure strategy for agent i in the incomplete information game (T ;M) is given by

si : Ti !Mi.

A (behavioral) strategy is given by

�i : Ti ! �(Mi) .

The objective of this paper is to obtain implementation results for interim, or Bayesian Nash,

equilibria on all possible types spaces.5 The notion of interim equilibrium for a given type space T
is de�ned in the usual way.

De�nition 1 (Interim equilibrium)

A strategy pro�le � = (�1; :::; �I) is an interim equilibrium of the game (T ;M) if, for all i, ti and

mi with �i (mijti) > 0,

X
t�i2T�i

X
m�i2M�i

0@Y
j 6=i

�j (mj jtj)

1Aui

�
g (mi;m�i) ;b� (t)� b�i (t�i) [ti]

�
X

t�i2T�i

X
m�i2M�i

0@Y
j 6=i

�j (mj jtj)

1Aui

�
g
�
m0
i;m�i

�
;b� (t)� b�i (t�i) [ti]

for all m0
i.

5We label these �interim�equilibria rather than �Bayesian�equilibria in light of the fact that our type space does

not necessarily have a common prior.
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Requiring "robust" implementation, i.e., for "all type spaces", will push the solution concept

in the direction of rationalizability. Consequently we de�ne a message correspondence pro�le S =

(S1; :::; SI), where each

Si : �i ! 2Mi (1)

and we write S for the collection of message correspondence pro�les. The collection S is a lattice
with the natural ordering of set inclusion: S � S0 if Si (�i) � S0i (�i) for all i and �i. The largest

element is S =
�
S1; :::; SI

�
, where Si (�i) = Mi for each i and �i. The smallest element is S =

(S1; :::; SI), where Si (�i) = ? for each i and �i.
We de�ne an operator b to iteratively eliminate never best responses. To this end, we denote

the belief of agent i over message and payo¤ type pro�les of the remaining agents by

�i 2 �(M�i ���i) :

The operator b : S ! S is now de�ned as:

bi (S) [�i] =

8>>>>>>>>>><>>>>>>>>>>:
mi 2Mi

����������������
9�i s.th.:

(1) �i (m�i; ��i) > 0) mj 2 Sj (�j) ; 8 j 6= i;

(2)

P
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i))

�P
m�i;��i

�i (m�i; ��i)ui (g (m0
i;m�i) ; (�i; ��i)) ; 8m0

i 2Mi;

9>>>>>>>>>>=>>>>>>>>>>;
:

(2)

We observe that b is increasing by de�nition: i.e., S � S0 ) b (S) � b (S0). By Tarski�s �xed

point theorem, there is a largest �xed point of b, which we label SM. Thus (i) b
�
SM

�
= SM and

(ii) b (S) = S ) S � SM. We can also construct the �xed point SM by starting with S - the

largest element of the lattice - and iteratively applying the operator b. If the message sets and

types are �nite, we have

SMi (�i) ,
\
n�1

bi
�
bn
�
S
��
[�i] .

But because the mechanism M may be in�nite, trans�nite induction may be necessary to reach

the �xed point.6 It is useful to de�ne

SM;k
i (�i) , bi

�
bk�1

�
S
��
[�i] ;

6Lipman (1994) contains a formal description of the trans�nite induction required (for the case of complete

information, but nothing important changes with incomplete information). As he notes �we remove strategies which

are never a best reply, taking limits where needed�.
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again using trans�nite induction if necessary. Thus SMi (�i) are the set of messages surviving

(trans�nite) iterated deletion of never best responses. SMi (�i) is the set of messages that type �i

might send consistent with knowing that his payo¤ type is �i, common knowledge of rationality

and the set of possible payo¤ types of the other players, but no restrictions on his beliefs and higher

order beliefs about other types.

If message sets are �nite (or compact), a well known duality argument implies that never best

responses are equivalent to strictly dominated actions. However, the equivalence does not hold

with in�nite (non-compact) message sets.7 In a compact message analysis, Chung and Ely (2001)

consider a version of this solution concept in an incomplete information mechanism design context

with dominated (not strictly dominated) messages deleted at each round. We observe that the

solution concept de�ned through the iterative application of the operator b is weaker than the

notion of interim rationalizability for a given type space T .8 Under b, every agent i is allowed to
hold arbitrary beliefs about ��i and is not restricted to a particular posterior distribution over

��i. On the other hand, if the type space T were the universal type space, then SMi (�i) would be

equal to the union of all interim rationalizable actions of agent i over all types ti 2 Ti whose payo¤
type pro�le coincides with �i, or b�i (ti) = �i. We refer to SMi (�i) as the rationalizable messages of

type �i of agent i in mechanismM.

2.5 Implementation

We now de�ne the notions of interim, robust and rationalizable implementation.

De�nition 2 (Interim Implementation)

Social choice function f is interim implemented on type space T by mechanism M if the game

(T ;M) has an equilibrium and every equilibrium � of the game (T ;M) satis�es

� (mjt) > 0) g (m) = f
�b� (t)� .

We note that a tradition in the implementation literature commonly restricts attention to pure

strategy equilibria, but we allow mixed strategy equilibria.

7The following simple example (suggested to us by Andrew Postlewaite) illustrates the non-equivalence. Players

1 and 2 each choose a non-negative integer, k1 and k2 respectively. The payo¤ to player 1 from k1 = 0 is 1. The

payo¤ to player 1 from action k1 � 1 is 2 if k1 > k2, 0 otherwise. For any belief that player 1 has about 2�s actions,
there is a (su¢ ciently high) action from player 1 that gives him a payo¤ greater than 1. Thus action 0 is never a best

response for player 1. However, for any mixed strategy of player 1, there is a (su¢ ciently high) action of player 2

such that action 0 is a better response for player 1 than the mixed strategy. Thus action 0 is not strictly dominated.
8For the notion of interim rationalizability, see Battigalli and Siniscalchi (2003) and Dekel, Fudenberg, and Morris

(2007).
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De�nition 3 (Robust Implementation)

Social choice function f is robustly implemented by mechanism M if, for every T , f is interim
implemented on type space T by mechanismM. Social choice function f is robustly implementable

if there exists a mechanismM such that f is robustly implemented by mechanismM.

We observe that the notion of robust implementation requires that we can �nd a mechanism

M which implements f for every type space T . A weaker requirement would be to ask that for

every type space T there exists a, possibly di¤erent, mechanism M such that f is implemented.

This weaker notion would still lead to the same necessary condition as the stronger implementation

version we pursue here, and we believe that it would not lead to a substantial change in the

su¢ ciency conditions either.

The notion of robust implementation requires that a social choice function f can be interim

implemented for all type spaces T . As we look for necessary and su¢ cient conditions for robust
implementation, conceptually there are (at least) two approaches to obtain the conditions.

One approach would be to simply look at the interim implementation conditions for every

possible type space T and then try to characterize the intersection or union of these conditions for
all type spaces. This is the approach we initially pursued, and it works in a brute force kind of

way. In Section 6.1, we review what happens under this approach.

But we focus our analysis on a second, more elegant, approach. We �rst establish an equivalence

between robust and "rationalizable implementation" and then derive the necessary conditions for

robust implementation as an implication of rationalizable implementation. The advantage of the

second approach is that after establishing the equivalence, we do not need to argue in terms of large

type spaces, but rather derive the results from a novel argument using the iterative elimination

process.

De�nition 4 (Rationalizable Implementation)

Social choice function f is implemented in rationalizable strategies by mechanism M if, for all

�, SM (�) 6= ? and if for all � and m; m 2 SM (�)) g (m) = f (�).

We now report a formal epistemic argument that relates the rationalizable messages to the set

of messages that might be played in any equilibrium on any type space.

Proposition 1 (Rationalizable Actions)

mi 2 SM (�i) if and only if there exists a type space T , an interim equilibrium � of the game

(T ;M) and a type ti 2 Ti such that (i) �i (mijti) > 0 and (ii) b�i (ti) = �i.
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Proof. ()) Suppose m�
i 2 SM (��i ). Now consider the following type space T de�ned through:

Ti =
�
(mi; �i)

��mi 2 SMi (�i)
	
:

Let b�i (mi; �i) , �i.

By (2), we know that for each mi 2 SMi (�i), there exists �
mi;�i
i 2 �(M�i ���i) such that:

�mi;�i
i (m�i; ��i) > 0) mj 2 SMj (�j) for each j 6= i;

andX
m�i;��i

�mi;�i
i (m�i; ��i)

�
ui (g (mi;m�i) ; (�i; ��i))� ui

�
g
�
m0
i;m�i

�
; (�i; ��i)

��
� 0; 8m0

i 2Mi.

Let b�i (m�i; ��i) [mi; �i] , �mi;�i
i (m�i; ��i) .

Now by construction, there is a pure strategy equilibrium s with si (mi; �i) = mi. But now

si (m
�
i ; �

�
i ) = m�

i and b� (m�
i ; �

�
i ) = ��i .

(() Suppose there exists a type space T , an equilibrium � of (T ;M), and m�
i 2Mi and t�i 2 Ti

such that �i (m�
i jt�i ) > 0 and b�i (t�i ) = ��i . Let

Si (�i) =
n
mi : �i (mijti) > 0 and b�i (ti) = �i for some ti 2 Ti

o
.

Now interim equilibrium conditions ensure that b (S) � S. Thus S � SM. Thusm�
i 2 SMi

�b�i (t�i )�,
which concludes the proof.

Brandenburger and Dekel (1987) showed an equivalence for �nite action complete information

games between the set of actions surviving iterated deletion of strictly dominant actions and the

set of actions that could be played in a subjective correlated equilibrium. Proposition 1 is a

straightforward generalization of Brandenburger and Dekel (1987) to incomplete information and

in�nite actions. The in�nite action extension (for complete information) was shown in Lipman

(1994). The �nite action incomplete information extension is reported in a recent paper of Battigalli

and Siniscalchi (2003) (following an earlier analysis in Battigalli (1999)).

3 Finite Mechanisms

A complicating element in using the relationship between equilibrium strategies and rationalizable

strategies in the implementation context is the fact that the augmented mechanisms often have
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in�nite message spaces and that best responses may not exist. These complications are inherent to

the entire implementation literature and we therefore have to carefully address these issues before we

establish the implementation results. In this section we restrict attention to �nite mechanisms, i.e.

where each Mi is �nite and we extend the argument to in�nite mechanisms in the next section. We

note that all the results in this section will extend to more general �well-behaved�mechanisms (e.g.,

compact mechanism or mechanisms where best responses always exist as in Abreu and Matsushima

(1992b)).

With �nite mechanisms, proposition 1 immediately implies an equivalence between robust and

rationalizable implementation.

Corollary 1 (Equivalence)

Social choice function f is robustly implemented by mechanismM if and only if it is rationalizably

implemented by mechanismM:

We now establish necessary conditions for robust implementation which use the equivalence

between robust and rationalizable implementation.

3.1 Ex Post Incentive Compatibility

The following ex post incentive compatibility condition is a necessary condition for robust truthful

(or partial) implementation as established in Bergemann and Morris (2005b).

De�nition 5 (EPIC)

Social choice function f satis�es ex post incentive compatibility (EPIC) if

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
;

for all i, �i, �0i and ��i.

In the context of robust (full) implementation, we require a strict version of the ex post incentive

compatibility conditions.

De�nition 6 (Semi-Strict EPIC)

Social choice function f satis�es semi-strict ex post incentive compatibility (semi-strict EPIC) if,

for each i, �i, �0i, ��i,

ui (f (�i; ��i) ; (�i; ��i)) > ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
,

if there exists �0�i 2 ��i such that f
�
�i; �

0
�i
�
6= f

�
�0i; �

0
�i
�
:
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The necessity of the semi-strict version of ex post incentive compatibility now follows directly

from the conditions imposed by rationalizable implementation.

Proposition 2 (Necessity of Semi-Strict EPIC)

If social choice function f is robustly implementable by a �nite mechanism, then f satis�es semi-

strict EPIC.

Proof. If mechanism M robustly implements f , then, for each i, there exists m�
i : �i ! Mi

such that

g (m� (�)) = f (�) and m� (�) 2 SM (�) ;

(we can simply let m�
i (�i) be any element of S

M
i (�i)).

Suppose semi-strict EPIC fails. Then there exists i, � and �0 such that:

f
�
�0
�
6= f

�
�i; �

0
�i
�

(3)

and

ui
�
f
�
�0i; ��i

�
; �
�
� ui (f (�) ; �) . (4)

Now (4) implies that:

ui
�
g
�
m�
i

�
�0i
�
;m�

�i (��i)
�
; (�i; ��i)

�
= ui

�
f
�
�0i; ��i

�
; �
�

� ui (f (�) ; �)

= ui
�
g
�
m�
i (�i) ;m

�
�i (��i)

�
; (�i; ��i)

�
.

Since m�
i (�i) 2 SMi (�i), this implies m�

i

�
�0i
�
2 SMi (�i). But now

f
�
�i; �

0
�i
�
= g

�
m�
i

�
�0i
�
;m�

�i
�
�0�i
��
= f

�
�0
�
,

contradicting (3).

Next we present two related, yet distinct, monotonicity conditions which are at the core of the

robust implementation results.

3.2 Robust Monotonicity

To understand the robust monotonicity condition, it is useful to �rst think about agents playing

the direct mechanism. In the direct mechanism, an agent i may or may not report truthfully. A

deception is a set-valued pro�le � = (�1; :::; �I), where

�i : �i ! 2�i
�
?;

13



with �i 2 �i (�i) for all i and all �i. A deception of agent i with payo¤ type �i is a set of possible
reports by agent i. By de�nition, a deception of payo¤ type �i includes, but is not restricted to, �i

itself.

De�nition 7 (Acceptable / Unacceptable Deception)

A deception is acceptable if �0 2 � (�) ) f
�
�0
�
= f (�). A deception is unacceptable if it is not

acceptable.

In this language, the �truthtelling�deception, de�ned by ��i (�i) , �i for all �i is an acceptable

deception. Other deceptions of agent i may also be acceptable if the social choice function does not

vary with respect to some subset of reports of agent i for all type pro�les of the other agents. The

inverse mapping of a deception �i represents the set of true type pro�les �i which could lead to a

report �0i and we write

��1i
�
�0i
�
,
�
�i
���0i 2 �i (�i)	 :

A �robust monotonicity� condition is key to our main result. In the direct mechanism, where

agents other than i report themselves to be types ��i, agent i can obtain outcomes f
�
�0i; ��i

�
for

any �0i. But once we allow augmented mechanisms, we could conceivably o¤er agent i a larger set of

lotteries if he reports deviant behavior of his opponents. We need to identify, for any given report

��i, the set of lotteries with the property that whatever agent i�s actual type, he would never prefer

such an allocation to what he would obtain under the social choice function if other agents were

reporting truthfully. Thus:

Yi (��i) ,
�
y 2 Y

��ui �y; ��0i; ��i�� � ui
�
f
�
�0i; ��i

�
;
�
�0i; ��i

��
for all �0i 2 �i

	
. (5)

Henceforth, we refer to the set Yi (��i) as the reward set (for agent i).

Suppose now that it was common knowledge that in the direct mechanism, type �i of agent i

will send a report �0i 2 �i (�i). If � is acceptable, we would know that f was being implemented.

But if � is unacceptable, we must �nd a type of some agent who is prepared to report that other

agents are misreporting. But for the �whistle-blower�who is going to report that we are in a bad

equilibrium, we cannot know what he believes about the types of the other agents, nor can we know

what message he expects to hear except that it is a message consistent with the deception. We

thus have to allow for all possible beliefs  i of agent i over payo¤ types ��i 2 ��i consistent with
a report �0�i from a given deception pro�le �, or

 i 2 �
�
��1�i

�
�0�i
��
.

Finally, the reward that he is o¤ered must not mess up the truth-telling behavior in the good

equilibrium. This gives the following condition:

14



De�nition 8 (Dual Robust Monotonicity)

Social choice function f satis�es dual robust monotonicity if, for every unacceptable deception �,

there exist i, �i, �0i 2 �i (�i) such that, for all �0�i 2 ��i and  i 2 �
�
��1�i

�
�0�i
��
, there exists y 2 Y

such that: X
��i2��1�i (�

0
�i)

 i (��i)ui (y; (�i; ��i)) >
X

��i2��1�i (�
0
�i)

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
(6)

and for all �00i 2 �i:
ui
�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
� ui

�
y;
�
�00i ; �

0
�i
��
: (7)

Social choice function f satis�es dual strict robust monotonicity if for all �00i with f
�
�00i ; �

0
�i
�
6= y

the inequality (7) is strict.

We call this the �dual�version of robust monotonicity because, in the special case where the

pure outcome space Z and payo¤ type spaces �i are �nite, dual robust monotonicity can be given

a simpler expression.

De�nition 9 (Robust Monotonicity)

Social choice function f satis�es robust monotonicity if, for every unacceptable deception �, there

exist i, �i, �0i 2 �i (�i) such that, for all �0�i 2 ��i there exists y such that for all ��i 2 ��1�i
�
�0�i
�
:

ui (y; (�i; ��i)) > ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
and for all �00i 2 �i:

ui
�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
� ui

�
y;
�
�00i ; �

0
�i
��
: (8)

Social choice function f satis�es strict robust monotonicity if for all �00i with f
�
�00i ; �

0
�i
�
6= y the

inequality (8) is strict.

The equivalence of robust monotonicity and dual robust monotonicity when the pure outcome

space Z and payo¤ type spaces �i are �nite is established in Lemma 2 in the appendix.

Proposition 3 (Necessity of Dual Strict Robust Monotonicity)

If social choice function f is robustly implementable by a �nite mechanism, then f satis�es dual

strict robust monotonicity.

Proof. Fix an unacceptable deception �. Let bk be the largest k such that for every i, �i and
�0i 2 �i (�i),

SMi
�
�0i
�
� SM;k̂

i (�i) .
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We know that such a bk exists because Sk̂i \ SMi �
�0i
�
= SMi

�
�0i
�
and, since M implements f , we

must have SMi (�i) \ SMi
�
�0i
�
= ?. Now we know that there exists i and �0i 2 �i (�i) such that

SM;k̂+1
i (�i) \ SMi

�
�0i
�
6= SMi

�
�0i
�
.

Let bmi 2 SM;k̂
i (�i) \ SMi

�
�0i
�
,

and bmi =2 SM;k̂+1
i (�i) \ SMi

�
�0i
�
.

Since message bmi gets deleted for �i at round bk + 1, we know that for every �i 2 �(M�i ���i)
such that

�i (m�i; ��i) > 0) mj 2 SM;k̂
j (�j) for all j 6= i,

there exists m�
i such thatX

m�i;��i

�i (m�i; ��i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
m�i;��i

�i (m�i; ��i)ui (g (bmi;m�i) ; (�i; ��i)) .

Let bmj 2 SMj
�
�0j
�
;

for all j 6= i. Now the above claim remains true if we restrict attention to distributions �i putting

probability 1 on bm�i. Thus for every  i 2 �(��i) such that

 i (��i) > 0) bmj 2 SM;k̂
j (�j) for all j 6= i,

there exists m�
i such thatX

��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui (g (bmi; bm�i) ; (�i; ��i)) .

But bm 2 SM
�
�0
�
, so (sinceM robustly implements f), g (bmi; bm�i) = f

�
�0
�
. Also observe that if

�0�i 2 ��i (��i), then bm�i 2 SM;k̂
�i (��i). Thus for every  i 2 �

�
��1�i

�
�0�i
��
, there exists m�

i such

that X
��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
,

which establishes the reward inequality, (6), of dual strict robust monotonicity.

Now suppose the incentive inequalities, (7), are not satis�ed strictly, and hence:

ui

�
g (m�

i ; bm�i) ;
�e�i; �0�i�� � ui

�
f
�e�i; �0�i� ;�e�i; �0�i��
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and g (m�
i ; bm�i) 6= f

�e�i; �0�i�. Now, for any
mi 2 argmax

m0
i

ui

�
g
�
m0
i; bm�i

�
;
�e�i; �0�i�� , (9)

since bm�i 2 SMi
�
�0�i
�
, we must have mi 2 SMi

�e�i� and thus g (mi; bm�i) = f
�
�i; �

0
�i
�
. Thus from

(9) we also know that m�
i achieves the maximum:

m�
i 2 argmax

m0
i

ui

�
g
�
m0
i; bm�i

�
;
�e�i; �0�i��

and, for all e�i, if
ui

�
g (m�

i ; bm�i) ;
�e�i; �0�i�� � ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� ,

then g (m�
i ; bm�i) = f

�e�i; �0�i�.
Now setting y , g (m�

i ; bm�i), we have established that for each �0�i 2 ��i (��i) and  i 2
�
�
��1�i

�
�0�i
��
, there exists y such that y 2 Yi

�
�0�i
�
andX

��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
,

which concludes the proof.

3.3 Robust Measurability

We now present a distinct necessary condition for robust implementation. We will be interested

in the set of preferences that an agent might have if his payo¤ type is �i and he knows that the

type �j of each opponent j belongs to some subset 	j of his payo¤ types �j . Write R for the set

of expected utility preference relations on lotteries Y . We will write R�i; i 2 R for the preference

relation of agent i if his payo¤ type is �i and he has belief  i 2 �(��i) about the types of others:

8y; y0 2 Y : yR�i; iy
0 ,

X
��i2��i

 i (��i)ui (y; (�i; ��i)) �
X

��i2��i

 i (��i)ui
�
y0; (�i; ��i)

�
;

We write Ri (�i;	�i) for the set of preferences agent i might have if his payo¤ type is �i and he

might have any beliefs over others�payo¤ types.

Ri (�i;	�i) =
�
R 2 R

��R = R�i; i for some  i 2 �(	�i)
	
.

Say that type set pro�le 	�i separates 	i if\
�i2	i

Ri (�i;	�i) = ?.

Let � = (�i)
I
i=1 2 �Ii=12�i be a pro�le of type sets for each agent. Say that � is mutually

inseparable if, for each i and 	i 2 �i, there exists 	�i 2 ��i such that 	�i does not separate 	i.
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De�nition 10 (Robust Measurability)

Social choice function f satis�es robust measurability if � mutually inseparable, 	i 2 �i and�
�0i; �

00
i

	
� 	i ) f

�
�0i; ��i

�
= f

�
�00i ; ��i

�
for all ��i.

If payo¤ types are �nite, one can give an alternative iterative de�nition of robust measurability:

let �0i = 2
�i ,

�k+1i =
n
	i 2 �ki j 	�i does not separate 	i, for some 	�i 2 �k�i

o
; (10)

and

��i =
\
k�0

�ki ; (11)

now social choice function f satis�es robust measurability if
�
�0i; �

00
i

	
2 ��i ) f

�
�0i; ��i

�
=

f
�
�00i ; ��i

�
for all ��i.9

Proposition 4 (Necessity of Robust Measurability)

If social choice function f is robustly implementable by a �nite mechanism, then f satis�es robust

measurability.

Proof. Since f is robustly implementable, there exists a mechanismM such that

m 2 SM (�)) g (m) = f (�) .

Now suppose � is mutually inseparable. We argue by induction that, for all i, 	i 2 �i and k there
exists a set of messages ? 6= Mk

i (	i) � SM;k
i (�i) for all �i 2 	i. This is true by de�nition for

k = 0. Suppose that it is true for k. Now � mutually inseparable implies that for any 	i 2 �i,
there exists 	�i 2 ��i, R and, for each �i 2 	i, ��ii 2 �(	�i) such that R�i;��ii = R. Now let

Mk+1
i (	i) be the optimal messages of agent i when he believes that his opponents will sent some

message pro�le in Mk
�i (	�i) with probability 1 and has beliefs �

�i
i about the type pro�le of his

opponents, i.e.,

Mk+1
i (	i) = [

m�i2Mk
�i(	�i)

argmax
m0
i

X
��i

��ii (��i)ui
�
g
�
m0
i;m�i

�
; (�i; ��i)

�
.

By construction, ? 6= Mk+1
i (	i) � SM;k

i (�i) for all �i 2 	i. Now for each 	i 2 �i, Mk
i (	i)

is a decreasing sequence under set inclusion. Since Mi is �nite, there exists ? 6= M�
i (	i) =

\
k�0

Mk
i (	i). Thus M�

i (	i) � SMi (�i) for all �i 2 	i. Now if
�
�0i; �

00
i

	
� 	i, there exists

mi 2 M�
i (	i) � SMi

�
�0i
�
and mi 2 M�

i (	i) � SMi
�
�00i
�
. Now �x any m�i 2 SM�i (��i), and

9See Lemma 3 of Bergemann and Morris (2008c).
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we have (mi;m�i) 2 SM
�
�0i; ��i

�
) g (mi;m�i) = f

�
�0i; ��i

�
and (mi;m�i) 2 SM

�
�00i ; ��i

�
)

g (mi;m�i) = f
�
�00i ; ��i

�
. Thus f

�
�0i; ��i

�
= f

�
�00i ; ��i

�
.

In Appendix B, we show by means of two examples that robust monotonicity does not imply

nor is it implied by robust measurability.

We have pursued two ways of deriving su¢ cient conditions in prior work. First, we identi�ed

natural restrictions on the environment that make these necessary conditions su¢ cient (Bergemann

and Morris (2007)). Second, we showed what happened if we weaken the implementation require-

ment to virtual implementation (Bergemann and Morris (2008c)). We brie�y review these results

below. If we neither put restrictions on the environment nor allow virtual implementation, then we

do not know how to derive tight su¢ cient conditions for �nite, or other well-behaved, mechanisms.

However, as in the existing complete information and standard Bayesian implementation literature,

it is possible to obtain tight conditions if we allow for badly behaved mechanisms. These results

are reported in the remainder of the paper. We believe they improve our understanding about

how the di¤erent elements in the incomplete information implementation literature �t together and

highlight the role of in�nite mechanisms.

3.4 Single Crossing Aggregator Environments

In Bergemann and Morris (2007), we consider payo¤ environments in which each payo¤ type space

�i is completely ordered and where there exist for each i, an aggregator function hi : � ! R and
a valuation function vi : Y � R! R such that

vi (y; hi (�)) , ui (y; �) , (12)

where hi is continuous and strictly increasing in �i and vi : Y � R! R is continuous and satis�es
the following strict single crossing property: for all � < �0 < �00,

vi (y; �) > vi
�
y0; �

�
and vi

�
y; �0

�
= vi

�
y0; �0

�
) vi

�
y; �00

�
< vi

�
y0; �00

�
: (13)

The aggregator functions h = (hi)
I
i=1 are said to satisfy the contraction property if, for all deceptions

� 6= ��, there exists i, �i and �0i 2 �i (�i) with �0i 6= �i, such that

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��

(14)

for all ��i and �0�i 2 ��i (��i). In single crossing aggregator environments as described by (12)

and (13), the contraction property is equivalent to both dual strict robust monotonicity and robust

measurability.

We say that a social choice function f is responsive if for all �i 6= �0i, there exists ��i such that

f (�i; ��i) 6= f
�
�0i; ��i

�
. If a social choice function is responsive, then semi-strict EPIC simpli�es
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to strict ex post incentive compatibility, i.e., ui (f (�i; ��i) ; (�i; ��i)) > ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
, for

all i, �i 6= �0i and ��i.

Proposition 5 (Contraction Property)

In a single crossing aggregator environment, a responsive social choice function f is robustly imple-

mentable if and only if it satis�es strict ex post incentive compatibility and the contraction property.

This result is reported in Theorem 1 and 2 of Bergemann and Morris (2007). It follows that

the necessary conditions of propositions 2, 3 and 4 are also su¢ cient in these environments. Note

that in the discrete type setting of this paper, the continuity properties are automatically satis�ed

if the payo¤ type spaces are �nite. Bergemann and Morris (2007) allowed for compact payo¤ type

spaces and pure outcome spaces. Bergemann and Morris (2007) also showed that when robust

implementation is possible, it is possible in a �direct�mechanism where agents report just their

payo¤ types.

3.5 Robust Virtual Implementation

The necessary conditions for robust implementation also become su¢ cient conditions if we relax

the requirement from (robust) exact to (robust) virtual implementation. In Bergemann and Morris

(2008c), we consider settings where the space of pure outcomes and payo¤ types are �nite. By

Corollary 1 we can therefore de�ne robust virtual implementation directly with reference to the

rationalizable messages in a given mechanismM.

De�nition 11 (Robust Virtual Implementation)

Social choice function f is robustly virtually implementable if, for each " > 0, there exists a mecha-

nismM such that for all �, SM (�) 6= ? and if for all � and m; m 2 SM (�)) kg (m)� f (�)k � ".

We established in Theorem 1 and 2 of Bergemann and Morris (2008c) the following necessary

and su¢ cient conditions for robust virtual implementation.

Proposition 6 (Robust Measurability)

A social choice function is robustly virtually implementable if and only if it satis�es ex post incentive

compatibility and robust measurability.

Thus strict robust monotonicity can be dropped and semi-strict EPIC can be weakened to EPIC

if virtual implementation is enough. With these weakenings, the necessary conditions are su¢ cient.
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3.6 A Coordination Example

We conclude this section with an example that demonstrates that while robust implementation

is a strong requirement, it is weaker than dominant strategies. In the example there are two

agents, i = 1; 2. Each agent i has two possible types, �i and �0i. There are six possible outcomes:

Z = fa; b; c; d; z; z0g. The payo¤s of the agents are a function of the allocation and the true payo¤
type pro�le, given by:

a �2 �02

�1 3; 3 0; 0

�01 0; 0 1; 1

b �2 �02

�1 0; 0 3; 3

�01 1; 1 0; 0

c �2 �02

�1 0; 0 1; 1

�01 3; 3 0; 0

d �2 �02

�1 1; 1 0; 0

�01 0; 0 3; 3

(15)

and
z �2 �02

�1 2; 2 2; 0

�01 2; 2 2; 0

z0 �2 �02

�1 2; 0 2; 2

�01 2; 0 2; 2

:

The social choice function is given by the e¢ cient outcome at each type pro�le:

f �2 �02

�1 a b

�01 c d

: (16)

Clearly, the social choice function is strictly ex post incentive compatible. But in the �direct

mechanism�where each agent simply reports his type, there will always be an equilibrium where

each type of each agent misreports his type, and each agent gets a payo¤ of 1. This is also strictly

ex post incentive compatible. The social choice function f which selects among fa; b; c; dg embeds
a coordination game. We further observe that the payo¤ for agent 1 from allocations z and z0 are

equal and constant for all type pro�les. On the other hand, the payo¤ of agent 2 from z and z0

depends on his type but not on the type of the other agent.

We now consider the following augmented, but �nite, mechanism which responds to the messages

of the agents as follows:

g �2 �02

�1 a b

�01 c d

� z z0

The augmented mechanism enriches the message space of agent 1 by a single message �. The
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corresponding incomplete information game has the following payo¤s:

type �2 �02

type action �2 �02 �2 �02

�1 �1 3; 3 0; 0 0; 0 3; 3

�01 0; 0 1; 1 1; 1 0; 0

� 2; 2 2; 0 2; 0 2; 2

�01 �1 0; 0 1; 1 1; 1 0; 0

�01 3; 3 0; 0 0; 0 3; 3

� 2; 2 2; 0 2; 0 2; 2

Suppose we iteratively remove actions for each type that could never be a best response given the

type action pro�les remaining. Thus in the �rst round, we would observe that type �1 would never

send message �01 and type �
0
1 would never send message �1. Knowing this, we could conclude that

type �2 would never send message �02 and type �
0
2 would never send message �2. This in turn implies

that neither type of agent 1 will ever send message �. Thus the only remaining message for each

type of each agent is truth-telling. But now they must behave this way in any equilibrium on any

type space.

4 Rationalizable and Robust Implementation in In�nite Mecha-

nisms

In Section 3 we established the equivalence between rationalizable and robust implementation for

�nite mechanisms. A complicating factor is that augmented mechanisms often have in�nite message

spaces and so best responses may not exist. We now address these issues for in�nite mechanisms

and then establish the implementation results for general mechanisms.

4.1 Best Response

We observe that with in�nite mechanisms there is no a priori guarantee that SM (�i) is non-empty

or that a game of incomplete information de�ned by (T ;M) has an interim equilibrium. The

epistemic result of Proposition 1 which related the rationalizable messages with the equilibrium

messages for some type space continues to hold, vacuously, in these cases. But for implementation

results, we care about existence. We introduce the following two conditions that relate existence of

equilibrium on all type spaces to the actions surviving iterated deletion. These conditions use the

notion of message correspondence S de�ned in Section 2.4.
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De�nition 12 (Ex Post Best Response)

Message correspondence S satis�es the ex post best response property if, for all i and �i 2 �i, there
exists m�

i 2 Si (�i) such that

m�
i 2 argmax

mi2Mi

ui (g (mi;m�i) ; (�i; ��i)) ;

for all ��i and m�i 2 S�i (��i).

We observe that for S to satisfy the ex post best response property, Si (�i) must be non-empty

for all i and all �i.

De�nition 13 (Interim Best Response)

Message correspondence S satis�es the interim best response property if, for all i and  i 2 �(��i),
there exists �i 2 �(M�i ���i) such that:

1. �i (m�i; ��i) > 0) mj 2 Sj (�j) for each j 6= i;

2. for all ��i 2 ��i : X
m�i2M�i

�i (m�i; ��i) =  i (��i) ;

3. for all �i 2 �i there exists m�
i 2 Si (�i) such that

m�
i 2 argmax

mi2Mi

X
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) :

The interim best response property only requires that for every conjecture over payo¤ type

spaces, there exists some beliefs over messages consistent with the message correspondence S, such

that a best response is in the message correspondence. In particular, it does not require that a best

response exists for all possible beliefs over message pro�les. Note that the ex post best response

property is a stronger requirement than the interim best response property, but that the interim

best response property also implies that SMi (�i) is non-empty for all i and �i.

Proposition 1 linked every action pro�le in the set of rationalizable actions to an equilibrium

action for some type space T . Proposition 7 strengthens the relationship between rationalizable and
equilibrium actions, after imposing some structure on the best response property of rationalizable

and equilibrium actions, respectively.

Proposition 7 (Best Response Properties)

1. If SM has the ex post best response property, then (T ;M) has an equilibrium for each T .
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2. If (T ;M) has an equilibrium for each T , then SM satis�es the interim best response property.

Proof. (1.) By the ex post best response property, there exists, for each i, s�i : �i ! Mi such

that

s�i (�i) 2 argmax
mi2Mi

ui
�
g
�
mi; s

�
�i (��i)

�
; (�i; ��i)

�
for all ��i. Now �x any type space. The strategy pro�le s with

si (ti) = s�i

�b�i (ti)�
is an equilibrium of the game (T ;M).

(2.) Suppose (T ;M) has an equilibrium for each T . Fix any i and  i 2 �(��i). Fix any type
space T with, for each �i 2 �i, a type t�i (�i) such that (a) b�i (t�i (�i)) = �i for each �i, (b) there

exists �i 2 �(T�i) such that b�i (t�i (�i)) = �i for all �i and (c)X
ft�i:b��i(t�i)=��ig

�i (t�i) =  i (��i) (17)

for all �i and ��i. The game has an equilibrium �. Let mi be any message with �i (mijt�i (�i)) > 0.
Let

�i (m�i; ��i) =
X

ft�i2T�i:b��i(t�i)=��ig
��i (m�ijt�i)�i (t�i) .

Now �i (mijt�i (�i)) > 0 implies

mi (�i) 2 argmax
mi2Mi

X
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) .

Proposition 1 implies that every message pro�le mj which is played in equilibrium by type �j is

part of the set SM, or that:

�i (m�i; ��i) > 0) mj 2 SMj (�j) for each j 6= i.

By construction of the type space T , in particular property (c) as expressed by (17), this implies
that X

m�i2M�i

�i (m�i; ��i) =  i (��i) for all ��i 2 ��i.

Since these properties hold for arbitrary i and  i 2 �(��i), SM satis�es the interim best response

property, which concludes the proof.

It is unfortunate that there is a gap between the necessary and su¢ cient conditions in the

above proposition. However, an example in the appendix shows that it is possible to construct

(admittedly silly) mechanisms where (T ;M) has an equilibrium for each T , but SM fails the ex

post best response property.
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4.2 Material Implementation

We can maintain the relationship between rationalizable and robust implementation, despite the

possibility of non-existence of an interim best response, by qualifying the implementation condition

as being �material�.

De�nition 2M (Material Interim Implementation).

Social choice function f is materially interim implemented on type space T by mechanism M if

every equilibrium � of the game (T ;M) satis�es

� (mjt) > 0) g (m) = f
�b� (t)� ;

for all t.

In contrast to the earlier de�nition of interim implementation, given in De�nition 2, we allow

the premise of the de�nition to be vacuous. In other words, the mechanism M might have the

property that on a given type space, there is no equilibrium. Our terminology mirrors the language

of modal logic where proposition A materially implies B whenever A is false, as well as when both

A and B are true, see Hughes and Creswell (1996). We similarly weaken the de�nition of robust

and rationalizable implementation.

De�nition 3M (Material Robust Implementation).

Social choice function f is materially robustly implemented by mechanism M if, for every T , f is
materially interim implemented on type space T by mechanism M.

De�nition 4M (Material Rationalizable Implementation).

Social choice function f is materially rationalizably implemented by mechanism M if for all �

and m; m 2 SM (�)) g (m) = f (�).

With these weaker notions of material implementation Proposition 1 now immediately implies

an equivalence between material robust and material rationalizable implementation in the presence

of in�nite mechanisms.

Corollary 2 (Equivalence)

Social choice function f is materially rationalizably implemented byM if and only if f is materially

robustly implemented by mechanismM.

Proposition 7 gave the slightly messier result relating equilibrium existence and properties of

messages surviving iterated deletion. The following corollary gives the immediate implications for

our implementation de�nitions:
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Corollary 3 (Necessary Conditions)

1. If social choice function f is materially rationalizably implemented by mechanismM and SM

satis�es the ex post best response property, then f is robustly implemented byM.

2. If f is robustly implemented byM, then f is materially rationalizably implemented by mech-

anismM and SM satis�es the interim best response property.

The �material� quali�cation will only be used in the necessity part of Theorem 1 where we

shall invoke the second part of Corollary 3. There we shall use the �xed-point property of SM,

stated earlier in (2), to derive the robust monotonicity condition. In the su¢ ciency part of the

proof, a non-empty set SM is obtained in the augmented mechanism by virtue of ex post incentive

compatibility. The following implication of rationalizable implementation will be used to establish

robust monotonicity in Theorem 1.

Lemma 1 (Truthtelling as Best Response)

If f is materially rationalizably implemented by mechanism M and SM satis�es the interim best

response property, then for all i and ��i 2 ��i, there exists �i 2 �
�
SM�i (��i)

�
such that

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui (g (mi;m�i) ; (�i; ��i)) (18)

for all mi 2Mi and �i 2 �i.

Proof. Applying the de�nition of the interim best response property for i and the degenerate

distribution putting probability 1 on ��i, we have that there exists �i 2 �
�
SM�i (��i)

�
such that

? 6= argmax
mi

X
m�i;��i

�i (m�i)ui ((mi;m�i) ; (�i; ��i)) � SMi (�i) for all �i 2 �i.

But by material rationalizable implementability, m 2 SM (�)) g (m) = f (�). So

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui ((mi;m�i) ; (�i; ��i)) ;

for all mi 2Mi and �i 2 �i.
Lemma 1 shows how small the gap between the ex post and interim best response property is.

It establishes that truthtelling is a best response against some beliefs over messages m�i for any

given payo¤ type pro�le ��i.
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5 In�nite Mechanisms

We will need a very weak economic condition to ensure that it is always possible to reward and

punish each agent independently of the other agents.

De�nition 14 (Conditional No Total Indi¤erence)

The conditional no total indi¤erence (NTI) property is satis�ed if, for all i, all � and all  i 2
�(��i), there exists y; y0 2 Yi (��i) such thatX

�0�i2��i

 i (��i)ui
�
y;
�
�i; �

0
�i
��
>

X
�0�i2��i

 i (��i)ui
�
y0;
�
�i; �

0
�i
��
.

The conditional no total indi¤erence property imposes a very weak restriction on the preferences.

For example, if there are a �nite number of pure outcomes and an agent is never completely

indi¤erent between all lotteries, then we can always �nd interior outcomes y and y0 such that the

conditional no total indi¤erence condition is met. The conditional NTI property, together with the

use of lotteries, renders an additional no veto property, which typically appears in the su¢ cient

conditions, obsolete. In addition, we can omit the usual cardinality assumption of I � 3. A related
no total indi¤erence condition appears in the context of virtual implementation in Duggan (1997),

who requires it to hold at every ex post pro�le � and in Serrano and Vohra (2005), who require it

at the interim level for a given belief  i (��i) of player i.

Theorem 1 (Robust Implementation)

1. If f is robustly implementable, then f satis�es EPIC and dual robust monotonicity;

2. If f satis�es EPIC, dual robust monotonicity and the conditional NTI property, then f is

robustly implementable.

Proof. (1.) We �rst prove that robust implementability implies EPIC and dual robust monotonic-

ity. We do so by appealing to the necessary conditions for robust implementation in Corollary 3.

We �rst establish EPIC. By Lemma 1, for all mi 2 Mi and �i 2 �i, there exists �i 2
�
�
SM�i (��i)

�
,

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui (g (mi;m�i) ; (�i; ��i)) ;

If we choose mi 2 SMi
�
�0i
�
, material rationalizable implementation implies that g (mi;m�i) =

f
�
�0i; ��i

�
for all m�i 2 SM�i (��i). So

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
;
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for all �0i 2 �i.
We next establish dual robust monotonicity. Fix an unacceptable deception � and suppose that

f is materially rationalizably implementable. There must exist a message correspondence pro�le S

such that

b (S) � S;

and

SMi
�
�0i
�
� Si (�i) ; (19)

for all i, �i and �0i 2 �i (�i); but
SMi

�
�0i
�
* bi (S) [�i] ; (20)

for all i, �i and �0i 2 �i (�i). The existence of such an S can be established constructively. Clearly
S satis�es (19). Iteratively apply the operator b. By rationalizable implementation, there exists k

(perhaps trans�nite) such that:

S , bk
�
S
�

(21)

satis�es (20). Thus there exists k such that bk
�
S
�
satis�es (19) and bk+1

�
S
�
satis�es (20).

By (20), simply pick

bmi 2 Si (�i) \ SMi
�
�0i
�
and bmi =2 bi (S) [�i] \ SMi

�
�0i
�
.

Since message bmi =2 bi (S) [�i], we know that for every �i 2 �(M�i ���i) such that

�i (m�i; ��i) > 0) mj 2 Sj (�j) for all j 6= i,

there exists m�
i such thatX

m�i;��i

�i (m�i; ��i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
m�i;��i

�i (m�i; ��i)ui (g (bmi;m�i) ; (�i; ��i)) .

(22)

Next we identify a particular belief �i (m�i; ��i) for which the inequality (22) holds. By (18) in

Lemma 1, there exists �i 2 �
�
SM�i

�
�0�i
��
such thatX

m�i

�i (m�i)ui
�
g (mi;m�i) ;

�
�00i ; �

0
�i
��
� ui

�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
; (23)

for all mi 2Mi and �00i 2 �i. Thus for any  i 2 �(��i), we can set

�i (m�i; ��i) = �i (m�i) i (��i) .

Applying the above claim (22), there exists m�
i such that:X

��i;m�i

 i (��i) �i (m�i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
��i;m�i

 i (��i) �i (m�i)ui (g (bmi;m�i) ; (�i; ��i)) .

28



But �i (m�i) > 0) (bmi;m�i) 2 SM
�
�0
�
, so by material rationalizable implementation:

g (bmi;m�i) = f
�
�0
�
:

We also observe that as we de�ned S to be the set obtained after the k-th iteration of the operator

b, see (21), if �0�i 2 ��i (��i), then �i (m�i) > 0 ) m�i 2 S�i (��i). Thus for every  i 2
�
�
��1�i

�
�0�i
��
, there exists m�

i such thatX
��i;m�i

 i (��i) �i (m�i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
��i;m�i

 i (��i) �i (m�i)ui
�
f
�
�0
�
; (�i; ��i)

�
.

(24)

Now, the inequality (24) essentially establishes guarantees the reward inequality for robust monotonic-

ity. We can complete the argument by letting y be the lottery with

y ,
X
m�i

g (m�
i ;m�i) �i (m�i) :

We now have established that for each �0�i 2 ��i (��i) and  i 2 �
�
��1�i

�
�0�i
��
, there exists y such

that (by (23))

ui
�
y;
�
�00i ; �

0
�i
��
� ui

�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
;

for all �00i 2 �i, and thus y 2 Yi
�
�0�i
�
.10 And by (24) we then have:X

��i

 i (��i)ui (y; (�i; ��i)) >
X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
.

(2.) We now prove that EPIC, dual robust monotonicity and the conditional NTI property imply

robust implementation. We do so by explicitly constructing the implementing mechanism. The

mechanism will use �interior� lotteries over the deterministic outcome set Z and over the reward

sets Yi (��i). Given an arbitrary labelling of the outcome set Z = fz0; z1; :::; zk; :::g, we de�ne an
�interior�lottery over the set Z by

�y = (�y0; �y1; :::; �yk; :::) ; (25)

where

�yk , Pr (z = zk) =
�k

1� � ;

for some � 2 (0; 1). For every given pro�le ��i, the reward set Yi (��i) is by construction a

convex set with at most a countable number of extreme points. We denote the set of extreme

10Note that this step implies that even if we had restricted attention to mechanisms with deterministic outcomes, our

robust monotonicity condition would only have established that there exists a lottery (not necessarily a deterministic

outcome) su¢ cient to reward a whistle-blower.
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points of Yi (��i) by Y �i (��i) and for some labelling of the points in the set we have Y
�
i (��i) =�

y0;��i ; y1;��i ; :::; yl;��i ; :::
	
. An extreme point yl;��i in Y

�
i (��i) may be a deterministic or a random

outcome and assigns probability yl;��i (zk) to the pure outcome zk. For every reward set Y�i (��i),

we de�ne a �interior�lottery:

�y��i =
�
�y0;��i ; �y1;��i ; :::; �yk;��i

�
(26)

with

�yk;��i ,
1

1� �

1X
l=0

�lyl;��i (zk) ;

where the lottery �y��i is a compound lottery.

Each agent i sends a message mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
, where m1

i 2 �i, m2
i 2 Z+,

m3
i : ��i ! Y with m3

i (��i) 2 Yi (��i), m4
i 2 Y . The outcome g (m) is determined by the following

rules:

Rule 1: If m2
i = 1 for all i, pick f

�
m1
�
.

Rule 2: If there exists j 2 I such that m2
i = 1 for all i 6= j and m2

j > 1, then pick m
3
j

�
m1
�j

�
with

probability 1� 1
m2
j+1

and �ym1
�j
(as de�ned in 26) with probability 1

m2
j+1
.

Rule 3: In all other cases, for each i, with probability 1
I

�
1� 1

m2
i+1

�
pick m4

i , and with probability

1
I

�
1

m2
i+1

�
pick the interior lottery �y (as de�ned in 25).

We �rst show that it is never a best reply for type �i to send a message with m2
i > 1 (i.e.,

mi 2 bi
�
S
�
) m2

i = 1). Suppose that �i has conjecture �i 2 �(M�i ���i). We can partition the
messages of other agents as follows:

M�
�i (��i) =

�
m�i : m

2
j = 1 for all j 6= i and m1

�i = ��i
	
;

and cM�i =
�
m�i : m

2
j > 1 for some j 6= i

	
.

By the conditional NTI property, we know that there exists m4
i 2 Y such that, ifX

m�i2cM�i;��i2��i

�i (m�i; ��i) > 0,

then X
m�i2cM�i;��i2��i

�i (m�i; ��i)ui
�
m4
i ; �
�
>

X
m�i2cM�i;��i2��i

�i (m�i; ��i)ui (�y; �) .

And we also know from the conditional NTI property that there exists m3
i such that, ifX

m�i2M�
�i(�

0
�i);��i2��i

�i (m�i; ��i) > 0,
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then X
m�i2M�

�i(�
0
�i);��i2��i

�i (m�i; ��i)ui
�
m3
i

�
�0�i
�
; �
�
>

X
m�i2M�

�i(�
0
�i);��i2��i

�i (m�i; ��i)ui
�
�y��i ; �

�
.

Thus if
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
with m2

i > 1 were a best response, then
�
m1
i ;m

2
i + 1;m

3
i ;m

4
i

�
would be

an even better response, contradiction.

Now �x any S with mi 2 Si (�i)) m2
i = 1. Let

�i (�i) =
�
�0i :

�
�0i; 1;m

3
i ;m

4
i

�
2 Si (�i) for some

�
m3
i ;m

4
i

�	
.

First observe that EPIC implies that �i 2 �i (�i). We will argue that if � is not acceptable, then
b (S) 6= S. By robust monotonicity, we know that there exists i, �i, �0i 2 �i (�i) such that, for all

�0�i 2 ��i and  i 2 �
�
��1�i

�
�0�i
��
, there exists y 2 Yi

�
�0�i
�
such thatX

��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

But now for any conjecture �i 2 �
�n
(m�i; ��i) : m2

j = 1 for all j 6= i
o�
, there exists m3

i (with

m3
i (��i) 2 Yi (��i)) such thatX

m�i;��i

�i (m�i; ��i)ui
�
m3
i

�
m1
�i
�
; �
�
>

X
m�i;��i

�i (m�i; ��i)ui
�
f
�
�0i;m

1
�i
�
; (�i; ��i)

�
.

Thus message
�
�0i; 1;m

3
i ;m

4
i

�
is never a best response for type �i.

We conclude that if

�i (�i) =
�
�0i :

�
�0i; 1;m

3
i ;m

4
i

�
2 SMi (�i) for some

�
m3
i ;m

4
i

�	
,

then � is acceptable. Thus f is materially rationalizably implemented.

Finally observe that SM must satisfy the ex post best response property, with type �i sending

a message of the form
�
�0i; 1;m

3
i ;m

4
i

�
, so robust implementation is possible by Corollary 2.

We deliberately allowed for very badly behaved in�nite mechanisms in order to make a tight

connection with the existing literature and to get tight results. Many authors have argued that

�integer game� constructions, like that we use in Theorem 1, should be viewed critically (see,

e.g., Abreu and Matsushima (1992a) and Jackson (1992)). In our analysis of �nite mechanisms in

Section 3, the best responses were always well de�ned. As we saw there, the relationship between

rationalizable and robust implementation is much simpler with the restriction to �nice�mechanisms,

where best responses exists for all conjectures.

Part 1 of the above theorem represents a slight weakening of the necessary conditions of Propo-

sitions 2 and 3: semi-strict EPIC is weakened to EPIC and strict dual robust monotonicity is
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weakened to dual robust monotonicity. These weaker conditions arise from allowing badly behaved

mechanisms. Part 2 of the above theorem shows that they are also su¢ cient when combined with

an no total indi¤erence property.

The proof directly uses the link between rationalizable and robust implementation for the ne-

cessity as well as the su¢ ciency part. We brie�y sketch the idea of the necessity part of the proof.

If f is robustly implementable, then it is rationalizably implementable by Corollary 3. From ratio-

nalizable implementability, we then want to show that f satis�es strict robust monotonicity. We

consider a given and unacceptable deception �. We start the process of iterative elimination and

stop it at a speci�c round, denoted by k. This round k is the �rst round at which we can �nd

an agent i, a true type pro�le �i and a report �0i 2 �i (�i), such that a message, denoted by bmi,

which will survive the process of iterated elimination for type �0i, fails to survive the k-th round of

elimination for type �i. We then show that the elimination of message bmi at round k implies that

the social choice function f satis�es strict robust monotonicity with respect to the deception �.

Brie�y, if bmi survives the process of elimination for type �0i, the message bmi acts in the mechanism

so as to report a payo¤ type �0i. If it is eliminated at round k for payo¤ type �i, then this means

that for any belief agent i has over the remaining agents, there exists a message m�
i which leads to

an allocation through g which is strictly preferred by agent i when he has a payo¤ type �i. The

signi�cance of round k being the �rst round for which such an elimination relative to the deception

� occurs, is that at this round, there do not yet exist any restrictions about message and payo¤ type

pro�le regarding the other agents deception. The fact then that bmi can be eliminated allows us to

use full strength of the elimination argument to establish robust monotonicity. In the context of the

proof it is interesting to note that the key step from iterative elimination to robust monotonicity

is an argument which involves the early stages of the elimination process rather than the limit of

iteration process.

6 Extensions, Variations and Discussion

6.1 Lotteries, Pure Strategies and Bayesian Implementation

In this section, we discuss how Theorem 1 is related to the classic literature on Bayesian implemen-

tation developed by Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson

(1991). These authors asked whether it was possible to implement a social choice function in equi-

librium on a �xed type space T .11 These authors analyzed the classic problem where attention

was restricted to pure strategy equilibria and deterministic mechanisms. The assumption entails

11They allowed for more general social choice sets, but we restrict attention to functions for our comparison.
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that the social choice function is a mapping f : �! Z and the mechanism g :M ! Z. Note that

in this classical approach it was not necessary to even de�ne agent�s preferences over lotteries and

they certainly did not e¤ect implementability.

Having �xed a type space, the natural notion of a pure strategy deception on the �xed type

space is a collection � = (�1; :::; �I), with each �i : Ti ! Ti. Thus � : T ! T is de�ned

by � (t) = (�i (ti))
I
i=1. The key monotonicity notion, translated into our language, is then the

following:

De�nition 15 (Bayesian Monotonicity)

Social choice function f satis�es Bayesian monotonicity on type space T if, for every deception �

with f
�b� (t)� 6= f

�b� (� (t))� for some t, there exists i, ti and k : T ! Z such thatX
t�i

ui

�
k (� (t)) ;b� (t)� b�i (t�i) [ti] >X

t�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ;

andX
t�i

ui

�
f
�b� �t0i; t�i�� ;b� �t0i; t�i�� b�i (t�i) �t0i� �X

t�i

ui

�
k (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) �t0i� ; 8t0i:

Jackson shows that this condition is necessary for Bayesian implementation, and that a slight

strengthening, Bayesian monotonicity no veto, is su¢ cient. We can also show that our robust

monotonicity condition is equivalent to the requirement that Bayesian monotonicity is satis�ed on

all type spaces.

Proposition 8 (Equivalence)

Social choice function f satis�es Bayesian monotonicity on every type space if and only if it satis�es

robust monotonicity.

The equivalence is established by a constructive proof via a speci�c type space. The constructive

element is the identi�cation of a type space on which Bayesian monotonicity is guaranteed to fail

if robust monotonicity fails. It is worthwhile to note that the speci�c type space is much smaller

than the universal type space. The proof of this result is in the appendix of the working paper

version, Bergemann and Morris (2008b).

In some sense, the notion of robustness is more subtle in the context of full rather than par-

tial implementation. With partial implementation, i.e. truthtelling in the direct mechanism, the

universal type space is by de�nition the most di¢ cult type space to obtain truthtelling. In the

universal type space, every agent has the maximal number of possible misreports and hence the

designer faces the maximal number of incentive constraints. In the context of full implementation,
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the trade-o¤ is ambiguous. As a larger type space contains by de�nition more types, it o¤ers every

agent more possibilities to misreport. But then, just as a larger type space made truthtelling more

di¢ cult to obtain, the other equilibria might also cease to exist after the introduction of addi-

tional types. This second part o¤ers the possibility that larger type spaces facilitate rather than

complicate the full implementation problem.

But note that this line of argument would establish the necessity of robust implementation if the

planner is restricted to deterministic mechanisms (a disadvantage) but he can assume that agents

follow pure strategies (an advantage). How do these assumptions matter?

First, observe that the advantage of restricting attention to pure strategies goes away completely

when we require implementation on all type spaces: if there is a mixed strategy equilibrium that

results in a socially sub-optimal outcome on some type space, we can immediately construct a larger

type space (purifying the original equilibrium) where the socially sub-optimal outcome is played in

a pure strategy equilibrium. Thus our robust analysis conveniently removes that unfortunate gap

between pure and mixed strategy implementation that has plagued the implementation literature.

We use the extension to stochastic mechanisms in just two places. Ex post incentive compati-

bility and robust monotonicity would remain necessary conditions even if we restricted attention to

deterministic mechanisms (the arguments would be unchanged). But, as we note in Footnote 10,

even if lotteries were not used in the implementing mechanism, the implied robust monotonicity con-

dition would involve lotteries (as rewards for whistle-blowers). But if lotteries were not allowed, our

su¢ ciency argument would then require a slightly strengthened version of the robust monotonicity

condition, with the lottery y replaced by a deterministic outcome. Our su¢ ciency argument also

uses lotteries under Rules 1 and 2. As in a recent paper by Benoit and Ok (2008) on complete

information implementation, we use lotteries to signi�cantly weaken the su¢ cient conditions, so

that we require only the conditional NTI property in addition to EPIC and robust monotonicity. If

we did not allow lotteries in this part of the argument, we would require a much stronger economic

condition in the spirit of Jackson�s �Bayesian monotonicity no veto�condition. We have developed

combined robust monotonicity and economic conditions (not reported here) su¢ cient for interim

implementation on all full support types spaces. However, an additional complication is that, with-

out lotteries in the implementing mechanism, we cannot establish su¢ ciency on type spaces where

agents have disjoint supports.

It is possible to construct a simple example where EPIC and robust monotonicity are not

su¢ cient for robust monotonicity without lotteries by taking the coordination example of Section

3.6 but removing the outcomes z and z0. As we show in the Appendix (Section 7.3), robust

implementation is then not possible in this example despite the fact that the social choice function

selects a unique strictly Pareto-dominant outcome at every type pro�le.
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6.2 Ex Post and Robust Implementation

In contrast to our earlier results in Bergemann and Morris (2005b), where we showed that robust

partial implementation is equivalent to ex post incentive compatibility, robust implementation is

in general a more demanding notion of implementation than ex post equilibrium implementation.

The following simple example, introduced by Palfrey and Srivastava (1989), is useful to relate the

di¤erent implementation notions and understand the role of interdependent types. In this example,

there are three agents and each agent has two possible �payo¤ types�, �a or �b. There are two

possible choices for society, a or b. All agents have identical preferences. If a majority of agents

(i.e., at least two) are of type �y, then every agent gets utility 1 from outcome y and utility 0 from

the other outcome. The social choice function agrees with the common preferences of the agents.

Thus f : f�a; �bg3 ! fa; bg satis�es f (�) = y if and only if # fi : �i = �yg � 2.
Clearly, ex post incentive compatibility is not a problem in this example. The problem is that

in the �direct mechanism�- where all agents simply announce their types - there is the possibility

that all agents will choose to always announce �a. Since no agent expects to be pivotal, he has no

incentive to truthfully announce his type when he is in fact �b. What happens if we allow more

complicated mechanisms?

If there were complete information about agents�preferences, then the social choice function is

clearly implementable: the social planner could pick an agent, say agent 1, and simply follow that

agent�s recommendation.

But suppose instead that there is incomplete information about agents�preferences. In partic-

ular, suppose it is common knowledge that each agent�s type is �b with independent probability q,

with q2 > 1
2 . This example fails the Bayesian monotonicity condition of Postlewaite and Schmeidler

(1986) and Jackson (1991). Palfrey and Srivastava (1989) observe that it is also not possible to

implement in undominated Bayesian Nash equilibrium in this example.

Bergemann and Morris (2008a) have analyzed the alternative �more robust� solution concept

of ex post equilibrium in this context. It is easy to construct an augmented mechanism whose

only ex post equilibrium delivers the social choice function. Let each agent send a message mi 2
f�a; �bg � ftruth, lieg, with the interpretation that an agent is announcing his own type and also
sends the message �truth�if he thinks that others are telling the truth and sends the message �lie�

if he thinks that someone is lying. Outcome y is implemented if a majority claim to be type �y and

all agents announce �truth�; or if either 1 or 3 agents claim to be type �y and at least one agent

reports lying.

There is a truthtelling ex post equilibrium where each agent truthfully announces his type and

also announces �truth�. Now suppose there exists an ex post equilibrium such that at some type
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pro�le, the desired outcome is not chosen. Note that whatever the announcements of the other

agents, each agent always has the ability to determine the outcome y, by sending the message �lie�

and - given the announcements of the other agents - choosing his message so that an odd number

of agents have claimed to be type �y. So this is not consistent with ex post equilibrium.

Robust implementation is impossible in this example. Consider the type space where there is

common knowledge that whenever an agent is type �y, he assigns probability 1
2 to both of the other

agents being type y0 6= y and probability 1
2 to one being type y and the other being y

0. Thus every

type of every agent thinks there is a 50% chance that outcome a is better and a 50% chance that

b is better. Evidently, there is no way of designing a mechanism that ensures that agents do not

fully pool. But if they fully pool, robust implementation is not possible.

6.3 Extensions

The previous sections examined the importance of our assumptions about lotteries over outcomes

and restrictions on mechanisms. We also restricted attention in our main analysis to the case of

discrete but in�nite pure outcomes Z, payo¤ types �i and types Ti. While most of our results

would extend naturally to more general Z, �i and Ti, the formal treatment of non-compact type

spaces would raise technical issues that we have chosen to avoid.
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7 Appendix A

7.1 Robust Monotonicity and Dual Robust Monotonicity

Lemma 2

1. If f satis�es (strict) robust monotonicity, then f satis�es dual (strict) robust monotonicity.

2. If deterministic outcomes and payo¤ types are �nite, and f satis�es dual (strict) robust

monotonicity, then f satis�es (strict) robust monotonicity.

Proof. (1.) follows immediately from the de�nitions. To prove (2.), suppose that outcomes

and payo¤ types are �nite and that f satis�es dual (strict) robust monotonicity. Then for every

unacceptable deception �, there exist i, �i, �0i 2 �i (�i) such that, for all �0�i 2 ��i, there exists a
compact set Y � Y such that y 2 Y implies

ui
�
f
�
�00i ; ��i

�
;
�
�0i; �

0
�i
��
� (>)ui

�
y;
�
�00i ; �

0
�i
��

for all �00i with f
�
�00i ; ��i

�
6= y and, for each  i 2 �

�
��1�i

�
�0�i
��
, there exists y 2 Y such thatX

��i2��1�i (�
0
�i)

 i (��i)ui (y; (�i; ��i)) >
X

��i2��1�i (�
0
�i)

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

By the equivalence between strict domination and never a best response (see Theorem 2.10 in Gale

(1989)), we have that there exists y� 2 Y with

ui (y
�; (�i; ��i)) > ui

�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
for all ��i 2 ��1�i

�
�0�i
�
. This establishes (strict) robust monotonicity.

7.2 A Badly Behaved Mechanism

The example illustrates the gap between the necessary and su¢ cient conditions in Proposition 7.

Speci�cally, it shows that there can be an equilibrium for every type space T in a mechanism, yet

SM does not satisfy the ex post best response property.

In the example, there are two agents and there is complete information, so each agent has a

unique type. There are a �nite number of outcomes Z = fa; b; cg. The payo¤s are given by the
following table:

a b c

agent 1 0 �1 +1

agent 2 0 0 0
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The planner�s choice (in the unique payo¤ state) is a. Thus it is trivial to robustly implement the

social choice function. But suppose that the planner chooses the following (strange) mechanism:

M1 = f1; 2; 3; :::g, M2 = f1; 2g and

g (m1;m2) =

8>><>>:
a, if m1 = 1

b; if m1 > 1 and m2 = 1h
1
m1
; b;
�
1� 1

m1

�
; c
i
; if m1 > 1 and m2 = 2

where
h
1
m1
; b;
�
1� 1

m1

�
; c
i
is the lottery putting probability 1

m1
on b and probability

�
1� 1

m1

�
on

c. Thus g (m1;m2) can be represented by the following table:

g 1 2

1 a a

2 b
�
1
2 ; b;

1
2 ; c
�

3 b
�
1
3 ; b;

2
3 ; c
�

...
...

...

k b
�
1
k ; b; 1�

1
k ; c
�

...
...

...

Thus the agents are playing the following complete information game:

m1=m2 1 2

1 0; 0 0; 0

2 �1; 0 0; 0

3 �1; 0 1
3 ; 0

...
...

...

k �1; 0 1� 2
k ; 0

...
...

...

Now on any type space, there is always an equilibrium where agent 1 chooses action 1 and agent

2 chooses action 1, and outcome a is chosen. Moreover, on any type space, in any equilibrium,

outcome a is always chosen: if agent 1 ever has a best response not to play 1 then he has no best

response. So he always plays 1 in equilibrium. Thus the trivial social choice function is robustly

implemented by this mechanism.

While only message 1 survives iterated deletion of never best responses for agent 1, both mes-

sages survive iterated deletion of never best responses for agent 2. Thus we have SM1 = f1g and
SM2 = f1; 2g. Note that SM satis�es the interim best response property, see De�nition 13, but not
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the ex post best response property, see De�nition 12. For we observe that

u1 (g (1; 2)) = u1 (a) = 0 <
1

2
= u1 (g (2; 2)) ,

violating the ex post best response property.

The insight of the example is that the quanti�er �for every type space T �does not necessarily
guarantee that all actions which will be chosen with positive probability in some equilibrium and

for some type space, will also be chosen with probability one in some equilibrium for some type

space. For this reason, the quanti�er �for every type space T �does not allow us to establish a

local, i.e. ex post best response property of every action in SM.

7.3 Coordination Example Continued

The �nal example is the pure coordination game, which we �rst considered in Section 3.6, but

without the additional allocations, z and z0. It illustrates the importance of lotteries for robust

implementation. The example will satisfy EPIC and robust monotonicity, yet it cannot be robustly

implemented without the use of lotteries. On the other hand the preferences clearly satisfy the

conditional NTI property, and hence the su¢ cient conditions for robust implementation would be

satis�ed with lotteries.

As in the example in Section 3.6, the payo¤s of the player are given by (15) and the social choice

function f is given by (16). The social choice function is strictly ex post incentive compatible but

there is another equilibrium in the �direct mechanism�where each agent misreports his type, and

each agent gets a payo¤ of 1.

Robust monotonicity is clearly satis�ed even if the rewards Yi (��i) are restricted to the deter-

ministic allocations Z. We will show that robust implementation is not possible even in an in�nite

mechanism if we restrict attention to deterministic mechanisms. Fix a mechanismM. Let

S�i (�i) = fmi : g (mi;mj) = f (�i; �j) for some mj ; �jg ,

be the set of messages for agent i which would select the allocation recommended by the social

choice function for some mj ; �j . We now show by induction that, S�i (�i) � Ski (�i) for all k using

the structure of the payo¤s. Suppose that this is true for k. Then for any mi 2 S�i (�i) � Ski (�i),

there exists mj 2 S�j (�j) � Skj (�j) such that g (mi;mj) = f (�i; �j). Thus there does not exist

�i 2 �(Mi) such thatX
m0
i

�i
�
m0
i

�
ui
�
g
�
m0
i;mj

�
; (�i; �j)

�
> ui (g (mi;mj) ; (�i; �j)) = 3.

So mi 2 Sk+1i (�i).
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Thus we must have that (m1;m2) 2 S�1 (�1)�S�2 (�2) implies g (m1;m2) = f (�1; �2). Let m�
i (�)

be any selection from S�i (�). Now let k� be the lowest k such that, for some i,

m�
i

�
�0i
�
=2 Ski (�i) .

Without loss of generality, let i = 1. Note m�
2

�
�02
�
2 Sk�12 (�2) by de�nition of k�. If agent 1 was

type �1 and was sure his opponent were type �2 and choosing action m�
2

�
�02
�
, we know that he

could guarantee himself a payo¤ of 1 by choosing m�
1

�
�01
�
. Since m�

1

�
�01
�
is deleted for type �1 at

round k�, we know that there exists �1 2 �(M1) such thatX
m0
1

�1
�
m0
1

�
g1
�
m0
1;m

�
2

�
�02
��
> 1;

and thus there exists m0
1 such that g1

�
m0
1;m

�
2

�
�02
��
= f (�1; �2). This implies that m�

2

�
�02
�
2

S�2 (�2), a contradiction.

The example uses the fact that the social choice function always selects an outcome that is

strictly Pareto-optimal and - paradoxically - it is this feature which inhibits rationalizable imple-

mentation in the current example. Borgers (1995) proves the impossibility of complete information

implementation of non-dictatorial social choice functions in iteratively undominated strategies when

the set of feasible preference pro�les includes such unanimous preference pro�les and the argument

here is reminiscent of Borgers�argument.
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8 Appendix B

8.1 Robust Monotonicity and Robust Measurability

In this section we document that robust measurability neither implies nor is implied by robust

monotonicity. This observation parallels an observation in the standard Bayesian implementation

literature. Abreu and Matsushima (1992b) showed that Bayesian incentive compatibility and a

measurability conditions, henceforth referred to as Abreu-Matsushima measurability are neces-

sary conditions for virtual implementation in Bayesian Nash equilibrium in well-behaved mecha-

nisms. Serrano and Vohra (2005) describe a �virtual monotonicity�condition - a weakening of the

Bayesian monotonicity condition of Postlewaite and Schmeidler (1986) and Jackson (1991) - which,

together with Bayesian incentive compatibility, is necessary and su¢ cient for virtual implementa-

tion in Bayesian Nash equilibrium using perhaps badly behaved mechanisms. Virtual monotonicity

must therefore be a weakening of Abreu-Matsushima measurability. Example 2 in Serrano and

Vohra (2001) exhibits an environment where all non-constant social choice functions fail Abreu-

Matsushima measurability fails but all social choice functions satisfy virtual monotonicity and

many satisfy Bayesian monotonicity. On the other hand, the social choice function allocating a

single object e¢ ciently under private values will fail Bayesian monotonicity (any e¢ cient alloca-

tion mechanism will allow undesirable equilibria) but will satisfy Abreu-Matsushima measurability.

Thus Bayesian monotonicity neither implies nor is implied by Abreu-Matsushima measurability.

Example 1: Robust Measurability holds while Robust Monotonicity fails Consider

an environment with two agents, a and b. The payo¤ type space of each agent i is given by

�i =
�
�1i ; �

2
i ; �

3
i

	
. The allocation space is given byX = fx1; x2; x3; x4g. We display below the payo¤

of agent a. The payo¤s for agent b are symmetric and are obtained by switching the subscripts a

and b below:

x1 �1b �2b �3b

�1a 1 1 1

�2a 1 1 0

�3a 0 0 1

x2 �1b �2b �3b

�1a 0 0 1

�2a 1 1 1

�3a 1 1 0

x3 �1b �2b �3b

�1a 1 1 0

�2a 0 0 1

�3a 1 1 1

x4 �1b �2b �3b

�1a
2
3 + "

2
3 � "

2
3

�2a
2
3 + "

2
3 � "

2
3

�3a
2
3 + "

2
3 � "

2
3

: (27)

Given the payo¤ matrix given by (27), it is immediate to show that the limit set of sepa-

rable set, ��i , as de�ned earlier in (11) is given by the collection of singleton sets with �
�
i =��

�1i
	
;
�
�2i
	
;
�
�3i
		
. The limit set is obtained by observing that a subset 	j separates a subset 	i

whenever #	i � #	j and #	i > 1 but not if #	i < #	j or #	i = 1. Thus while at the 0-th
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level, the inseparable sets of agent i, �0i , will consist of all subsets of payo¤ types, the 1-st level

of inseparable sets of agent i, �1i , will only consist of all sets of payo¤ types with cardinality at

most 2, and the 2-nd level of inseparable sets of agent i, �2i , will consist exactly of all singletons.

It follows that the robust measurability condition does not impose any restrictions on the social

choice functions.

We illustrate the process of separation for 	a = �a and 	b = �b. A given type �a has a

belief ��a (�b) over the payo¤ types of agent b. We denote p�a , ��a
�
�1b
�
and q�a , ��a

�
�2b
�
. The

expected utility of type �a with belief ��a (�b) over the allocations fx1; x2; x3; x4g is then given by
for the three types �1a; �

2
a; �

3
a by:

( 1; 1� p�1a � q�1a ; p�1a + q�1a ;
2
3 + "

�
p�1a � q�1a

�
)

( p�2a + q�2a ; 1; 1� p�2a � q�2a ;
2
3 + "

�
p�2a � q�2a

�
)

( 1� p�3a � q�3a ; p�3a + q�3a ; 1; 2
3 + "

�
p�3a � q�3a

�
)

(28)

It is now immediate to verify that there does not exist a triple of beliefs
�
p�1a ; q�1a

�
;
�
p�2a ; q�2a

�
and�

p�3a ; q�3a

�
such that the cardinal preference pro�les of the payo¤ types �1a; �

2
a and �

3
a coincide. In

fact, for every pair among the three types, we can �nd identical preference pro�les, but not for the

triple itself.

We next show that the robust monotonicity condition fails for some social choice functions f .

In fact, consider the following ex post incentive compatible social choice function f given by:

f �1b �2b �3b

�1a x1 x2 x2

�2a x2 x2 x2

�3a x2 x2 x3

(29)

For the given payo¤ environment (27) and the social choice function (29), we consider the

deception with �i (�i) = �i for all i and �i. By symmetry of the payo¤s and the deceptions across

states, it su¢ ces to consider a single type pro�le, namely �i = �1a and �
0
i = �2a and likewise �

0
�i = �2b .

The robust monotonicity conditions require that there exists a reward y such that:

ua
�
y;
�
�1a; �

1
b

��
> ua

�
f
�
�2a; �

2
b

�
;
�
�1a; �

1
b

��
;

ua
�
y;
�
�1a; �

2
b

��
> ua

�
f
�
�2a; �

2
b

�
;
�
�1a; �

2
b

��
; (30)

ua
�
y;
�
�1a; �

3
b

��
> ua

�
f
�
�2a; �

2
b

�
;
�
�1a; �

3
b

��
;
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and

ua
�
f
�
�1a; �

2
b

�
;
�
�1a; �

2
b

��
� ua

�
y;
�
�1a; �

2
b

��
;

ua
�
f
�
�2a; �

2
b

�
;
�
�2a; �

2
b

��
� ua

�
y;
�
�2a; �

2
b

��
; (31)

ua
�
f
�
�3a; �

2
b

�
;
�
�3a; �

2
b

��
� ua

�
y;
�
�3a; �

2
b

��
:

As we evaluate the inequalities (30) for the given payo¤ environment (27) and the social choice

function (29), we �nd that the values on the right hand side are given as follows:

ua
�
y;
�
�1a; �

1
b

��
> ua

�
x2;
�
�1a; �

1
b

��
= 0;

ua
�
y;
�
�1a; �

2
b

��
> ua

�
x2;
�
�1a; �

2
b

��
= 0;

ua
�
y;
�
�1a; �

3
b

��
> ua

�
x2;
�
�1a; �

3
b

��
= 1:

But as the value of the last value of the misreport is 1 for agent a, it follows that we cannot �nd

a reward which strictly exceeds 1. It follows that the robust monotonicity condition is violated in

this example.

The di¤erence between robust measurability and robust monotonicity here stems from the fact

the di¤erent types of agent i could be separated in the payo¤ environment with allocations which

were not called upon by the social choice function. The robust monotonicity condition was therefore

limited to use the allocation x4 as a reward, but here it failed to provide a higher utility than the

one provided by the social choice function under some report pro�les.

Example 2: Robust Measurability fails but Robust Monotonicity holds There are two

agents, a and b, and each agent i has two types, �i and �0i. There are six pure outcomes, X =

fx1; x2; x3; x4; x5; x6g. The state dependent utility of agents a and b are depicted in the following
tables:

x1 �b �0b

�a 2; 2 �2; 0
�0a 0; 0 0; 2

x2 �b �0b

�a �2; 0 2; 2

�0a 0; 2 0; 0

x3 �b �0b

�a 0; 0 0; 2

�0a 2; 2 �2; 0

x4 �b �0b

�a 0; 2 0; 0

�0a �2; 0 2; 2

(32)

and
x5 �b �0b

�a 0; 0 0; 0

�0a 0; 0 0; 0

x6 �b �0b

�a 1; 1 1; 1

�0a 1; 1 1; 1

(33)

Suppose agent a assigns equal probability to each type of agent b. Then - whatever his payo¤

type - his expected utility from allocations (x1; x2; x3; x4; x5; x6) are (0; 0; 0; 0; 0; 1). Thus the set
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�b =
�
�b; �

0
b

	
does not separate the set �a =

�
�a; �

0
a

	
. A symmetric argument establishes that

�a does not separate �b. We conclude that every pair of types of each agent is not separable and

hence only constant social choice functions satisfy robust measurability.

But consider the following (Pareto-e¢ cient) social choice function:

f �b �0b

�a x1 x2

�0a x3 x4

(34)

Given the social choice function f , it is immediate to verify that strict ex post incentive compatibility

and robust monotonicity both hold. To verify the latter, observe that consider a deception with

�i

�e�i� = �i for some e�i. Without loss of generality, assume that �a (�a) = �a. Now type �a

reporting �0a can be o¤ered outcome x6 to report the deception. Given the de�nition of robust

monotonicity, we need to verify that

ua (y; (�a; �b)) > ua
�
f
�
�0a; �

0
b

�
; (�a; �b)

�
ua
�
y;
�
�a; �

0
b

��
> ua

�
f
�
�0a; �

0
b

�
;
�
�a; �

0
b

�� (35)

as well as
ua
�
f
�
�a; �

0
b

�
;
�
�a; �

0
b

��
� ua

�
y;
�
�a; �

0
b

��
ua
�
f
�
�0a; �

0
b

�
;
�
�0a; �

0
b

��
� ua

�
y;
�
�0a; �

0
b

�� : (36)

Given the payo¤ described in (32) and (33) and given the social choice function f , we can verify

that with y = x6, we have:

1 = ua (y; (�a; �b)) > ua
�
f
�
�0a; �

0
b

�
; (�a; �b)

�
= 0

1 = ua
�
y;
�
�a; �

0
b

��
> ua

�
f
�
�0a; �

0
b

�
;
�
�a; �

0
b

��
= 0

and
2 = ua

�
f
�
�a; �

0
b

�
;
�
�a; �

0
b

��
� ua

�
y;
�
�a; �

0
b

��
= 1

2 = ua
�
f
�
�0a; �

0
b

�
;
�
�0a; �

0
b

��
� ua

�
y;
�
�0a; �

0
b

��
= 1

:

The social choice function f can be robustly implemented with the following mechanism. Agent a

sends a message ma 2 Ma =
�
�a; �

0
a

	
[ f1; 2; 3; ::::g, agent b sends a message mb 2 Mb =

�
�b; �

0
b

	
.

If ma 2
�
�a; �

0
a

	
, then g (ma;mb) = f (ma;mb); if ma 2 f1; 2; 3; ::::g, then g (ma;mb) is the lottery

putting probability 1
ma

on x5 and probability 1 � 1
ma

on x6. Now truth-telling survives iterated

deletion of never best responses. Also, (i) sending message 2 with an expected payo¤ of 12 is always

a better response for agent a than misreporting his type with a payo¤ 0; given thruthtelling by

agent b and (ii) choosing ma + 1 with an expected payo¤ of ma
ma+1

is always a better response for

agent a than sending message ma with an expected payo¤: ma�1
ma

. So player a must tell the truth

and truth-telling is then the only best response for agent b.
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8.2 Bayesian Monotonicity

This subsection contains the proof of Proposition 8 which establishes the equivalence between robust

monotonicity and Bayesian monotonicity on every type space by means of a constructive proof (via

a speci�c type space).

Proof of Proposition 8. ()) We will show that if robust monotonicity fails, we can construct a
type space where Bayesian monotonicity fails. The argument will be constructive.

Fix an unacceptable deception �. Suppose that robust monotonicity fails. Then for each i, �i,

�0i 2 �i (�i), there exist

��i
�
�i; �

0
i

�
2 ��i and  i

�
�i; �

0
i

�
2 �

�
��1�i

�
��i

�
�i; �

0
i

���
(37)

such that:

ui
�
f
�
�00i ; ��i

�
�i; �

0
i

��
;
�
�00i ; ��i

�
�i; �

0
i

���
� ui

�
y;
�
�00i ; ��i

�
�i; �

0
i

���
; 8�00i 2 �i (38)

impliesX
��i2��i

 i (��i)
�
�i; �

0
i

�
ui
�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
�

X
��i2��i

 i (��i)
�
�i; �

0
i

�
ui (y; (�i; ��i)) .

(39)

Now we construct a type space around �i; �
0
i and  i

�
�i; �

0
i

�
given by (37) for which Bayesian

monotonicity fails. First, agent i has a set of "deception" types T 1i which are isomorphic to

�i =
��
�i; �

0
i

�
: �i 2 �i and �0i 2 �i (�i)

	
; thus there exists a bijection �1i : T

1
i ! �i. The type

responding to
�
�i; �

0
i

�
has payo¤ type �i and believes that the other agents are of type:��

�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

with probability  i (��i)
�
�i; �

0
i

�
. Second, agent i has a set of "pseudo-complete information types"

T 2i , which are isomorphic to �; thus there exists a bijection �
2
i : T

2
i ! �. The type corresponding

to � has payo¤ type �i and he is convinced that each other agent j is type
�
�1j
��1

(�j ; �j).

Slightly more formally, we have

Ti = T 1i [ T 2i .

If ti 2 T 1i and �1i (ti) =
�
�i; �

0
i

�
, then b�i (ti) = �i;

if ti 2 T 2i and �2i (ti) = �, then b�i (ti) = �i.
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If ti 2 T 1i and �1i (ti) =
�
�i; �

0
i

�
, then

��i (t�i) [ti] =

8<:  i (��i)
�
�i; �

0
i

�
; if t�i 2 T 1�i and ��i =

��
�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

0; if otherwise

If ti 2 T 2i and �2i (ti) = �, then

��i (t�i) [ti] =

8<: 1; if t�i 2 T 1�i and ��i =
��
�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

0; if otherwise

Now consider the Bayesian deception on this type space where each type
�
�1i
��1 �

�i; �
0
i

�
reports

himself to be type
�
�1i
��1 �

�0i; �
0
i

�
, and all other types report their types truthfully. Thus

�i (ti) =

( �
�1i
��1 �

�0i; �
0
i

�
; if ti =

�
�1i
��1 �

�i; �
0
i

�
ti; if otherwise

.

Since � was unacceptable, we must have that f
�b� (t)� 6= f

�b� (� (t))� for some t. Thus the

Bayesian monotonicity condition (De�nition 15) for this type space requires that there exist i, ti

and h : T ! Z such thatX
t�i2T�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti] > X

t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ; (40)

and X
t�i2T�i

ui

�
f
�b� �t00i ; t�i�� ;b� �t00i ; t�i�� b�i (t�i) �t00i �

�
X

t�i2T�i

ui

�
h (�i (ti) ; t�i) ;b� �t00i ; t�i�� b�i (t�i) �t00i � ; 8t00i : (41)

The ti cannot be an element of T 2i , because such a type does not expect any deviation from truth-

telling under the deception. So it must be an element of T 1i , with �
1
i (ti) =

�
�i; �

0
i

�
. Now condition

(40) becomesX
��i2��i

ui

�
h

��
�1i
��1 �

�0i; �
0
i

�
;

���
�1j
��1 �

�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

���
j 6=i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
>

X
��i2��i

ui
�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
. (42)

But letting t00i in condition (41) be in T
2
i with �

2
i (t

00
i ) =

�
�00i ; ��i

�
�i; �

0
i

��
, we have

ui
�
f
�
�00i ; ��i

�
�i; �

0
i

��
;
�
�00i ; ��i

�
�i; �

0
i

���
(43)

� ui

�
h

��
�1i
��1 �

�0i; �
0
i

�
;
��
�1j
��1 �

�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

���
j 6=i

�
;
�
�00i ; ��i

�
�i; �

0
i

���
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for all �00i . Setting

z = h

��
�1i
��1 �

�0i; �
0
i

�
;

���
�1j
��1 ��

�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

����
j 6=i

��
,

condition (42) becomes X
��i2��i

ui (z; (�i; ��i)) i (��i)
�
�i; �

0
i

�
>

X
��i2��i

ui
�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
.

while condition (43) requires z 2 Yi
�
��i

�
�i; �

0
i

��
. But these latter claims contradict our initial

assumption that robust monotonicity fails (i.e., (38)). Thus Bayesian monotonicity fails for this

type space and the claim is proved.

(() Suppose f satis�es robust monotonicity. Fix any type space T and any deception � with

f
�b� (t)� 6= f

�b� (� (t))� for some t. De�ne � by
�i (�i) =

n
�0i : 9ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i

o
.

Deception � is unacceptable, so by robust monotonicity, there exist i, �i, �0i 2 �i (�i) such that for
every �0�i 2 ��i and  i 2 �

�
��1�i

�
�0�i
��
, there exists y

�
�0�i;  i

�
2 Yi

�
�0�i
�
such thatX

��i2��i

 i (��i)ui
�
y
�
�0�i;  i

�
; (�i; ��i)

�
>

X
��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
. (44)

Now choose any ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i. For every (mis-)report �
0
�i, we now

derive a distribution over payo¤ types ��i which represents the likelihood that the report �0�i comes

from the true payo¤ type pro�le ��i, given the type space T . For each �0�i, de�ne  i
�
�0�i
�
2 �(��i)

by

 i (��i)
�
�0�i
�
,

P
ft�i:b�j(�j(tj))=�0j and b�j(tj)=�j ; 8j 6=ig b�i (t�i) [ti]P

ft�i:b�j(�j(tj))=�0j , 8j 6=ig b�i (t�i) [ti]
: (45)

Now let h satisfy

h
�
t0i; t�i

�
,

8<: y
hb��i (t�i) ;  i hb��i (t�i)ii if t0i = �i (ti)

f
�b� (t0i; t�i)� if otherwise

. (46)

To establish Bayesian monotonicity, it is enough to show that the two inequalities of Bayesian

monotonicity are satis�ed, or:X
t�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti] >X

t�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ; (47)
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and X
t�i

ui

�
f
�b� �t0i; t�i�� ;b� �t0i; t�i�� b�i (t�i) �t0i� (48)

�
X
t�i

ui

�
h (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) [ti] ; 8t0i:

By inserting the posterior beliefs  i and the rewards h (t
0
i; t�i), as de�ned above in (45) and (46)

respectively, we can rewrite the two sides of the inequality (47) as follows:X
t�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti]

=
X
�0�i

0B@ X
ft�i:b�j(�j(tj))=�0j , 8j 6=ig

b�i (t�i) [ti]
1CAX

��i

 i (��i)
�
�0�i
�
ui
�
y
�
�0�i;  i

�
�0�i
��
; �
�

and X
t�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (ti) [t�i]

=
X
�0�i

0B@ X
ft�i:b�j(�j(tj))=�0j ; 8j 6=ig

b�i (t�i) [ti]
1CAX

��i

 i (��i)
�
�0�i
�
ui
�
f
�
�0
�
; �
�

so (47) follows from (44). AlsoX
t�i

ui

�
h (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) �t0i�

=

8<:
P

t�i
ui

�
y
hb��i (t�i) ;  i hb��i (t�i)ii ;b� (t0i; t�i)� b�i (t�i) [t0i] if t0i = �i (ti)P

t�i
ui

�
f
�b� (t0i; t�i)� ;b� (t0i; t�i)� b�i (t�i) [t0i] ; if t0i 6= �i (ti)

Now y
hb��i (t�i) ;  i hb��i (t�i)ii 2 Yi �b��i (t�i)� implies (48).

The proof may appear rather intricate in its details. We next give a brief outline of the basic

steps to show how interim implies robust monotonicity. The proof proceeds by contrapositive. We

start with an unacceptable deception � which by hypothesis fails robust monotonicity and hence

satis�es the inequalities (38) and (39). For the given deception �, we then create a type space,

consisting of two components for every agent i. The �rst component for agent i is created by the

set of pairs of payo¤ types
�
�i; �

0
i

�
, where the �rst entry is the true payo¤ type and the second

entry is a feasible deception (under �), or �0i 2 �i (�i). For this reason, we refer to these types as
�deception types.�For every such pair

�
�i; �

0
i

�
there exists at least one particular payo¤ pro�le �0�i
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which acts as a misreport. Under the deception �, this payo¤ pro�le �0�i could have been reported

by all true payo¤ pro�les which are in the support of  i. Consequently, the belief component of

type
�
�i; �

0
i

�
is given by simply adopting  i

�
�
���i; �0i �. The second component consists of �pseudo

complete information types�, described by ti = � 2 �. Each such type has a belief that assigns
probability one to the event that the true payo¤ pro�le is given by � and that all other agents

report the deception type (�j ; �j), and hence the �pseudo�in the labelling.

Given this type space Ti, we then consider a particular deception �i : Ti ! Ti. The deception

�i is localized around the �deception types�and the �pseudo complete information types�report

thruthfully. The deception �i consists of agent i always reporting his deception type rather than

his true type, or �i
�
�i; �

0
i

�
=
�
�0i; �

0
i

�
. We then verify whether f is interim monotone under �.

The existence of the pseudo complete information types � forces the interim incentive compatibility

conditions to reduce to ex post incentive compatibility conditions. This guarantees the hypothesis

in the robust monotonicity notion, namely inequality (38), and thus leads to the conclusion in form

of the inequalities (39). But then we obtain a contradiction to the reward condition of interim

monotonicity, unless the hypothesis for the interim monotonicity condition, namely f 6= f � �, is
not satis�ed, i.e. f = f � � holds, but of course this implies that � is acceptable.

49



References

Abreu, D., and H. Matsushima (1992a): �Virtual Implementation in Iteratively Undominated

Strategies: Complete Information,�Econometrica, 60, 993�1008.

(1992b): �Virtual Implementation In Iteratively Undominated Strategies: Incomplete

Information,�Discussion paper, Princeton University and University of Tokyo.

Battigalli, P. (1999): �Rationalizability in Incomplete Information Games,�Discussion Paper

ECO 99/17, European University Institute.

Battigalli, P., and M. Siniscalchi (2003): �Rationalization and Incomplete Information,�

Advances in Theoretical Economics, 3, Article 3.

Benoit, J., and E. Ok (2008): �Nash Implementation Without No Veto,�Games and Economic

Behavior, forthcoming.

Bergemann, D., and S. Morris (2005a): �Robust Implementation: The Role of Large Type

Spaces,�Discussion Paper 1519, Cowles Foundation, Yale University.

(2005b): �Robust Mechanism Design,�Econometrica, 73, 1771�1813.

(2007): �Robust Implementation in Direct Mechanisms,�Discussion Paper 1561R, Cowles

Foundation, Yale University.

(2008a): �Ex Post Implementation,�Games and Economic Behavior, 63, 527�566.

(2008b): �Robust Implementation in General Mechanisms,� Discussion paper, Cowles

Foundation, Yale University.

(2008c): �Strategic Distinguishability and Robust Virtual Implementation,� Discussion

Paper 1609R, Cowles Foundation, Yale University.

Borgers, T. (1995): �A Note on Implementation and Strong Dominance,� in Social Choice,

Welfare and Ethics, ed. by W. Barnett, H. Moulin, M. Salles, and N. Scho�eld. Cambridge

University Press, Cambridge.

Brandenburger, A., and E. Dekel (1987): �Rationalizability and Correlated Equilibria,�

Econometrica, 55, 1391�1402.

Chung, K.-S., and J. Ely (2001): �E¢ cient and Dominance Solvable Auctions with Interdepen-

dent Valuations,�Discussion paper, Northwestern University.

50



Dekel, E., D. Fudenberg, and S. Morris (2007): �Interim Correlated Rationalizability,�

Theoretical Economics, 2, 15�40.

Duggan, J. (1997): �Virtual Bayesian Implementation,�Econometrica, 65, 1175�1199.

Gale, D. (1989): The Theory of Linear Economic Models. University of Chicago Press, Chicago.

Hughes, G., and M. Creswell (1996): A New Introduction Into Modal Logic. Routledge, Lon-

don.

Jackson, M. (1991): �Bayesian Implementation,�Econometrica, 59, 461�477.

Jackson, M. (1992): �Implementation in Undominated Strategies: A Look at Bounded Mecha-

nisms,�Review of Economic Studies, 59, 757�775.

Lipman, B. (1994): �A Note on the Implications of Common Knowledge of Rationality,�Games

and Economic Behavior, 6, 114�129.

Palfrey, T., and S. Srivastava (1989): �Mechanism Design with Incomplete Information: A

Solution to the Implementation Problem,�Journal of Political Economy, 97, 668�691.

Postlewaite, A., and D. Schmeidler (1986): �Implementation in Di¤erential Information

Economies,�Journal of Economic Theory, 39, 14�33.

Serrano, R., and R. Vohra (2001): �Some Limitations of Virtual Bayesian Implementation,�

Econometrica, 69, 785�792.

(2005): �A Characterization of Virtual Bayesian Implementation,�Games and Economic

Behavior, 50, 312�331.

Wilson, R. (1987): �Game-Theoretic Analyses of Trading Processes,� in Advances in Economic

Theory: Fifth World Congress, ed. by T. Bewley, pp. 33�70, Cambridge. Cambridge University

Press.

51


