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The statement “it is common belief that player i/ is Bayesian rational™ (where
Bayesian rational means an expected utility maximizer) is defined for two-person
games with perfect information. It is shown that in most such games it is not
possible for a theory to postulate the Bayesian rationality of all players and to be
common belief. This bears directly upon the salience of standard solution concepts
such as subgame perfect, and sequential equilibria as well as upon the extensive
form rationalizability theories of D. Bernheim (Econometrica 82, 1984, 1007-1028)
and D. Pearce (Econometrica 52, 1984, 1029-1050) which rely heavily on the com-
mon beliefl of Bayesian rationality. Journal of Economic Literature Classification
Number: C72. €. 1993 Academic Press, Inc.

1. INTRODUCTION

What is a theory of games? From the classical point of view at least, it
is a description of “rational” behavior. Equipped with a book entitled
“Theory of Games,” any individual, in any strategic situation, need only
consult the book in order to make a rational decision. Of course, any
description of rational behavior which claims to be complete must be
immune to defections from it. That is, it must never be to one’s advantage
to behave in a manner that the theory deems irrational. But in order to
check this, one must able to evaluate the effect of not conforming to the
theory. Thus, the theory must provide a description of the (rational)
behavior of the others upon the one’s defection. Indeed, because no player
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can ensure that the others conform to it, it is incumbent upon the theory
to provide that player with a rational decision whether or not the others
conform. In the words of von Neumann and Morgenstern,

[The] description [of rational behavior] must include rules of conduct for all
conceivable situations—including those where ‘the others’ behaved irrationally, in
the sense that the theory will set for them. {12, Chap. I, Sect. 4.1.2]

This is the view we shall adopt here. A theory of games provides any
player with a rational decision whenever a decision must be made, regard-
less of whether or not the others have made decisions consistent with the
theory. Throughout, the phrase “theory of games” will be used in this
sense. The purpose of the present paper is to outline some of the con-
straints that bear upon any theory of games. In particular, it is shown that
no theory of finite two-person games with perfect information, unless it
applies only to a rather small subset of such games, can contain both of the
following assumptions without logical contradiction:

(a) each player believes that his opponent is an expected utility
maximizer, so long as this is consistent with the hostory of play,

(b) both players believe (a), both players believe that the other
believes (a), etc.

The consequences of this are rather striking.

Suppose, for instance, that the theory does not contain assumption (a).
This raises the potential for a player to believe that his opponent is not a
maximizer, even though each of the opponent’s past choices is consistent
with expected utility maximization. On the other hand, if (b) is absent,
then although both players believe, when consistent with the history of
play, that their opponent is a maximizer, they may not believe that the
other believes this (or that the other believes that the other believes this,
etc). That is, if one of (a) or (b) is absent from the theory, then there may
be situations arising in the course of play that are consistent with each
player being an expected utility maximizer, yet expected utility maximiza-
tion is not common knowledge (Aumann [1], Lewis [11]). Why is this
important?

Kreps, Milgrom, Roberts, and Wilson [9] provide an extremely elegant
model of rational cooperation in the finitely repeated prisoners’ dilemma.
They show that if there is even the slightest possibility that one of the
players is not an expected utility maximizer, then rational play need not
consist solely of defecting at each stage. Indeed, if there is only the
possibility that one of the players does not know that the other is a
maximizer (even though he is), again cooperation can result in a rational
manner. And generally, so long as expected utility maximization (hence-
forth EUM) is not common knowledge—and the game is long enough—
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rational play need not coincide with backward induction in the finitely
repeated prisoners’ dilemma or even any game with perfect information
and no indifference among terminal nodes.

The consequence of omitting one of (a) or (b) from a theory of games
is now clear. Without both (a) and (b), there may be positions in a game
consistent with both players being expected utility maximizers in which
EUM is not common knowledge. But as shown by Kreps er al., the players,
from that point on, may then rationaly choose not to play according to
backward induction. But this means that playing according to backward
induction before this position arises need not be the only rational play,
since this relies on backward induction play in the future, and future play
need not be according to backward induction. Thus, without both (a) and
(b}—and it will be shown that both cannot be present—a theory of games
might admit non-backward induction outcomes as being consistent with
rational play.

Of course, just because both (a) and (b) are absent from a theory does
not mean that non-backward induction outcomes are consistent with it.
Other assumptions making up the theory may rule out all but backward
induction play. The point is that (a) and (b} seem entirely natural and that
alternative assumptions geared toward backward induction outcomes are
typically ad hoc or unconvincing.

Since (as we shall argue) one of (a) or (b) must be absent from any
theory of games, thereby potentially allowing non-backward induction out-
comes, the plausibility of standard equilibrium concepts such as subgame
perfection (Selten [18]), perfection (Selten [19]), sequential equilibrium
(Kreps and Wilson [10]), and others is called into question. Moreover,
even the more fundamental ideas put forward independently by Bernheim
[5] and Pearce [13] concerning extensive form games are at issue. Both of
their notions of extensive form rationalizatility yield backward induction
outcomes in games with perfect information and no indifference among
terminal nodes. In fact, the extensive form theory developed by Pearce is
based almost exclusively on the joint assumptions (a) and (b).

In order to carry out the task at hand, formal meaning shall be given to
the statement “during the course of play, it is possible for each player to
believe the other is an expected utility maximizer, for each to believe that
the other believes this, etc.” Referring to expected utility maximizers as
Bayesian rational players, we thus intend to define the statement “during
the course of play, it is possible for Bayesian rationality to be common
belief.” Note that together (a) and (b) imply that so long as neither player’s
Bayesian rationality has been contradicted through the course of play,
Bayesian rationality is and remains common belief. We shall employ our
definition to show that for “most” two-person games having perfect infor-
mation, this condition on common beliefs simply cannot hold.
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It is our feeling that the difficulties others have expressed with backward
induction (see for instance Basu [2, 3], Binmore [6], Rosenthal [16]) are
intimately connected with the impossibility of Bayesian rationality being
common belief. Indeed, every example of a game (having perfect informa-
tion) we know of used to cast doubt upon the logic of backward induction
is such that during the course of some play of the game, Bayesian
rationality cannot be common belief according to our definition.

Section 3 introduces the environment and notation, and formally defines
those positions in a game that are consistent with the common belief of
Bayesian rationality. Section 4 defines the notion of a belief-consistent
game as (essentially) one in which (a) and (b) can be jointly assumed
without contradiction. Our main theorem shows that few games are belief-
consistent.

Section S5 briefly discusses the significance of our result in terms of its
implications regarding the backward induction argument, Bernheim [5]
and Pearce’s [ 13] notions of extensive form rationalizability, and extensive
form game theory in general. A discussion of the finitely repeated prisoner’s
dilemma is also provided there. We begin with an example.

2. AN ExamPLE

Consider the following two-person game having perfect information.'
A referee comes equipped with »n dollars and places one in front of players
one and two. Player one can take the dollar thereby ending the game, or
he can leave it. If he leaves it, the referee places a second dollar in front of
the players. Player two now has the opportunity to take the two dollars
and end the game or not, in which case the process repeats. In general, at
the kth stage of the game, the referee adds one dollar to the pot bringing
its total to k dollars. If k 1s odd (even), player one (two) may take the k
dollars and end the game, or leave it. Players’ payoffs are assumed strictly
increasing in dollars. Finally, should the game continue until the nth stage
and the player whose turn it is decides to leave the n dollars, it is then
given to the other player. Call this game TOL(n) (Take it Or Leave it).

TOL(n) for n odd is depicted in Fig. 1.

Clearly, the unique subgame-perfect equilibrium involves player one
taking the first dollar with probability one regardiess of the value of n.

We now move to the problem of common belief. It is enough to consider
TOL (3) (see Fig. 2). Consider the rather leading question: Is it possible for
Bayesian rationality to be common belef after player one leaves the first
dollar (i.e., at two’s node)? We proceed informally to conclude that the

" This example is similar in spirit to Rosenthal’s {16].
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answer is no. The argument is really quite straightforward and proceeds by
contradiction.

Suppose that Bayesian rationality were common belief at player two’s
node. Player two, believing that player one is Bayesian rational (i.e., an
expected utility maximizer), must believe that at stage 3, player one will
take the three dollars, leaving player two with nothing. A rational player
two would respond to this by taking the two dollars at the second stage of
the game leaving player one with zero. Hence, if at player two’s informa-
tion set it is the case that

(i) player two is Bayesian rational, and

(ii) player two believes that player one is Bayesian rational,
then player two will take the two dollars leaving player one with zero. But
since Bayesian rationality is common belief, it must be the case that in
particular,

(i") player one believes that player two is Bayesian rational, and

(') player one believes that player two believes that player one is
Bayesian rational,

i.e., player one believes (i) and (ii) above. Finally, however, this implies
that player one believes that player two will take the two dollars leaving
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player one with zero and rendering player one’s choice not to take the
dollar in the first round (recall that player two’s information set has been
reached) an irrational (non-expected utility maximizing) one. Hence, player
two must believe that player one is not Bayesian rational which contradicts
our original assumption and completes the argument.

A similar argument shows that in TOL(n), as soon as player one leaves
the first dollar it is not possible for Bayesian rationality to be common
belief. That is, the common belief of Bayesian rationality fails precisely at
nodes off the backward induction path in TOL(n). This feature of TOL(n)
is, however, somewhat misleading. An example in the next section is
provided in which common belief of Bayesian rationality is possible at a
node which is off the backward induction path. More on this is provided
in the remark preceding the Proposition.

3. BAYESIAN RATIONALITY AND COMMON BELIEFS

We shall restrict our attention throughout to two-person finite extensive
form games with perfect information and assume the reader to be famihar
with the formal definition (see Selten [19]). The set of decision nodes, X,
is partitioned into X, and X,, where X, is player i’s set of decision nodes,
and X is partially ordered by >. We shall say that x weakly follows y when
x>y or x=y and write x > y. M, denotes player /’s set of mixed strategies.
For any xe X and m;e M,, we say that m; reaches x (or x is reachable by
m;) if for some m ,eM _,, (m;,m ;) assigns a path through x positive
probability. Given x and x' € X, x immediately precedes x' if x < x' and
Vye X, y<x'=y<x. In all diagrams, payoffs will be represented by the
transpose of the vector (a, #), where a, b denotes 1’s, 2’s payolff, respec-
tively.

We assume (as in Pearce [13]) that players, when required to make
a decision in the face of uncertainty, are able to obtain subjective
probabilities over the uncertain events. Decision-making under uncertainty
is thus reduced to a Bayesian decision problem as in Savage [17]. Hence,
associated with each decision node of player i, x € X, is a conjecture ¢,(x)
about the mixed strategy his opponent, —/, is using. Although c,(x) should
be thought of as a probability measure over M ,, Pearce [13] has shown
(Appendix A, Lemmas | and 2) that for the purpose of expected utility
calculation, ¢,(x) may be taken to be a member of M .. In fact, Pearce
shows that if player /s beliefs about his opponent’s behavior have support
A< M _,, then we may take ¢,(x)e A, where A denotes the convex hull of
A. We will also need to speak of i’s beliefs at xe X _;, about the strategy
—1i 1s using. Consequently, ¢;(x)e M _; will denote i’s beliefs about his
opponent’s mixed strategy at xe X (as opposed to just xelX;). Let
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¢;={c;(x)} . x denote then player i’s conjecture profile, and C; the set of
i's conjecture profiles. Given a conjecture profile ¢, for player i, xe X; and
m;e M,, we say that m, is a best response at x given c¢,(x) if for all m]e M,
inducing the same probability distribution over choices at every x'e X,
such that x' * x, i's expected utility playing m, given ¢,;(x) is at least as
large as i’s expected utility playing m;.

DEFINITION 1. (m;, ¢;}e M, x C, satisfies Bayesian rationality if

(1) VxelX,, c;(x) reaches x

(1) VxelX,, ¥x'eX such that x immediately precedes x', and m;
reaches x’, ¢,(x)=c;(x")

(iii} Vxe X, reachable by m,, m, is a best response at x given ¢,(x).

If (m,, c,) satisfies Bayesian rationality, we shall also say that m, is a
Bayesian rational strategy. Condition (i) above simply asks that a player’s
conjecture be consistent with the information he possesses. Reflected in (ii)
is the idea that a player’s conjecture about his opponent’s behavior, which
includes beliefs about what his opponent would do were he to make any
one of the choices currently available to him, not change as a result of
having actually made a particular choice. This is a particularly weak form
of Bayesian updating. Finally, (iii) asks for exected utility maximizing
behavior at all decision nodes not precluded by i’s strategy.

We wish now to define what it means for Bayesian rationality to be com-
mon belief upon reaching a particular node x, or rather, for this simply to
be possible once x is reached. For this to be possible, there must be a pair
of Bayesian rational strategies m,, m, reaching x, and consistent with each
of the statements: i believes that —i is Bayesian rational at x, / believes that
—i believes that i is Bayesian rational at x, ... for i=1,2.7

Now, suppose that we have determined, for both players, sets of
strategies Rf(n)s M, i=1,2, such that R(n) includes all Bayesian
rational strategies that reach x, and are also consistent with each of the
statements: / believes that —/ is Bayesian rational at x, .. of length n or
less. When will a Bayesian rational strategy, m;, reaching x, also be con-
sistent with each of the statements: i believes that —/ is Bayesian rational
at x, ..., of length n+ 1 or less? Precisely when there is a conjecture profile,
¢;, so that (m,, c¢;) satisfies Bayesian rationality and i’s conjecture at x,

* The iterative definition we are preparing for bears a close resemblance to the iterative
techniques employed in Bernheim's [5] and Pearce’s [13] independent investigations of the
implications of the common knowledge of expected utility maximization on behavior in
general games. They did not address the question of whether or not this kind of common
knowledge was possible in the extensive form, however. Tan and Werlang [20] provide an
alternative to Aumman’s [ 1] definition of common knowledge based upon a similar iterative
procedure applied to beliefs.
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namely c,(x), reflects i’s belief that: —/ is Bayesian rational at x and —i
believes that i is Bayesian rational at x, .., for all such statements up to
length n. But this means that i’s conjecture, ¢;(x), about —i must have
support contained in R* ,(n). Therefore, a Bayesian rational strategy, m,,
reaching x, is also consistent with each of the statements: i believes that
—i is Bayesian rational at «x, .., of length 2+ 1 or less if and only if for
some conjecture profile ¢;, (m,, c¢;) satisfies Bayesian rationality, and

c{x)e R* ,(n). But this then defines Rf(n+ 1) in terms of R* (n) as:

Ri(n+1)= {m,;e M,|for some conjecture profile c,,
(1) m, reaches x,
(ii) (m,, ¢,;) satisfies Bayesian rationality,

(iil) c;(x)eR* (n)}. (*)

Finally, note that R7(1) for i=1, 2 is simply the set of Bayesian rational
strategies for i that reach x. With R{(1) and R;(1) pinned down, R} (n) is
inductively determined by (x) for i =1, 2 and every n > 1. The definition to
follow is now entirely natural:

DEFINITION 2. A node xe X is consistent with the common belief of
Bayesian rationality if N7_, Ri(n)#  for i=1, 2.

We now apply Definition 2 to TOL(3) and formally show that y is not
consistent with the common belief of Bayesian rationality (henceforth CBR)
(see Fig. 3). Since R}(1) is the set of player I's Bayasian rational strategies
reaching y, it consists precisely of those mixed strategies for 1 that induce
a behavioral strategy giving positive weight to r, at x and all weight to d,
at z. Since at y, both D and R are best responses for 2 to some strategy in
M,, Ry(1)= M,. Using (*)} we then have that R}(2)= {D}, since 2’s con-
jecture at y about I's future play must be d,, and D is 2’s unique best
response at y given this. But this renders R} (3) empty since 1’s conjecture
at y must have support in R}(2) and so must be D. But reaching y—which
every strategy in R} (3) must do—is then inconsistent with 1’s Bayesian
rationality. Since Rj(3) is empty, we conclude that y is not consistent
with CBR.

A straightforward application of Definition 2 shows that in TOL(#), only
the origin is consistent with CBR. Hence in TOL(#), once player one leaves
the first dollar it is never again possible that Bayesian rationality be com-
mon belief. This is true despite the fact that every decision node in TOL(n)
is consistent with the Bayesian rationality of both players, and only at the
last decision node does a player ever have a strictly dominant choice. We
conclude that any theory of games that includes a description of rational
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play in TOL(n) for n>3, cannot contain both assumptions (a) and (b)
from the Introduction, since the necessary common beliefs are precluded by
the game’s structure.

Although somewhat peripheral to our main line, the following example
provides some additional insight into the nature of Definition 2. It might
well be thought that in a two-person finite extensive form game with perfect
information, if some node is not consistent with CBR then from that point
on no node will be. This turns our to be false (at least according to our
definition). Consider the game G, shown in Fig. 4.

Calculations verify that y is not consistent with CBR, yet - is, even
though z succeeds y. The intuition behind this is straightforward. At y, the
only way player 2 can believe that player 1 is Bayesian rational, is if 2
believes that 1 believes that 2 will play D at y with high enough weight.
(Otherwise [1’s best response would involve playing J, with probability
one.) But if 2 is Bayesian rational, 2 will play D with probability zero.
Thus, if at y, 2 believes that 1 is Bayesian rational, then 2 must also believe
that 1 believes that 2 is not Bayesian rational. Consequently, y is not con-
sistent with CBR.

How then can z be? Since Definition 2 is concerned only with whether

FIGURE 4
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or not it is possible for rationality to be common belief at z, we need only
provide a single example of beliefs for which this is so. For instance then,
suppose !’s beliefs at x about 2 are that 2 plays D with probability 1.
Hence, 1 does not believe that 2 is Bayesian rational. Being Bayesian
rational himself, player 1 accordingly chooses r, so that y is reached.
However, 1 is wrong about 2. Player 2 is Bayesian rational and therefore
chooses R. This is a surprise to 1 who previously placed probability zero
on this event. Accordingly, player | is free to revise his beliefs about 2 in
any manner consistent with - being reached. In particular, suppose that
after updating, player 1 believes that 2 employed the strategy R. In this
game, this is equivalent to 1 believing at = that 2 is Bayesian rational. Since
each player can explain z having been reached in this manner and each can
believe the other believes this, etc., and this explanation is consistent with
both players’ Bayesian rationality, z is consistent with CBR.

Remark. 1f (s¥ s¥) is a subgame perfect equilibrium, then a
straightforward inductive argument establishes that for any node, x, along
the equilibrium path, s* e R7(n) for i=1, 2, and all n > 1. Consequently,
every node along a subgame perfect equilibrium path is consistent with
CBR. The converse, however, fails. As illustrated in game G,, node z is
consistent with CBR, yet off the unique SPE path.

We now introduce an alternative to Definition 2 which, owing to its sim-
plicity, will be useful in the sequel.’ Given nonempty subsets R* < M, for
i=1,2, the pair (R¥, R¥) will be called a jointly rational belief system
(JRBS) for xe X if for i=1, 2, m,; is a member of R* precisely when there
is a conjecture profile ¢; such that: (i) m, reaches x; (it) (m,, c,) satisfies
Bayesian rationality; and (iii) ¢,(x) € R¥ .

PROPOSITION. A node x € X is consistent with CBR if and only if there is
a jointly rational belief system for x.

Proof. See the Appendix.

4. BELIEF-CONSISTENT GAMES

As exemplified by TOL(n), it is clear that a theory containing assump-
tions (a) and (b) cannot be applied without contradiction to all games. It
is of some interest to know in particular to which two-person games having
perfect information such a theory can be applied. Call a two-person game
having perfect information and no indifference among terminal nodes,
simple.

* I owe thanks to an anonymous referee, who suggested this alternative definition.
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Suppose that a particular theory of games is proposed. Furthermore
suppose that it contains {among perhaps others) assumptions (a) and (b)
suitably reproduced below:

(a) each player, so long as it is consistent with the history of play,
believes that his opponent is Bayesian rational, and

(b) assumption (a) is common belief among the players.

Our aim is to show that such a theory can be applied to only “very few”
simple games. To make the point even more forcefully, we shall, in fact,
show that an assumption even /less stringent than (a), together with (b),
suitably modified, can be consistently applied only rarely. Thus, consider
the following assumptions:

(a’) if effective, each player, so long as it is consistent with the
history of play, believes that his opponent is Bayesian rational, and

(b’) assumption (a’) is common belief among the players.

When is it ineffective for a player to believe that his opponent is
Bayesian rational? When that player has a strategy that is best for him no
matter how his opponent behaves. In simple games, this is the case precisely
when a player has a strictly dominant choice at the current decision node.

We shall call a game belief-consistent if (a’) and (b’) can together be
applied to it without logical contradiction. In order to formally define a
belicf-consistent game, we will need some additional notation. At i’s deci-
sion node x, a choice ¢ (identified by an immediate successor of x) is strictly
dominant if there is a pure strategy se M, reaching ¢ such that for any
pure strategy s'€ M, reaching x but not ¢, and any m _;e M _, reaching x
with probability one, (s, m _;) yields i a strictly higher payoff than (s', m _,).
We say that /s decision node x is consistent with i’s Bayesian rationality if
i has a Bayesian rational strategy reaching x.

Call a decision node, x, relevant if it is consistent with both players’
Bayesian rationality and no strictly dominant choice is available at x. Let
X, denote the set of all relevant decision nodes. Thus, for a fixed game, X,
contains those decision nodes that could be reached by Bayesian rational
players and at which it is effective for the owner to believe that his
opponent is Bayesian rational.

Focusing attention merely on the set of relevant decision nodes rather
than on all those that are consistent with both players’ Bayesian rationality
corresponds to our desire to incorporate the weaker assumption (a’) rather
than the stronger one (a). Since the set of simple games that (a’) and (b")
can be applied to without contradiction is no smaller than (and is, in fact,
strictly larger than) the set that (a) and (b) can be applied to, showing that
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the former is in some sense small, shows also that the latter is. We now
move toward the definition of a belief-consistent game.

In order for (a’) and (b’) to apply without contradiction to a game, it
certainly must be the case that every relevant decision node is consistent
with CBR. But more than this must be true. If both x and y are relevant,
and say, neither succeeds the other, then if x were reached, not only would
(a’) and (b’) imply that Bayesian rationality were common belief at x, but
they would also imply that ar x it is common belief that had y been reached
Bayesian rationality would have been common belief at y.

To see that this has force, consider Fig. 5.

Both x and y are relevant in G,, and both are consistent with CBR. Yet,
we wish to argue (informally) that this game is not belief-consistent.
Assumptions (a’) and (b") together produce a logical contradiction. To see
this note that if Bayesian rationality were common belief at x, and player
2 were Bayesian rational, then 2 would play left at x. Since both the origin
and x are relevant, (a’) and (b’) together imply that at the origin, player |
believes that if he chooses left, reaching x, then player 2 will play left at x.
Since this eventually gives player 1 his highest possible payoff of 2, he will
choose left at the origin if he is Bayesian rational. Therefore, choosing right
at the origin, so that y is reached, is jointly inconsistent with (1) player 1
being Bayesian rational; (2) 1 believing that 2 is Bayesian rational; and
(3} it being common belief that were x reached, Bayesian rationality would
be common belief. So, if 3 is reached, player 2 must conclude that one of
(1)-(3) fails to hold. But since y is relevant, this violates (a’) or (b’). We
conclude that (a’) and (b’) cannot be consistently applied to the above
game. This is not because one of x or y is inconsistent with CBR, but
because fogether they are inconsistent with CBR.

FIGURE 5
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In light of this, and drawing on our alternative characterization of
Definition 2, consider the following. Fix a nonempty subset of decision
nodes Y < X, and a nonempty subset of each player’s strategy set R¥ S M,
i=1,2. We will say that (R¥., R¥) is a jointly rational belief system (JRBS)
Jor Y X iffori=1,2, m,is a member of R* precisely when there is a con-
jecture profile ¢, such that (i) m, reaches some y' €Y, (ii) (m,, ¢;) satisfies
Bayesian rationality, and (iii) ¢,(y)e R*, for every ye Y.

Note that it is condition (iii) that both distinguishes this definition from
its predecessor and captures the intuition of the previous example. Condi-
tion (1) ensures not only that at 3’ € Y player i's conjecture about —i's
strategy is consistent with CBR, it also ensures that at )’ it is common
belief that had any other node in Y been reached, i’s conjecture about —i’s
strategy would have been consistent with CBR.

DerINITION 3. A finite two-person game having perfect information
is belief-consistent if there is a jointly rational belief system for the set of
relevant decision nodes.

Remark. As with Definition 2, there is an equivalent inductive manner
of defining belief-consistency. We leave the details to the reader.

We now wish to convince the reader that very few two-person finite
extensive form games having perfect information and no indifference
among terminal nodes (that is, simple games) are belief-consistent. The
following theorem is intended to be evidence of this:

THEOREM. A simple game is belief-consistent if and only if for every deci-
sion node x not on the unique backward induction path, x is irrelevant. That

is, either

(i) a strictly dominant choice is available at x, or

(1) x is inconsistent with at least one playver’s Bayesian rationality.

Proof. See the Appendix.

Note for instance then that all simple games in which player 1 moves
first, and player 2 moves second, ending the game, are belief-consistent.
This may be one reason for the salience of subgame perfect (i.e., backward
induction) outcomes over imperfect Nash outcomes in such games. Of
the examples presented here, only TOL(n) for n=2 and G, are belief-
consistent.

642 59 2.3
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5. CONCLUDING REMARKS

The analysis of Section 4 shows that assumptions (a) and (b) (indeed,
(a’) and (b’)) cannot be jointly applied to any game taken from a large
class of two-person finite extensive form games with perfect information.
But the lesson of Kreps e a/. [9] is that if in some subgame Bayesian
rationality is not common belief, which the absence of (a) and {b) would
allow, Bayesian rational players need not play according to the standards
of backward induction. However, if in such subgames backward induction
does not apply, then it does not apply at nodes preceding these subgames
either- -playing according to backward induction at a particular decision
node is not necessarily Bayesian rational if the standards of backward
induction are not upheld in the part of the tree that follows. Hence, com-
bining our analysis with the message of Kreps et al. [9] casts some doubt
on the tenet that backward induction is the only “sensible” mode of
behavior in two person games with perfect information. Indeed, even
assuming that two Bayesian rational players share a common belief of
Bayesian rationality at the origin of the game tree does not imply that the
backward induction outcome will result (see Reny [14] or Ben-Porath
[4]). For instance, in TOL(#n) this eliminates only outcomes in which the
last mover chooses not to take the money. No other can be ruled out!*

With respect to the finitely repeated prisoners’ dilemma, we feel some
additional insights are suggested by our analysis. In particular, the result of
Kreps et al. [9] supporting rational cooperation rests on an exogenous
lack of common belief of Bayesian rationality (in fact there is a positive
probability that one of the players is TIT-FOR-TAT). From the analysis of
Kreps et al., as we have mentioned, it is clear that cooperation may result
among Bayesian rational players whenever Bayesian rationality is not com-
mon belief. But if this is the case, then there need not be an exogenously
imposed lack of common belief of Bayesian rationality at the beginning of
the game for cooperation to result. The reason is that although the finitely
repeated prisoners’ dilemma is a game with imperfect information, the
imperfections are simple enough so that a straightforward modification of
Definition 3 can be applied to show that this game is not belief-consistent.
Hence, even if Bayesian rationality is common belief at the beginning of the
game, by making appropriate choices the players can reach a position in
which Bayesian rationality is not (in fact, cannot be) common belief. And
by so doing, both may be better off by rationally cooperating thereafter.

4 Recently, Ben-Porath [4] has characterized those outcomes consistent with the assump-
tions of Bayesian rationality and CBR at the origin of the tree in simple games. They are
precisely those that result upon one round of deleting weakly dominated strategies and then
iteratively eliminating strictly dominated strategies.
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This can be formally demonstrated. Of course, in order for this to be the
case, it must be possible that some of the choices made are unexpected.
Otherwise the initial common belief of Bayesian rationality would persist.
Thus, the type of behavior described here is necessarily non-equilibrium
behavior.

It is perhaps worth mentioning that none of the difficulties expressed
here, in paricular the impossibility of Bayesian rationality being common
belief, arises in simultaneous-move games. This i1s because players never
observe any choice made by their opponents in such games. Hence one is
never forced (due to an observation) to believe an opponent is not
Bayesian rational or that he believes that you are not Bayesian rational,
etc. So, from the point of view of beliefs and beliefs about beliefs... about
Bayesian rationality, extensive form games and normal form games
(simultaneous-move extensive form games) are markedly different. Whether
or not this warrants a difference regarding strategic considerations may
be worth keeping in mind when evaluating the notion of invariance of
solution concepts (Kohlberg and Mertens [8]) which presumes that the
extensive and normal form representations are strategically equivalent.

Since it is not in general possible for Bayesian rationality to be common
belief at every information set of every extensive form game (in particular,
games with perfect information) we cannot hope to formulate a consistent
theory of games which is itself common belief among the players and which
contains the postulate “all players are Bayesian rational.” In particular,
since the recent work of Berheim [5] and Pearce [13] on extensive form
rationalizability involves heavy use of the common belief of Bayesian
rationality within a model which is itself presumed common belief, at the
very least a reinterpretation of their (extensive form) analysis is called for.
The same goes as well for most refinements of Nash equilibrium.

A theory of games therefore, must explicitly allow (and take into account
the effects of ) the absence of the common belief of Bayesian rationality at
some points in some games. In an attempt to deal with this as well as with
other fundamental concerns associated with extensive form reasoning, Gul
(7] introduces the notion of a z-theory in which it need never be the case
that Bayesian rationality is common belief. Another approach is found in
Reny [ 14, 157, where a refinement of Nash equilibrium that does not insist
upon common belief of Bayesian rationality at information sets off the
equilibrium path is provided.

APPENDIX

Proof of the Proposition. Suppose that x is consistent with CBR. Then,
by definition, (}_, Ry (n)# J fori=1,2. Let R* =\ _, R/(n). Owing to

n=1
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the finite number of pure strategies, it can be shown that for N large
enough, R;(n)=R;(N) for all n= N. So, because RY(n+ 1)< R} (n) this
implies that R* = R(N). Putting n =N in (%) then yields:

R* = {m,e M)for some conjecture profile c,,
(1) m,reaches x,
(i1} (m,, ¢;) satisfies Bayesian rationality,

(iii) ¢, (x)e R¥,).

Hence, (R}, R¥) is a JRBS for x.

Conversely, suppose that there is JRBS (R}, R}) for x. By definition of
RX, it is the case that R* < R (1). We shall establish, by induction, that
RY¥ < RY(n) for every n.

So, suppose for i=1, 2 that R¥ < R} (k) for every k=1, 2, .., n. Choose
m, € R¥. We wish to show that m, e RY(n+ 1). By the definition of a JRBS,
there is a conjecture profile ¢; such that (i) m,; reaches x; (ii) (m;, c,)
satisfies Bayesian rationality; and (iii)¢;(x)e R*,. But by the induction
hypothesis, R*,= R* (n). Therefore ¢,(x)e R* ,(n). But this means then
that m,; € R} (n+ 1) as desired.

Hence, R}¥ < R(n) for every n=1 so that R¥*< N _, R¥{n). Since by
the definition of a JRBS, R¥ and R¥ are nonempty, we conclude that x is
consistent with CBR. Q.E.D.

Proof of the Theorem. Suppose that every node off the backward induc-
tion path is irrelevant. Let s*e M, be /s backward induction (pure)
strategy. For =1, 2, setting R* equal to the collection of strategies realiza-
tion equivalent to s* vyields a JRBS for X,.

Conversely, suppose that [ is belief-consistent. Let then (Rf, R¥) be a
JRBS for X,. We claim that if xe X, n X, and m,e R}* reaches x, then m,
induces the unique backward induction choice at x. The argument is inductive.

For xe X, let /(x) denote the maximum number of decision nodes
weakly following x among all paths through x. If xe X, is a penultimate
node (ie., /{x)= 1), the claim is clearly true. So, assume that it is true for
all xe X, with /(x)<k, and suppose that ze X,n X,, /(z)=k+ 1, and
m,e R* reaches z. Hence, there is a conjecture profile ¢; such that (m;,, ¢;)
satisfies Bayesian rationality, and c¢,(y)e R*, for every ye X,. Therefore
¢;(z) is a convex combination of m' ,, .., m” ,e R* ..

Now, consider any successor of z, ye X ;. (If no such y exists then m,,
being Bayesian rational, gives probability one to the unique backward
induction choice at z and we are done.) If ye X, and for some j=1, .., p
m’ . reaches y, then because m’ ;e R*,, the induction hypothesis implies
(since /( y) < k) that m” , induces the backward induction choice at y. Since
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j was arbitrary, c¢;{z) therefore induces the backward induction choice at
every ye X, n X _; it reaches following z.

Now suppose that ¢,(z) reaches ye X )\ X,. Since ¢,(z) e R¥, y must be
consisent with —/’s Bayesian rationality. Hence, since y is irrelevant, either
v 1s inconsistent with /’s Bayesian rationality, or a strictly dominant choice
is available at y. If the latter holds, then since ¢,(z) € R*,, c,(z) is a convex
combination of Bayesian rational strategies and therefore it places prob-
ability one on the strictly dominant choice (the backward induction choice)
at y.

Hence, if ¢;(z) reaches y=:z then either ¢,(z) induces the unique
backward induction choice there or y is inconsistent with ’s Bayesian
rationality.

Since z is consistent with i’s Bayesian rationality, —i’s choice at any
node following - that is inconsistent with i’s Bayesian rationality has no
effect upon i’s best response at =. So, in order to find /s best response at
- we may, without loss of generality, suppose that i’s conjecture at z, ¢;(z),
induces the unique backward induction choice at each of —i’s decision
nodes that is inconsistent with /’s Bayesian rationality. But then c,(z)
induces the unique backward induction choice at each of —i’s decision
nodes that it reaches following z. Hence, i’s unique best response at z is the
backward induction choice there. Since, by the induction hypothesis,
(m,, c,) satisfies Bayesian rationality and m, reaches z, m, induces the
unique backward induction choice at z. This completes the proof of the
claim.

Suppose now that xe€ X is relevant and not on the backward induction
path. We wish to argue to a contradiction. Let y be any node on the back-
ward induction path preceding x such that the backward induction choice
at y precludes x from being reached. Suppose that ye X,. By the claim
proven above, any strategy in R* reaching y induces the backward induc-
tion choice there and so does not reach x. Since y precedes x, we conclude
that no strategy in R} reaches x.

However, choose now any strategy m ,e R*,. By definition of a JRBS
for X,, there is an associated conjecture profile ¢ _, such that ¢ (w)e R¥
for every weX,. Furthermore, since (m _;,, ¢ ;) must satisfy Bayesian
rationality, ¢ ,(w) must reach w for every we X,. In particular then,
¢ (x) both reaches x and is a member of R*. But this can happen only
if some member of R* reaches x, a contradiction. Q.ED.
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